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Preface

PaCT-2007 (Parallel Computing Technologies) was a four-day conference held in
Pereslavl-Zalessky, September 3—7, 2007. This was the ninth international confer-
ence in the PaCT series. The conferences are held in Russia every odd year. The
first conference, PaCT-91, was held in Novosibirsk (Academgorodok), September
7-11, 1991. The next PaCT conferences were held in Obninsk (near Moscow),
August 30 - September 4, 1993, in St.Petersburg, September 12-15, 1995, in
Yaroslavl, September 9-12 1997, in Pushkin (near St.Petersburg), September
6-10, 1999, in Academgorodok (Novosibirsk), September 3-7, 2001, in Nizhni
Novgorod, September 15-19, 2003, in Krasnoyarsk, September 5-9, 2005. Since
1995 all the PaCT proceedings have been published by Springer in the LNCS
series.

PaCT-2007 was jointly organized by the Institute of Computational Mathe-
matics and Mathematical Geophysics of the Russian Academy of Sciences (RAS)
and the Program Systems Institute of the RAS (Pereslavl-Zalessky).

The purpose of the conference was to bring together scientists working on
theory, architecture, software, hardware and the solution of large-scale problems
in order to provide integrated discussions on parallel computing technologies.

The conference attracted about 100 participants from around the world. Au-
thors from 25 countries submitted 98 papers. Of those, 37 papers were selected
for the conference as regular papers; there were also 2 invited papers. In addition
there were a number of posters presented. All the papers were internationally
reviewed by at least three referees.

A demo session was organized for the participants, and different tools were
submitted for a demonstration and tutorial. One of them was the Open TS: Dy-
namic Parallelization System for Multicore CPUs, SMPs, Clusters and GRIDs.

In conjunction with PaCT-2007, the Russian — Taiwan symposium on Meth-
ods and Tools of Parallel Programming of Multicomputers was held in Pereslavl-
Zalessky, September 2—3, 2007. The symposium was organized by the Institute
of Computational Mathematics and Mathematical Geophysics of RAS (Novosi-
birsk, Russia), the Institute of Program Systems RAS (Pereslavl-Zalessky) and
the Chung Hua University (Taiwan). The symposium attracted 22 papers and 4
tools demonstrations and tutorials. Of those, 16 were selected for the symposium
as regular papers; there was also 1 invited paper.

Many thanks to our sponsors: the Russian Academy of Sciences, the Russian
Fund for Basic Research, National Scientific Council (Taiwan), IBM, Microsoft,
Intel, and T-Platforms for their financial support.

June 2007 Victor Malyshkin
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Looking for a Definition of
Dynamic Distributed Systems*

R. Baldoni!, M. Bertier2, M. RaynalQ, and S. Tucci-Piergiovanni1

LIRISA, Campus de Beaulieu, 35042 Rennes, France
2 Computer Science Department, University La Sapienza, Roma, Italy

{marin.bertier,raynal}@irisa. fr,
{baldoni, sara.tucci}@dis.uniromal.it

Abstract. This paper is a position paper on the nature of dynamic systems. While
there is an agreement on the definition of what a static distributed system is, there
is no agreed definition on what a dynamic distributed system is. This paper is a
first step in that direction. To that end, it emphasizes two orthogonal dimensions
that are present in any dynamic distributed system, namely the varying and possi-
bly very large number of entities that currently define the system, and the fact that
each of these entities knows only a few other entities (its neighbors) and possibly
will never be able to know the whole system it is a member of. To illustrate the
kind of issues one has to cope with in dynamic systems, the paper considers, as
a “canonical” problem, a simple data aggregation problem. It shows the type of
dynamic systems in which that problem can be solved and the ones in which it
cannot be solved. The aim of the paper is to give the reader an idea of the sub-
tleties and difficulties encountered when one wants to understand the nature of
dynamic distributed systems.

1 Introduction

The nature of distributed computing. Distributed computing arises when the problem
to solve involves several entities such that each entity has only a partial knowledge of
the many parameters involved in the problem. According to the context, these entities
are usually called processes, nodes, sites, sensors, actors, peers, agents, etc. The en-
tities communicate and exchange data through a communication medium (usually an
underlying network).

While parallelism and real-time can be respectively characterized by the words ef-
ficiency” and “on time computing”, distributed computing can be characterized by the
word uncertainty”. This uncertainty is created by asynchrony, failures, unstable behav-
iors, non-monotonicity, system dynamism, mobility, low computing capability, scalabil-
ity requirements, etc. Mastering one form or another of uncertainty is pervasive in all
distributed computing problems. So, a fundamental issue of distributed computing con-
sists in finding concepts and mechanisms that are general and powerful enough to allow
reducing (or even eliminating) the underlying uncertainty.

* This work has been done in the context of the European Network of Excellence ReSIST (Re-
silience for Survivability in IST).

V. Malyshkin (Ed.): PaCT 2007, LNCS 4671, pp. 1, 2007.
(© Springer-Verlag Berlin Heidelberg 2007



2 R. Baldoni et al.

Static reliable asynchronous distributed systems. A distributed system (the software
and hardware layer on top of which the distributed applications are executed) can be
characterized by behavioral properties and structural properties. These properties define
a computation model.

The static reliable asynchronous model is the most popular one. Static means that the
number of entities is fixed. Reliable means that neither the entities nor the communica-
tion medium suffer failures. Asynchronous means that there is no particular assumption
on the speed of the processes, or on message transfer delays. Moreover, the underlying
network is usually considered as fully connected: any entity can send messages to, or
receive messages from, any other entity (this means that the message routing is hidden
at the abstraction level offered by this distributed computing model).

An important result associated with this distributed computing model is the deter-
mination of a consistent global state (sometimes called a snapshot). It has been shown
[S] that the “best” that can be done is the computation of a global state (of the upper
layer distributed application) with the following consistency guarantees: the computed
global state is such that (1) the application could have passed through it, but (2) has
not necessarily passed through it. There is no way to know whether or not the actual
execution passed through that global state. This is one of the fundamental facets of the
uncertainty encountered in static distributed systems.

Static unreliable asynchronous distributed systems. The simplest static unreliable asyn-
chronous model is characterized by the fact that processes may crash. The most famous
result for this model is the impossibility to solve the consensus problem as soon as a
process may crash [6] (the consensus problem is a coordination - -or agreement- - prob-
lem. It consists in designing a deterministic protocol in which all the processes that do
not crash reach a common decision based on their initial opinions). The impossibility
to solve this problem comes from the net effect of asynchrony and failures. One way to
solve consensus despite asynchrony and failures consists in enriching the asynchronous
model with appropriate devices called failure detectors [3110] (so, the resulting com-
puting model is no longer fully asynchronous).

Fortunately, problems simpler than consensus can be solved in this model. Let us
consider the reliable broadcast problem [8] as an example. This problem consists in
providing the processes with a broadcast primitive such that all the processes that do not
crash deliver all the messages that are broadcast (while the faulty processes are allowed
to deliver only a subset of these messages). Let a correct process be a process that never
crash. This problem can easily be solved as soon as any two correct processes remain
forever connected through a path made up of reliable channels and correct processes.

So, when we proceed from the static reliable asynchronous distributed computing
model to its unreliable counterpart, there are problems that can still be solved, while
other problems become impossible to solve if asynchrony is not restricted (e.g., by
using failure detectors, or considering their “ultimate” endpoint, namely, a synchronous
system).

Dynamic distributed systems. Since arecent past, there are a lot of papers (mainly in the
peer-to-peer literature) that propose protocols for what they call dynamic systems. These
protocols share the following: the entities can join and leave the system at will. This
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dynamicity dimension constitutes a new attribute of the uncertainty that characterizes
distributed computing. Unfortunately, (to our knowledge) there is no clear definition
of what a dynamic system is. This paper is a first step in that direction. To that end,
it proposes to investigate two dimensions of dynamicity. The first is on the number of
entities that compose the system: is there an upper bound that is known? How many
entities can coexist at any given time? etc. The second dimension is “geographical”.
More precisely, it is related to the fact that it is not possible to provide the entities with
an abstraction offering a logical point-to-point bidirectional link to each pair of entities.
So, this dimension is on the notion of entity neighborhood (locality) and the fact that
the processes can or cannot know an upper bound on the network diameter.

Content of the paper. The paper is made up ofdlsections. SectionPlproposes parameters
that should be taken into account when one wants to precisely define a dynamic system
model. Considering a very simple dynamic system, Section [3| investigates what can
be computed in this model. To that end a simple aggregation problem is used as a
“canonical” problem. Section[ provides a few concluding remarks.

The spirit of the paper is more the spirit of a position paper with a pedagogical flavor
than the spirit of a traditional research paper. We do think that a precise definition of
what a dynamic distributed system is (or maybe what families of dynamic distributed
systems are) is hardly needed. This paper is a very first endeavor towards this goal.

2 Elements for Defining a Dynamic Distributed System

Informally, a dynamic system is a continually running system in which an arbitrarily
large number of processes are part of the system during each interval of time and, at any
time, any process can directly interact with only an arbitrary small part of the system.
This section proposes and investigates two attributes that should be part of the definition
of any dynamic distributed system.

2.1 Modeling the Dynamic Size of the System in Terms of Number of Entities

In a dynamic system, entities may join and leave the system at will. Consequently, at
any point on time, the system is composed of all processes (entities) that have joined and
have not yet left the system. We call system run (or simply a run) a total order on the join
and leave events (issued by the processes) that respect their real time occurrence order.

In order to model entities continuously arriving to and departing from the system, we
assume the infinite arrival model (as defined in [9]), where, in each run, infinitely many
processes P = {...,p;,pj, px - . .} may join the system. However, several models can
be defined, that differ in the assumptions on the number of processes that can concur-
rently be part of the system [7L9]]. Using the notation introduced in [1]], the following
infinite arrival models can be defined:

— M?: The number of processes concurrently inside the system is bounded by a con-
stant b in all runs.

— M™: The number of processes concurrently inside the system is bounded in each
run, but may be unbounded when we consider the union of all the runs.
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— M: The number of processes that join the system in a single run may grow to
infinity as the time passes.

In the first model, the maximum number of processes in each run is bounded by a
constant b that is the same for all the runs. When it is known, that constant can be used
by the protocols defined for that system.

In the second model, the maximum number of processes in each run is bounded, but
that bound may vary from one run to another. It follows that no protocol can rely on
such a bound as a protocol does not know in advance the particular run that will be
produced.

In the third model, the number of processes concurrently inside the system is finite
when we consider any finite time interval, but may be infinite in an infinite interval of
time. This means that the only way for a system to have an infinite number of processes
is the passage of time.

2.2 Modeling the Dynamic Size of the System in Terms of Geography

The previous models [719] implicitly assume that, at any time, the communication net-
work is fully connected: any process knows any other process that is concurrently in the
system, and can send it - -or receive from it- - messages directly through a point-to-point
channel.

Our aim is here to relax this (sometimes unrealistic) assumption, and take into ac-
count the fact that, at any time, each process has only a partial view of the system, i.e.,
it can directly interact with only a subset of the processes that are present in the sys-
tem (this part is called its neighborhood). So, we consider the following geographical
attributes for the definition of a dynamic distributed system.

— At any time, the system can be represented by a graph G = (P, E), where P is
the set of processes currently in the system and E is a set of pairs (p;, p;) that
describe a symmetric neighborhood relation connecting some pairs of processes.
(pi,pj) € E means that there is a bidirectional reliable channel connecting p; and
Dj-

- Tjhe dynamicity of the system, i.e., the arrivals and departures of processes, is mod-
eled through additions and removals of vertices and edges in the graph.

e The addition of a process p; to a graph G brings to another graph G’ obtained
from G by including p; and a certain number of new edges (p;, p;) where the
p; are the processes to which p; is directly connected.

e The removal of a process p; to a graph G brings to another graph G’ obtained
from G by suppressing the vertex p; and all the edges involving p;.

e Some new edges can be added to the graph, and existing edges can be sup-
pressed from the graph. Each such addition/deletion brings the graph G into
another graph G'.

- Let {G,,}run denote the sequence of graphs through which the system passes dur-
ing a given run. Bach G,, € {G,},un is a connected graph the diameter of which
can be greater than one for all runs.

As we have seen, an infinite arrival model allows capturing a dynamicity dimension
of dynamic distributed systems. Making different assumptions on the diameters of the
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graphs in the sequences {G, }run allows capturing another dynamicity dimension re-
lated to the “geography” of the system. More specifically, we consider the following
possible attributes. In the following { D), },.» denotes the set of the diameters of the
graphs { G, }run-

— Bounded and known diameter. In this case the diameter is always bounded by b,
i.e., for each D,, € {D,};un We have D,, < b for all the runs, and that bound is
known by the protocols designed for that model.

- Bounded and unknown diameter. In this case all the diameters {D,, } ., are finite
in each run, but the union of {D,, },.,», for all runs can be unbounded. In that case,
as an algorithm cannot know in which run it is working, it follows that the maximal
diameter remains unknown to the protocol. So, in that model, a protocol has no
information on the diameter.

— Unbounded diameter. In this case, the diameter is possibly growing indefinitely in
arun, i.e., the limit of { D), },4», can go to infinity.

2.3 Dynamic Models Definition

A model is denoted as M™ P where N is on the number of processes and D is on
the graph diameter, both parameters can assume the value b, n, co to indicate respec-
tively a number of entities/diameter never exceeding a known bound, a number of en-
tities/diameter never exceeding an unknown bound and a number of entities/diameter
possibly growing indefinitely (in the following, if a parameter may indifferently assume
any value, we denote that as ). Possible models are M%?, M™b Moot (Ef),, M,
M°>™ and M °°°.

Note that the previous models characterize only the dynamicity of the system without
considering other more classical aspects such as the level of synchrony or the type of
failures. Clearly, any of these models can be refined further by specifying these addi-
tional model attributes as usually done in static systems.

To be able to establish the impact of geographical assumptions on a problem solving
in dynamic distributed systems, we only consider, in this paper, synchronous systems
or asynchronous system completed with perfect failure detectors. In other words, we
assume that a node can have reliable information about nodes in its neighborhood.

3 Anillustrating Example: One-Time Query

3.1 The One-Time Query Problem

To illustrate and investigate the previous attributes of a dynamic distributed system, we
consider the One-Time Query problem as defined in [2]. This problem can informally
be defined as follows. A process (node) issues a query in order to aggregate data that
are distributed among a set of processes (nodes). The issuing process does not know (i)
if there exist nodes holding a value matched by the query, (ii) where these nodes are,
(iii)) how many they are. However, the query has to complete in a meaningful way in
spite of the uncertainty in which the querying node works.

! An instance of the model M°°® is M of [[]] where the diameter is implicitly set to 1.
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The One-Time Query problem, as stated in [2] requires that the query, issued by a
node p; aggregates at least all the values held by the nodes that are in the system and
are connected to p; during the whole duration of the query (query time interval).

Unfortunately, this specification has been intended for a model slightly different from
the more general model proposed in the previous section. In fact, the system is intended
to be monotonous in the sense that it can be represented by a graph G defined at the
beginning of the computation (query) and from which edges can be removed as time
passes, but to which no new edges can be added as time passes. Differently, in the
previous models, the system is dynamic in the sense that nodes/edges additions and
nodes/edges deletions are allowed. As we are about to see, while the One-Time Query
problem -as defined above- cannot be solved in a dynamic system, a weaker version of
it can be. It is also important to notice (as we will show later) that this weaker version
cannot be solved in M °°>°,

One-Time Query specification. The specification that follows is due to [2]]. Let query(Q)
denote the operation a process invoke to aggregate the set of values V' = {v, v2,...}
present in the system and that match the query. The aim for the process that issues the
query is to compute v = Q(V). Given that setting, the problem is defined by the fol-
lowing properties (this means that any protocol solving the problem has to satisfy these
properties):

— Termination: query(Q) completes in a finite time.

— Validity: The set V' of data obtained for computing query(Q) includes at least the
values held by processes that are member of the system during the whole query
time interval.

3.2 The WILDFIRE Algorithm

In [2] the following algorithm (called WILDFIRE) to solve the problem is proposed.
This algorithm relies on the following assumptions:

— synchronous channels with a known upper bound 6,
— a known upper bound on the network diameter D.

Algorithm description. The principle of this algorithm is simple. Each process which
receives a so-called query-update message updates its current value to a new one, com-
puted by aggregating the current value and the received value, then it spreads the new
value to its neighbors.

The initiator of the query just sends its initial value to its neighbors in a query-update
message and waits for at least 2 x D x § time before returning its value. D x ¢ is the time
required to inform all nodes in the network about the query, and the same duration is
required to transmit values to the initiator.

As the initiator, all nodes which receive a query-update message for the first time,
initiate a timeout and when this timeout expires, they stop to process all new query-
update messages.

In [2], the authors propose to reduce the number of messages exchanged by sending
a query-update message only when there is new information: (i) if the remote value
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doesn’t change the local value, then the node doesn’t send any message (except for the
first reception of the query-update message), (ii) if the aggregate value is equal to the
remote one, then the node transmits the new value to its neighbors except the sender of
the remote value.

INITIALIZATION
1 active «— false;
2 v « initial value;

LAUNCH (Q)

3 active «— true;

4 d < D; % D is the upper bound on the network diameter. %
5 send [QUERY-UPDATE (Q, d — 1, v)] to neighbors;

6 settimeout T « 2d * 6;

7 when (T elapses) do

8 active «— false;

9 return (v);

RECEPTION
10 when (receive [QUERY-UPDATE(Q, d, rv)] from p; ) do
11 if (—active)

12 then set timeout T« 2d * &; % We consider negligible process step’s executions w.r.t. message delays. %
13 if (T not yet elapsed)

14 then temp «— aggregate(v, rv);

15 if (temp! = v or —active)

16 then active «— true;v < temp;

17 send [QUERY-UPDATE,(Q, d — 1, v)] to neighbors — p;;

18 if (v! = rv)

19 then send [QUERY-UPDATE,(Q, d — 1, v)] to p;

Fig. 1. The WILDFIRE Algorithm

3.3 The One-Time Query Problem for Dynamic Models

One-Time Query problem solvability. The WILDFIRE algorithm solves the one-time
query problem in a monotonous network but does not solve it in a dynamic network (in
none of the models presented in the previous section, neither in A/*?). More generally,
the one-time query specification introduced so far is too strong, and cannot be satisfied
by any algorithm if the network graph can change by adding edges during the query
completion A However, if an edge is added during a query, the following bad scenario
can happen.

Description on a bad scenario. Let us consider the querying process p 4 and a process
pE (1) inside the system when the query starts and (ii) connected to p 4 through a given
path. Let us suppose that an edge joining p4 and pg is added after the query started and
remains up until the query ends. Let us also suppose that the path previously connecting
p4 and pg is removed (due to a crash of some process in the path) before the query ends.
Formally, p 4 is always connected to pp throughout the entire duration of the query (as
herein assumed by all dynamic models), but its value could not be retrieved as described
in Figure[2 where ¢, is the time the query starts.

2 The addition of edges during the query completion is reasonable as the query takes an arbitrary
long time spanning the entire graph and in order to maintain connectivity edges addition may
be needed in spite of edges removals occurring at arbitrary times.
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(a) time=tq; A.neighbors={B,C} (b) time:tqy>tq; B,C forward (c) time: tg,>tq,; E,D send
the query their value back

(d) time tgz>tq,; the message is still (e) time: tq,>tqs; the message is still
in transit towards C and a new link in transit towards C, and two links
is added: A.neighbors={B,C,E} are removed by the crash of C. The

message is lost

Fig. 2. Bug Example

The problem lies in the fact that the process pg replies to the query but the mes-
sage containing the reply is exchanged through a path that is removed before the query
completes, and is consequently lost before it reaches the querying process.

Then, to retrieve this value, pr should be forced to send again the reply back (this
can be done by assuming a detection of the path removal that triggers a new sending
on the new path). However, by the nature of the infinite arrival model, the substitution
of a path with a new one during the query could happen infinitely often in all dynamic
models in which the diameter is not bounded by one (see Fig. ). In all these models
the query may never complete violating termination.

One-Time Query specification for dynamic models. The specification of the one-time
query problem in case of a dynamic model is here refined bringing to the definition
of the Dynamic One-Time Query Specification. This new specification states that the
values to include in the query computation are at least those coming from nodes that
belong to the graph G defined at time the query starts, and remain connected, during the
whole query interval, to the querying process through a subgraph of GG. More formally,
the Dynamic One-Time Query specification satisfies the following two properties:

— Termination: query(Q) completes in a finite time.

— Dynamic Validity: For each run, query(Q) will compute the result including in
V' at least the values held by each process that, during the whole query interval,
remains connected to the querying process through a subgraph of the graph G that
represents the network at the time the query is started.
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(a) reply sent on the path ACD (b) addition of the process C' (c) reply lost

(d) reply sent on the path AC'D (e) addition of the process C" () reply lost

Fig. 3. Bad Pattern of Graphs Changing

It is important to note (and easy to see) that the dynamic one-time query specification
is satisfied by the WILDFIRE algorithm in the model M *? with b > 1. In the following
we will explore if there exist solutions without assuming a known upper bound on the
diameter.

3.4 The DEPTHSEARCH Algorithm

The algorithm that follows (called DEPTHSEARCH) solves the one-time query problem
as defined just previously. That protocol relies on the following assumptions.

— asynchronous model enriched with a perfect failure detector (the faulty processes
are deleted from the set netghborhood),

— unique process identifiers,

— a finite diameter of the network (not known in advance).

Algorithm description. This algorithm works in a different way than WILDFIRE. In
WILDFIRE, many query-update messages are exchanged all over the network at the
same time. In the DEPTHSEARCH algorithm only one message (query or reply) is trans-
mitted at one time. The only case, in which two different queries co-exist, is the conse-
quence of a disconnection between two nodes, but in any case only one query is taken
into account.

This algorithm manages several sets:

— The set values that contains all values currently collected,
— The set replied that contains the identifiers of the nodes that have provided their
value,
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— querying contains the identifiers of the nodes that have sent a querying message
and are waiting for replies from their neighborhood. These nodes (except the query
initiator) are also nodes that have to provide their value to some other querying
process.

This algorithm works similarly to a depth-first tree traversal algorithm (it traverses
the nodes that compose the system). When a node p; receives a query message, it checks
if some of its neighbors have not yet received the query message yet by checking the
querying and replied set. If some of them have not yet received a query message, then
p; sends to the first of them (say p;) a query message and waits until it receives a reply
from p;.

When the node p; receives a reply message from p;, or if p; is no more in the p;’s
neighborhood (p; is failed or is disconnected), the node p; sends a query message to the
next neighbor that has not yet received a query message. When all p;’s neighgbors have
received a query message or are no longer in the p;’s neighborhood, then p; sends back
areply message with the values and replied set updated or, if p; is the query initiator, it
returns the set of values.

INITIALIZATION

1 querying < 0; % set of processes forwarding the query %;

2 replied < 0; % set of processes replied to the query %;

3 targets < O; % set of processes to query by the local process %;

4 walues «— {local value}; % set of processes to query by the local process %;

5 mneighborhood % set of correct neighbors provided and updated by the perfect failure detector %

REQUEST(Q)
6 targets < neighborhood; % This line freezes the neighbor set %;
7 querying «— querying U {local id};
8 foreachi :=1to [targets|
9 if (targets[i] € {querying} U {replied})

10 then send [QUERY,(Q, querying, replied)] to n[i];

11 wait until (receive [REPLY,r values, r replied] from n[i] V n[i] € neighborhood);
12 if (n[i] € neighborhood)

13 then values «— values U r values;

14 replied «— replied U r replied

LAUNCH(Q)

15 REQUEST(Q);
16 return (values)

RECEPTION

17 when (receive [QUERY,(Q, r querying, r replied)] from p;) do
18 querying «— r querying;

19 replied < r replied;

20 REQUEST(Q);

21 replied «— replied U {local id};

22 send [REPLY,(values, replied)] to p;;

Fig.4. The DEPTHSEARCH Algorithm

Algorithm illustration. To illustrate the protocol behaviour, let us consider the com-
putation related to a query initiated by a node p4 in the network shown in Figure
In this scenario p4 starts to query the first process in the pa.targets = (B,C, D)
set, pp does the same with its pp.targets = (A, C, E) set where pp.querying =
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Fig. 5. Graph Representing the Network during the A’s Query

pa.querying = {A}. Then pp queries pc, piggybacking the list of querying processes,
that now is {A,B}. Then, pc does not query anyone and gives back a reply to pg,
with a list of replied processes equal to {C}. At this point, pp queries pg. Let us
consider the case in which the edge (pp,pg) breaks, then pp ends and becomes part
of replied giving back to p4 the value come from pp, vy, and the value from pc, v,.
Then, p4 avoids to query pc as part of replied and queries directly pp, piggybacking
the list of p 4.querying still containing only A and the list of replied equal to {B,C}.
Then pp avoids to query pc and it queries only pg. pg receives the query with the
following information: querying processes {A,D}, replied processes {B,C}. Then, the
process pg terminates the querying phase and sends back a reply to pp containing vg.
pp terminates the querying phase also as its pending list is empty (targets-querying-
replied) and sends back the reply containing vg, vp. p 4 terminates the querying phase,
computes the result on the values of all nodes, and returns.

DEPTHSEARCH correctness proof. In the following we formally prove that the DEPTH-
SEARCH algorithm solves the dynamic one time query problem in any model with a
bounded but unknown diameter (Theorem [). In particular, Lemma [I] proves that the
DEPTHSEARCH algorithm satisfies Dynamic Validity while Lemma 2] proves that the
algorithm satisfies Termination.

Lemma 1 (Dynamic Validity). DEPTHSEARCH satisfies the Dynamic Validity prop-
erty in the M°>™ model.

Proof. (Sketch) Let G be the graph representing the network when the query starts and
let us consider the maximal connected subgraph G’ of G at the time the query ends
which includes the query initiator p4. Let us assume by contradiction that when the
query ends, p4 does not comprise in its values set the value of one node px in the
graph G'.

Since px belongs to G, then there exists a non-empty set of paths (generally non-
independent) which connect p4 and px belonging to G’ (and G). Without loss of gen-
erality let us suppose that there exists only one of such paths P = {pa4, ..., px }.

Let us first observe that when a process p; receives a query ¢, the query has actually
traversed a sequence of processes which are in the querying state and always comprising
the initiator p4. Let us call this sequence as the query path for the received query. By
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construction (line 9) no process in the sequence is in the replied set of any process of
the sequence. Then, if p; replies back to the query, its value starts to flow back on the
query path, and each processes which receives it, stores p; in the replied set and the
p;’s local value in the values set. On the other hand, if the query path breaks, then the
flowing of the value towards p 4 could block. All nodes which did not receive the value
back are a prefix of the broken query path and are still in their querying phase (a node is
in the querying phase at least the time its succesor in the path is in the querying phase).
None of these processes have p; in the replied set then, a new query path reaching p;
with this prefix is still possible. Moreover, even disconnected nodes which have p; in
the replied set, will renew this set excluding p; when they receive a new query (line 19)
from one of the querying nodes of this prefix.

Let us now consider the case of px. px will have the path P connecting it to p4
which is up for the whole time interval. However, it could receive a query from another
query path which breaks before p 4 gets the value of px. This could happen more than
once, depending on the graph G topology and changes while the algorithm work. With-
out loss of generality let us suppose that only two paths connect p4 to p;, i.e. P and a
path F' which shares with P a non-empty prefix pfr, and the F' is the first explored by
the algorithm. Let us also suppose that the path F' breaks leaving nodes of pfr without
the value of px. In this case the last node of pfz, let’s say p;, once revealed the discon-
nection explores another path with the same prefix pfr. Without loss of generality we
can now suppose it will explore P. In fact we can assume that all other explored paths
before P could complete correclty bringing then the p; to query its successor in P (by
the accuracy property of the failure detector no nodes in the path P can be excluded),
this successor does the same as each process between p; and px, leading then to query
px . By contradiction we assumed that px was not in the p4 values when p 4 stops to
be querying, however when p 4 stops to be querying the value of px has been surely

flowed on the path P leading to a contradiction. O emmalll

Lemma 2. The DEPTHSEARCH algorithm satisfies Termination in the model M ™.

Proof. The only statement blocks the protocol is the wait statement at line 11. Let us
call as querying process a process which sent the query message to some node and is
waiting for a reply, i.e. a process blocked at statement 11. By the completeness property
of the failure detector no querying process can block due to a failure of a node in its
neighborhood. Then, let us suppose that no failures happen during the query interval,
this also implies that the graph representing the network when the query starts can only
grow during this time. By the pseudo-code, a querying node waits a reply from each
neighbor which was in the neighborhood when the query is received (line 6). Then,
even if in the model M °", a node could have an always growing neighborhood, the
neighborhood to wait from never grows, i.e. each querying node p; has to wait a reply
from a bounded number of neighbors n;. Starting from p4 (the initiator) the query
message starts to flow in the graph involving the first neighbor of p4, which in turn
involves its first neighbor and so on. Let us denote as {pi, p?,p3...} the sequence of
processes in which pt is the first neighbor of the process pi_l. A first observation on
the diameter of the graph which is bounded as the model implies, leads to conclude
that this sequence is bounded when all these processes are one different to the other.
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On the other hand since the querying set, sent along with the query, includes all the
sequence {p1,...p" '} when arrives at p’, the query stops to flow when (i) either the
last process is reached (in the case it contains all different processes) (ii) the first time a
process is repeated in the sequence (which means that the sequence contamed a loop).
Let us denote as p’, this last node, it will reply back by letting the process p]~ ! to query
its second neighbor. A second observation about the arbitrary order of neighbors in the
neighborhoods which make indistinguishable a sequence of processes through where a
query flows from another leads to assume n; = 1 for each p; without lossing generality.
This means that each querying process starting from pi_ ! will unblock pil_2 by replying
back its value. All querying processes in the system will eventually unblock preserving

Termination. Ul emma

Theorem 1. The DEPTHSEARCH algorithm solves the dynamic one time query prob-
lem in the model M°>".

Proof. It immediately follows from Lemma[lland Lemmal[2l O rheorem [l

3.5 Impossibility of Solving the Dynamic One-Time Query Problem in M °°>*°

This proof is simple. It is based on the race among the message that arrives at a process
p; just a moment before a new process p;+1 joins linking to p;. The race is infinite as a
diameter always growing makes possible stretching the path by one infinitely often.

Theorem 2. The dynamic one-time query problem cannot be solved in the model
Mo,

Proof. Let us suppose by contradiction that given any operation query(), (i) query()
will take a finite time A, (ii) the operation gathers values from all processes inside the
graph for the whole time duration and which are connected to the querying process
through the graph defined at the time the query starts or its subgraphs.

Let consider a process p; invoking a query() operation at some point of time ¢,.
Let us suppose that a time ¢ (initial time) the network graph consists of a finite path
of processes denoted as {p;, .. . px }. Then, let us suppose that this path infinitely grows
along the time, without loss of generality, let us suppose that the path length is increased
by 1, by adding a process p, each § time interval. Then after ¢y + nd the graph consists
of the path {p; ...k, pi,ps ... PR}

Let us now consider a run R in which t; = ké + ty. In this case all processes
{pi .. .pk,p}ll, p}% . pﬁ} must necessarily receive the query message in order to be in-
volved in the query() operation as the speciﬁcation requires. This also implies that the
process p’fL ! must send the query message to ph By construction p belongs to p’C g
neighborhood before the time ¢, in which pk ! receives the query message.

Now we consider a run R’ with the same scenario as R but with ¢, = (k — 1)§ + to
and the time at which p’fb_l receives the query message is again t,, where t,, > k6 + to;
As pk ! cannot determine tq, then R and R’ are indistinguishable for pfjl. This means
that in R/, pfjl will relay the message to p’fL.
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This implies that, each process receiving a query message must relay it to the neigh-
borhood defined at the time the query message has been received. Each query() opera-
tion can terminate only when a reply has been gathered by all these processes.

Then, consider a run in which each process p! receives the query message at time
ti > (i + 1)6. The number of processes will receive the query message will be infinite
and A is infinite as well, getting a contradiction. O eorem

4 Conclusion

The aim of this position paper was the investigation of two attributes that character-
ize dynamic distributed systems, namely the varying size of the system (according to
process joins and departures), and its “geography” captured by the notion of process
neighborhood. In order to illustrate these notions, the paper has considered the One-
Time query problem as a benchmark problem. It has been shown that (1) the traditional
definition of this problem has to be weakened in order the problem can be solved in
some dynamic models, and (2) it cannot be solved in all dynamic models. The quest for
a general definition of what a “dynamic distributed system” is (a definition on which
the distributed system and network communities could agree) still remains a holy grail
quest.
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Abstract. Existing grid applications commonly use workflows for the
orchestration of grid services. Existing workflow models however suf-
fer from the lack of adaptivity. In this paper we define Adaptive Grid
Workflow nets (AGWF nets) appropriate for modeling grid workflows
and allowing changes in the process structure as a response to trigger-
ing events/exceptions. Moreover, a recursion is allowed, which makes the
model especially appropriate for a number of grid applications. We show
that soundness can be verified for AGWF nets.

Keywords: workflows, Petri nets, grid computing, coordination, mod-
eling, verification.

1 Introduction

The notion of workflow appeared first in the world of enterprize information
systems, where the execution of business processes is divided over several com-
ponents, each with its own task. One of these components is a workflow engine
that takes care of the control flow only. This separation of concerns is very fruitful
and allows designers to prove (partial) correctness of the designed system.

Almost all the existing grid applications currently also use the idea of workflow
to model processes. From the grid point of view, a workflow is a mean for the
automation of processes, which involves the orchestration of a set of grid services,
agents and actors that must be combined together to solve a problem or to define
anew service [5]. The most common model used for grid workflows is the Directed
Acyclic Graph (DAG). Although DAGs are intuitive for process descriptions,
their modeling power has limitations (e.g. they does not support loop patterns
and does not allow dynamic process changes driven by events happened in the
system).

In [6], we introduced Adaptive Workflow Nets (AWF nets), an extension of
workflow Petri nets [2J3] with the nesting concept [I0]. AWF nets allow to in-
clude dynamic process changes and a fault handling mechanism into a model
without forcing the user to get into implementation details. In this paper we
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define Adaptive Grid Workflow nets (AGWF nets), a subclass of AWF nets ap-
propriate for modeling grid workflows. AGWF nets allow changes in the process
structure as a response to triggering events/exceptions (adaptivity). They make
use of a pattern library, which easies reusability. Exception transitions are used
as a solution to the robustness problem. Moreover, a (restricted form of) re-
cursion is allowed, which makes it especially appropriate for a number of grid
applications.

An important correctness property of workflow nets is soundness [2I3], which
means that each computation can always terminate without leaving garbagdl.
In this paper we show that soundness can be checked for AGWF nets.

Related work. The advantages of the use of colored Petri nets for modeling grid
workflows are considered in [9]. Tokens represent there real data and the net
is used to model the interactions between different software resources. Similar
graph representations can be found in [4JI1]. Neither one however considers
flexibility and adaptivity aspects.

The rest of the paper is organized as follows. In Section 2] we give basic
definitions. In Section [3] we introduce the notion of adaptive grid workflow nets
and formulate the soundness criterium for them. In Section Ml we discuss the
obtained results and indicate directions for future work.

2 Preliminaries

N denotes the set of natural numbers. A bag (multiset) M over a set P is a
mapping M: P — N. The set of all bags over P is also denoted by N*. We
use + and — for the sum and the difference of two bags and =, <, >, <, > for
comparisons of bags, which are defined in the standard way. We overload the set
notation, writing () for the empty bag and € for the element inclusion. We write
e.g. M =2[p| + [q] for a bag M with M(p) =2, M(q) =1 and M(r) = 0 for all
re€ P\{p,q}

A Petri net is a tuple N = (P, T, F,l), where: (1) P and T are two disjoint
non-empty finite sets of places and transitions respectively, elements of the set
PUT are called nodes of N; (2) F C (P xT)U(T x P) is a flow relation between
places and transitions and conversely; (3) [ is a labeling function for transitions
mapping each ¢t € T' to some label [(¢) € X', where X is a finite set of labels.

Let N = (P, T, F,l) be a Petri net and 7" C T'. The projection Nip» of N on
T’ is the net (P, T, F’,l'), where F' = {(z,y)|(z,y) € FAz,y € T\T'} and
U:T — X with I'(¢t) = 1(¢) for all t € T".

Markings are states (configurations) of a net interpreted as bags over P. A
marked net is a tuple (N, M), where N is a net and M is its marking.

Given a node n € (P UT), the preset *n and the postset n® of t are the sets
{n/|(n',n) € F} and {n”|(n,n") € F} respectively. We will say that a node n

! Note that soundness differs from the halting problem, which is the property that a
computation will always terminate.



Adaptive Workflow Nets for Grid Computing 17

is a source node iff *n = () and n is a sink node iff n®* = (. A path of a net is a
sequence (Xo, ..., ZTn) of nodes such that Vi : 1 <i <n:xz;_q € *z;.

We define the firing relation — as M +°t L M+t* for any marking M and
transition £. M —— is an abbreviation of 3M’ :: M —~ M’. For o = t1...ty,
we write M 25 M’ iff M -2 ... 2 M7 Next, M — M’ iff 3o :: M -2 M’
and R(N, M) denotes {M’ | M —— M'}, the markings of N reachable from M.

A workflow net is a Petri net with one initial (source) place 7 and one final
(sink) place f and every place and transition of the net being on a directed path
from the initial to the final place. The initial marking of a workflow net is [¢]
and the (desired) final marking is [f].

3 Adaptive Grid Workflow Nets

In this section we define Adaptive Grid Workflow nets (AGWF-nets) and for-
mulate the soundness criterium for them. We start with introducing a notion of
Extended Workflow nets (EWF-nets), which form the basis for AGWF-nets.

Extended Workflow nets [0l7] are an extension of Workflow nets [23] that
simplifies the modeling of exceptions by making a clear distinction between nor-
mal termination and termination caused by an exception. When an exception
occurs, it is observed by some upper layer, which handles it. The execution of
the EWF net is then terminated.

We consider a partition of the set of transitions T = T, U T}, where T, is the
set of exception transitions and T, is the set of non-exception transitions. The
set X of labels is partitioned into X, U X, accordingly.

Definition 1 (Extended workflow net). A net N = (P, T, UT,, F,l) is an
extended workflow net (EWF net) iff (1) the net Ny, is a workflow net; (2) for
allt € Te, t* =0, *t #0, and *t C P\{f}; (3) for allt € T, I(t) € X, and for
allt €Ty, I(t) € Xy,

As usual, the state of the net is given by its marking. The initial marking consists
of a single token on the initial place. The only change in the semantics w.r.t.
the standard semantics of Petri nets is that exception transitions terminate the
execution of the net.

We allow standard algebraic operations on EWF nets: Two (unmarked) nets
can be combined to produce a new net by means of sequential () and parallel (])
composition and choice (+). Parallel composition can also be applied to marked
nets, and sequential composition to a marked net and an unmarked net.

Adaptive workflow nets. In [0], we introduced a class of nets, called adaptive
workflow nets (AWF nets), allowing more flexibility and adaptivity than existing
workflow systems. By adaptivity we understand an ability to modify processes in
a structured way as response to some triggering events, for instance by extending
a process with a subprocess. In [7] we considered a non-recursive subclass of AWF
nets from [6] that is well-suited for modeling business workflows and showed how
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to verify their soundness using abstractions. Recursion is however essential for
a number of grid applications. Here we describe a recursive subclass of adaptive
workflow systems appropriate for grid applications for which soundness is still
decidable.

Let Var = {v,...} be a finite set of variable names and Con a finite set of
constant names. We assume a given library of process descriptions to be used
as basic building blocks for constructing more complex processes by using net
expressions. A net expression e and a token expression te are inductively defined
asse:=c|e+e]el|le|ee te:=b|ceand ce:=v| cellce | cee | init(e),
where v € Var, ¢ € Con. The sets of all net expressions and token expressions
are denoted by Fxpr and CEzpr, respectively. The expressions in Expr will be
interpreted as adaptive workflow nets while the expressions in CFEzpr denote
either black tokens (b) or marked adaptive workflow nets. Given an expression
e € CFEzpr, the set of variables appearing in it is denoted Var(e) and the set of
constants in it is denoted by Con(e).

Firings of the adaptive net can depend on firings in the net tokens, which
is modelled by the guards of transitions expressed in the guard language G. A
guard g is defined as g := T | final(v) | e(v), where v € Var and e € X.. A guard
final(v) is called termination guard and e(v) € G is called an exception guard. The
set of all guards is denoted by G. Intuitively, the guard T of a transition ¢t means
that the firing of ¢t does not depend on the internal states of the net tokens, e(v)
means that the firing of ¢ is conditioned by the firing of an exception transition
with label e in the token net v, whereas final(v) means that it is conditioned by
the token net v having reached the final marking [(f, b)].

We define now nested workflow nets as extended EWF nets.

Definition 2 (Adaptive workflow net). A Adaptive Workflow net A is a
tuple (P, T, F,&,g,l), where (P, T, F,l) is an EWF net called system net and the
extensions £, g are defined by:

— &: F — CFExpr are arc expressions such that

1. All input arcs for transitions are mapped either to the black token or to
variables, i.e. for every (p,t) € F, E(p,t) € Var U {b};

2. Fvery two variables on two different input arcs of a transition are dis-
tinct, i.e. for all (p,t), (p/,t) € F with p # p', Var(E(p,t)) N Var
(EW',1) =0;

3. Every variable on the outgoing arc of a transition also occurs in the
expression of some incoming arc of this transition, i.e. for all (t,p) € F,
v € Var(E(t,p)) implies v € Var(E(p',t)) for some (p',t) € F;

4. All outgoing arcs of the initial place and incoming arcs of the final place
are mapped to the black token, i.e. for allt € i®, £(i,t) = b and for all
te*f, &, f)=".

— g is a function that maps transitions from T to expressions from G such that
the variable of a guard g(t) (t € T ) appears in the expression of some incom-
ing arc of t and does not appear in any outgoing arc of t, i.e. Var(g(t)) C

Uyeer Var(£(p,t)) and Var(g(t)) NU, e, Var(E(t,p)) = 0.
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For the sake of brevity, we define the semantics of AWF nets at an informal level.
An adaptive workflow net can be seeing as a special colored EWF net (the system
net), whose tokens can be either (marked) adaptive workflow nets themselves,
called token mnets, or black tokens. Transitions with true as a guard may fire
if there are enough tokens on their input places, like in classical Petri nets. A
transition ¢ guarded by final(z) may fire if there are enough tokens on its input
places and the place connected to ¢ by the arc with variable x contains a token
net that has reached its final state [(f, b)]. This token will then be consumed
from p during the firing. A transition ¢ guarded by e(z) may fire if there are
enough tokens on its input places and some transition with label e is enabled
in a token net contained in the place connected to t by the arc with variable
x. Again, it is this token that will be used in the transition firing. Note that
since we require that the output arc expressions do not contain variables from
the transition guard, the net token = gets destroyed. The output token nets are
computed according to the corresponding arc expressions where variables are
substituted by the token nets from the input places, participating in the firing.

Soundness. Soundness is an important property of adaptive workflow nets stat-
ing that at any moment of system run there is a chance to terminate properly
by reaching the final marking, also when no exception occurs in token nets.
We define soundness for adaptive nets as proper termination of every reach-
able marking by firing only non-exceptional transitions without synchronizing
on exceptions:

Definition 3 (Soundness for AWF nets). An AWF net N is called sound
iff N is quasi-live, and for all M such that [(i,b)] - M, for some transition

sequence o € T, there exists o’ such that M <, [(f,0)], and for all t from o',
t €T, and g(t) € {final(v), T}.

In [7] we defined a non-recursive subclass of AWF-nets for which soundness can
be algorithmically checked:

1. 91 and 9y are the sets of all EWF nets and marked EWF nets, respectively;

2. (P,T,F.& g,1) € Nyy1, for k > 1, iff for all « € F and ¢ € Con(E(a)),
l(c) € MNy. A marking M of N € My41 is a multiset over P x (M, U {b}).
M1 = {(N,M)|N = (P, T,F,E,g,1) € M1 A M € NPXOU{EhY g
called the set of marked nets of level at most k.

Note that 91; € 91,41 and M; C M4, for all j > 1.

Since we want to have at least a restricted form of recursion for grid ap-
plications and still have an analyzable class of models, we introduce a form of
well-foundedness for the recursion in Adaptive Grid Workflow nets.

Let AV be a given AGWF net. We define the net collection Coll(N) of N as
the union of the set of constants (nets) used on the arc expressions of N and
the net collections of these constant nets. The net collection of an AGWF net
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can be computed by using standard fixed point algorithms. By inspecting the
net collection, one can easily check whether a net belongs to U;enI;.

Definition 4 (Adaptive Grid Workflow net). An Adaptive Grid Workflow
net (AGFW net) is an AWF net such that every net from Coll(N) allows a

firing sequence [(i,6)] 2= [(f, b)] such that for any transition t from o, we have
g(t) € {final(v), T} and for any (t,p) € F, Con(Ezpr(t,p)) C UjenM;.

Note that the property required is checked at the level of EWF-nets, i.e. classical
Petri nets, and not at the nested level. Intuitively, we require that there is at
least one execution with bounded nesting allowed in every net involved in the
process.

Now we show that soundness can be checked for AGWF nets. To reduce the
verification of soundness to a finite problem, we introduce the abstraction «
that replaces every token net in the AGWF net by a colored token with the
set of exceptions of the net token as its color. An adaptive workflow net is thus
abstracted by a colored EWF net whose color set is finite since the number of
exceptions is finite. The guards of the type final(v) are replaced by T in the
abstract net, and the guards e(v) are replaced by the guards e € a(v). Parallel
and sequential composition, as well as choice, are abstracted to the union of the
sets of exceptions, and constants in the arc expressions are substituted by their
sets of exceptions. Now we can formulate our main result:

Theorem 5 (Soundness check). An AGWF net N is sound iff for every net
N’ € Coll(N) the following properties hold: (1) a(N”) is quasi-live, and (2)
for all abstract markings M, reachable by firings of non-exception transitions
in a(N"), ie. [(i,b)] = M, with o € T, we have M, —— [(f,b)], where
g*(t) =T forallt € o’.

4 Conclusion

In this paper, we introduced adaptive grid workflow nets. Exceptions transition
are used to model faults (e.g. failure of a job). The idea of nested nets is used
to make models adaptable. A library of workflow nets is used to increase the
reusability and achieve separation of concerns in process modeling. We showed
that an important correctness property called soundness can be verified on this
class of nets by using abstraction techniques. We conjecture that another im-
portant property of adaptive workflow systems called circumspectnes&@ is also
decidable for AGWF nets.

Our next step is to extend the workflow engine YASPER [8] for handling
AGWEF nets, and extend the existing translation of classical workflow nets to WS
BPEL [I] for our model by incorporating the nesting mechanism and patterns
for standard exception handling mechanisms.

2 Circumspectness ensures that whenever an exception happens, the upper layer net
is able to handle it.
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Abstract. We consider BioAmbients, a calculus for specifying biological
entities and for simulating and analysing their behaviour. We extend
BioAmbients to take quantitative information into account by defining
a stochastic semantics, based on a simulation stochastic algorithm, to
determine the actual rate of transitions.

Keywords: Process Calculi, Stochastic Operational Semantics, Systems
Biology.

1 Introduction

The classical research in Biology has followed a reductionistic approach by fo-
cusing on the understanding of the activities of single molecules. A model of
a complete biological system is then obtained by simply putting together its
components. This methodology lacks in expressive power because the whole is
more complex that the simple sum of individuals. Then, there has been a shift
from the description of components towards the specification of their overall
behaviour and interactions. This was made evident during the Human Genome
Project [I: an enormous quantity of biological data have been collected and still
there are no satisfactory simulators of the dynamics of even a few genes. A new
branch of Biology is now emerging called Systems Biology [13]. Its main chal-
lenges are to develop theoretical and technological tools for modeling, analysing
and predicting biological system behaviour.

The main mathematical models for describing living matter rely on the clas-
sical ordinary or stochastic differential equations. However, these systems of
equations rapidly grow very complex, are hardly computable and extensible, of-
ten become difficult to solve hence sometimes do not offer satisfactory analysis
tools. Recently, Regev, Silverman and Shapiro [22] brought out the similari-
ties between distributed, concurrent, mobile computer systems and biological
systems, e.g. metabolic or gene regulatory networks and signalling pathways.

! Started 1990 and ended in 2003 (http://www.ornl.gov/sci/techresources/
Human Genome/home.shtml).
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Biological systems are made up of millions of biological components that are ac-
tive simultaneously and that can interact to cooperate towards a common goal.
Furthermore, the interactions between components are mainly binary and can
occur only if the partners are correctly located (e.g. they are near enough, no
membrane is dividing them, the affinity or propensity to interactions is suffi-
ciently high). Finally, the actual interactions may change the future behaviour
of the whole system even though they occur locally. All these features describe
distributed, mobile concurrent computer systems as well, except maybe for those
artificial systems having a smaller number of components. There are various pro-
cess calculi, e.g. [TBIT2T6I5] that specify the form and the dynamic behaviour
of concurrent systems, and that allow for mechanically analysing them. In this
paper we focus on the BioAmbient calculus [I], a variant of the Mobile Ambi-
ents [5]. It has been specifically introduced for describing biological interactions
within, or across, molecular compartments: processes represent cells, compart-
ments model membranes, and localized communications and movements specify
biological reactions.

Our main contribution (Sect. B)) is the definition of a stochastic semantics for
this calculus to represent the effects of chemical and physical parameters, e.g.
concentration of molecules, on the dynamics of living matters. Our stochastic
semantics enables us to closely simulate the experiments that biologists carry on
in vivo on in vitro. Several computations are run representing each one a single
virtual experiment that simulate the behaviour of the biological system in hand.
The computations are inspected to collect the relevant information about, e.g.
the occurrences of selected communication or synchronizations, i.e. of reactions.
The classical statistical analysis then applies. This methodology is known as
transient analysis, and reflects the way biologists carry on their experiments.
Another approach, typical of computer scientists, consists of deriving Markov
chains and study the probability distribution in the steady states. We follow
this one and exemplify our proposal through the analysis of a simple enzyme-
substrate complex. Our example shows how the behaviour in silico is regulated
by stochastic rates that are dynamically computed after each synchronization
(Sect. [).

There are many approaches for studying the behaviour of biological systems
based on process calculi, in some cases new calculi with biologically inspired
primitives have been introduced [I7J9/4T9]. The first stochastic calculi applied
for modelling biological systems was the stochastic m-calculus [I8]. It has been
used to model and perform transient analyses on some interesting biological sys-
tems [T4I7I22], using simulation tools developed for the biological domain [6120].
The relevance of the quantitative analyses in the study of biological models is
arising and many works apply stochastic semantics both for simulations [TOJ3I/1T]
and steady states analyses [2]. To the best of our knowledge, ours is the first
stochastic semantics for Ambient-like calculi that apply the Gillespie’s algorithm
in a context with explicit biological compartments and steady state analysis.
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2 Background

BioAmbients [I] (hereafter BioA, for short) are a variant of Mobile Ambients [5]
which we assume the reader is familiar with. Each BioA process models a cell
and the ambient constructor represents a cellular membrane, possibly nested.

A BioA process evolves when a pair of its sub-processes interact synchronously,
representing a reaction between the involved cells. There are two kinds of inter-
actions. The first is typical of calculi of communicating processes: it uses input
and output prefixes for sending and receiving messages. The second kind of
interactions involves membranes and capabilities that act on them. Such inter-
actions comnsist of synchronizations between capabilities and the corresponding
co-capabilities. For example, two sub-processes, enclosed each one in a membrane
and lying side to side, may fuse in a single one by merging their membrane if the
first one offers the capability merge™ and the second one the capability merge™,
both on the same channel a. Formally, the process [merge™a.P]|[merge™ a.Q]
can evolve to the process [P|Q]. (Note that membranes have no names and that
the merge capability makes the open capability useless).

BioA processes describe the behaviour of the molecules, and a specific molecule
is characterized by the communication prefixes and the capabilities offered by
its sub-processes. The syntax of BioA follows.

Definition 1. Given a countable infinite set of names ranged over by n,m,p, ...
the set of BioA processes is described by the following BNF-like specification:

w.P Communication prefix
M.P Capability prefix

> i1 Mi-P; Comm Choice

Ziel M,;.P; Capability Choice

merge” n Merge into

Processes Capabilities
PQ:=0 Inaction(empty) M, N ::=entern Synchentry
(vn)P Restriction | acceptn Accept
P|Q Composition | exitn Exit
A(z) Agent Identifier | expeln  Expel
| merget n Merge with
|

|
|
|
| [P] Ambient(membrane)
|
|
|
|

Directions

$ ::= local Intra—ambient
| s2s Inter—siblings
| p2c Parent to child
| ¢2p Child toparent

Actions
m == $nl{m} Output
$n?{m} Input

As said above, the activities of BioA processes can only be synchronizations on
input/output prefixes or on capabilities. The semantics of BioA is given by the
reduction rules in Table 2lup to the standard congruence rules in Table

We assume the classical definitions of the functions fn(P) and bn(P), for
computing the free names and the bound names of P: bound names are defined
by the restriction operator and by input prefixes; free names are the ones which
are not bound. The first three rules in Table 2] define the activities on ambients.
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The next four axioms prescribe how communications may occur according to the
four different kinds of synchronizations. The last four rules are the usual axioms
of the reduction semantics.

More in detail, the process 0 can perform no activities. The restriction oper-
ator (vn)P creates a new bound name n whose scope is P. The parallel com-
position of two processes P|(@Q interleaves the execution of the activities of P
with those of Q. The two processes can also synchronize. When the synchro-
nization is acting on membranes, the involved capability and the corresponding
co-capability must share a channel and must be in a certain structural relation-
ship (see also the example above for merging). The capability enter n allows
a membrane to enter another one, if this is aside and offers the co-capability
accept n on the same channel n. An exit n allows a nested membrane to leave
its containing membrane, if this offers the corresponding co-capability expel n.
The synchronizations on input/output prefixes allow a message to be sent from
the sender to the receiver, along a channel n. Moreover, prefixes are equipped
with a direction that specifies the relative position for the two corresponding
prefixes to interact. Some constraints must hold on the position of the mem-
branes enclosing the relevant prefixes. Indeed, if the two (processes firing the)
prefixes exhibit direction local, then they must be within the same membrane
(rule Local in Table[). If the two prefixes have direction sibling, then they must
lie in two different sibling membranes (rule Sibling in Table[Z). When the output
prefix has direction p2c¢ and lies in one-level higher nested membrane enclosing
the input prefix, input must have direction ¢2p (rule ComOut in Table B), and
symmetrically when exchanging input with output (rule ComIn in Table ().

We find here convenient to adopt agent identifier A(Z), instead of replication.
Each identifier has a unique equation of the form A(Z) = P; Z stands for the tuple
Z1,...,T, where all the names are different and are the only names that occur
free in P. The ambient constructor [P] creates a computational environment
modeling a membrane in which P runs. Even though membranes have no names,
sometimes in the examples we shall give them one for clarity.

Table 1. Congruence rules for BioAmbients

Par Commut P|Q = Q|P

Par Assoc  P|(Q|R) = (P|Q)|R

Choice 7 YierTi-Pi =301 Tp(i)-Pos), with any permutation p
Choice M DierMiPi =30, My .Poiy, with any permutation p
Par Zero Plo=P

Res Zero (vx)0=0

)
Res Res (vn)(vm)P = (vm)(vn)P
Res Par (vn)(P|Q) = P|(vn)Q n ¢ fn(P)
Res Amb (vn)[P] = [(vn)P]
Ide A(g) = P{g/z}, if A(z)=P
a—conv P=@Q if P is obtained by a-converting @



26 L. Brodo, P. Degano, and C. Priami

Table 2. Transition system for BioAmbients

In (T + enter n.P)|Q]|[(T" + acceptn.R)|S] — [[P|Q]I(R]S)]
Out [(T + ezitn.P)|Q]|(T" + expeln.R)|S)] — [P|Q]|[R]S]
Merge (T + merge™ n.P)|Q]|[(T" + merge™ n.R)|S] — [(P|Q)|(R|S)]
Local (T + local n¥{m}.P)|(local n?{p}.Q + T') — P|Q{p «— m}
Com Out (T + p2cn!{m}.P)|[(c2pn?{p}.Q + T')|R] — P|[Q{p — m}|R]
Com In (T + c2pn!{m}.P)|R]|(p2cn?{p}.Q + T') — [P|R]|Q{p — m}
Sibling  [(T + s2sn!l{m}.P)|R]|[(s2s n?{p}.Q + T")|S] — [P|R]|[Q{p « m}|S]
Res F-Q Amb F-Q Par F-Q
(vn)P — (¥n)Q (Pl — [Q] P|R — QR

P=P,P-Q Q=¢Q
Cong
P/—>Q/

The processes ) ;. m;.P; and ), ; M;. P; non-deterministically behave as the
(guarded) summand 7;.P;, and M;.P; respectively, for some i € I.

2.1 The Gillespie’s Algorithm

We shall use the Gillespie’s formulas to compute the rate at which a reaction
occurs in a biological complex. We briefly recall them. Suppose to have a bi-
ological complex containing some molecules. Let ¢ be the basal rate constant
that governs the rate at which two molecules interact. This only depends on
the physical properties of the two interacting molecules of the biological system,
assuming temperature, pressure and volume be constant. There are two forms
of molecular interactions. Symmetric molecular interactions are interactions be-
tween pairs of molecules of the same type. In this case, let N be the number of
the molecules of the selected type (as volume is constant, this number equals
concentration). The rate of a symmetric interaction is computed by the following
formula: ¢ x (N1 x (N1 — 1)). Asymmetric interactions occur between different
types of molecules. In this case, the computation of the rate takes into account
the number of the molecules of the first type, N1, and the one of the second
type, Na, and is: ¢ X N1 X Ns. In the next section we will also make use of a third
number Nj, introduced in [6], to record combinations of corresponding prefixes
in summation processes, as they can not generate any synchronizations.

2.2 Stochastic Process Calculi

Our semantics associates stochastic rates to transitions which are the parame-
ters of exponential probability functions enjoying the forgetful property. Thus,
the execution probability of each transition does not depend on the previous
transitions. Instead, the dynamical computation of the stochastic rates keeps
track of the variation of concentration of molecules. Then, we can simulate the
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stochastic behaviour of a process to perform transient analysis, by repeatedly
running a specification and collecting statistical data, e.g. on the usage of en-
zymes. Also, we can build the stochastic transition system of the derivatives of
the process for deriving the Continuous Time Markov Chain (CTMC) associated
to the process, for studying the behaviour of biological systems in their steady
state. We follow this line here, under the standard hypothesis that processes are
finitary and cyclic, in order to generate a non singular and homogeneous matrix.
By applying standard mathematical techniques we derive then the stationary
probability of the system which specifies the probability of the system to be in
one of the states of the transition system, at a given instant. Further analyses of
the behaviour of the system can be done by the reward techniques []], which, for
example, allow us to compute the throughput of a specific activity. This measure
gives the time the system takes to complete a selected interaction with respect
to the overall execution time.

3 Stochastic BioAmbients

As usual, we associate a rate with each communication prefix 7 and with each
capability M that became (w,r) and (M,r), respectively. For all prefixes we
assume as given the parameter r, which represents the basal rate ¢ discussed in
Sect. 2.1l The rate at which a transition takes place is then computed through
the Gillespie’s formulas. Recall that the volume is constant, so concentration can
be measured by counting the number of molecules as distinct prefixes present in
the whole system.

Following [1], we make three assumptions on our processes for modeling sym-
metric and asymmetric molecular interactions. We distinguish a set of chan-
nel names H for characterizing symmetric interactions, as these channels can
only be used in prefixes with direction local. Because of symmetry, summation
> (mi, 7). Py, offering a local prefix on H channel, also offers the corresponding
co-action. We also prevent a process ), (m;,7;).P; from offering the same prefix
twice. The above holds for processes offering capabilities ) ,(M;,7;).P;, as well.

Table Bl depicts the BioA stochastic semantics up to the congruences in

Table Bl The actual transition relation is P Ms @, in the lower part of

the table, and its definition uses the auxiliary relation P (@9}, (1,2, Ns) 1 Q.
In the left part of these labels, the x and the y stand for both direction and action
of the prefixes involved in the communications. For brevity, we sometimes write
only n, the channel name involved in the interaction, and this is always the case
when capabilities are fired. The other part of the label is the tuple (r, N1, Nao, N3)
that accumulates the number of prefixes that could have generated a synchro-
nization equal to the fired one. This information is eventually used to compute

the rate in the second part of the label of the actual transitions P Ms Q,
the first part records the channel name involved in the interaction, i.e. the kind
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Table 3. Stochastic transition system for BioAmbients

S_In

(T + (entern, ). P)|QII[(T" + (accept n, ). R)|S] v [[PIQII(R]9)]
with N1 = Inenter n(((enter n,r)|Q), r) and N2 = Outaccept n(((acceptn,r)|S), r)

(n,n),(r,N1,N2,0)

S_Out

(T + (ewit n,r).P)|QI(T" + (expeln,r).R)|S)] v [PIQII[R|S]
with N1 = Inegit o (((exit n,r)|Q),r) and No = Outezper n(((expeln,r)|S),r)

(n,n),(r,N1,N2,0)

S_Merge

(T + (merge™ n,r).P)|QII[(T" + (merge™ n,7).R)|S] v [(PIQ)I(R]S)]
with N1 = Pn‘mm'ge* n(((merge+ n, T)IQ)v T) and Np = OUt'merge* 7L(((m61”g€7 n, T)IS)7 T)

(n,n),(r,N1,N3,0)
Ann), AT Ve, V2,90

S_Local
(T + (local n!{m},r).P)|((local n?{p},7).Q + T")

' (r,1,1) n¢H
with (r, N1, N2) = {(%727 2-1))neH

Ny = Miziocatnigmy (T + (local ni{m}, 7).0) | ((local n?{p},).0+T")),r)

(local n!'{m},local n?{p}),(r,N1,N2,N3)

1 PlQ{p — m}

S_Com Out

(T + (p2cn!{m},r).P)|[((c2pn?{p},7).Q + T")|R]
with Na = Incgp ne(py ((2pn?{p},7)|R),7)

(p2eni{m},n),(r1,N2,0
p2ent{m}n),(r1,N2,0)

L Pl[Q{p — m}|R]

S_Com In

(T + (c2pni{m},r).P)|R]|((p2cn?{p},m).Q + T")
with N1 = Outeop nigmy (((c2pn!{m},r)|R, 1))

(n,p2c¢n?{p}),(r,N1,1,0)
ALl s PAAARAS Tl AN

i [PIR]|Q{p < m}

S_Sibling

(T + (s2snl{m},r).P)|R]|[((s2s n?{p},T).Q + T")|S] 1 [PIR|[Q{p < m}|S]
with N1 = Out g5 nipmy (828 n!{m},r)|R),)) and No = Insoqn2(py (((s25sn?{p},)|S),7)

(n,n),(r,N1,N2,0)

o
n p NNy a p NN {:T s an
es m _ "
(vn)p LLONN2ND) 0 (p] NN Ny (@ = S
(2,9),(r,N1,N3,N3) Ni = N1+ Outs(R,7)
LD, Q| N = Np 4 Ing (B, 1)

S_Par

(w,y),(r, N1, N3, N3 N3 + Miz,(R,r) , if z =local nlm

) ’ ;
PIR 1QIR | Ny = {0 , otherwise

p=p P (@,y),(r,N1,N2,N3) Q' Q' =Q {I '

P (n,7X (N1 xNz—N3)) . Q

S_Cong

of biological reaction modelled. Some comments on the rules are in order. The
main point here is determining the quantities N1, No and Nj3. To do that we
follow [6] and we use three auxiliary functions In, Out and Miz that search
within a membrane the processes modelling the same molecules, i.e. a process of-
fering prefixes with the same channel and basal rate. Actually we have a family of
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such functions In,, Out, and Miz, for capabilities and directions o € {entern,
exit n, merget n, local n?{p}, p2cn?{p}, 2pn?{p}, s2sn?{p}} and for the cor-
responding co-actions « € { accept n, expel n, merge™ n, local n!{m}, p2ecn!{m},
e2pnl{m}, s2sn!{m}}. We give the definitions of In, and Miz,, as Out,, is sim-
ilarly defined by replacing any occurrence of In, with Out, and a with a. We
induce on the structure of BioA processes and take a basal rate r as an addi-
tional parameter.

Ina(0,7) = Ina([P],7) =0
Ing(Pyr),if n# fn(a)

Ina((vn)P,r)

0 , otherwise
Ina(A(g),r) = Ino(P{y/z},7), it A(Z) =P
Ina (e (miyri).Piyr) = ##{(m,ri)|i €1, mi =, and 7 =7}
Ina(X ;e (Mi,ri).Piyr) = #{(Mi,ri) i € I, M = and 7 =1}
Ing(P1| P2, 1) =Ina(P1,7) + Ina(Pa,r)

As in [6], function Miz, computes the number of combinations of corresponding
prefixes in summation processes, as they can not generate any synchronizations.
This number is then subtracted from the global computation of synchroniza-
tions, see rule S Cong in Table Bl Miz, is defined by mean of In, and Outy:

Mizo(P,r) =37 o (Ina(Si, r) * Oute(S;,r)), where P =" S,

Actually, function Miz, is only applied in rule S Local, because in the other
cases compartmentalization limits the scope of prefixes that can generate simi-
lar synchronizations. The rule S I'n needs not to record the involved channel and
direction, because another (entern,r), or (acceptn,r), can only appear within
Q, or S respectively — indeed summations never offer the same prefix twice.
The same reason justifies the quantities N1, No, and N3. The rule uses the
Gillespie’s formula for asymmetric interactions in the computation of the tran-
sition rate. Similarly for rules S Out and S Merge. Rule S Local records that
the communication channel was n and the direction was local. Also, it verifies
if the interaction is symmetric or asymmetric, by checking if n € H. Then, the
Gillespie’s formula is applied, with N; = 2 and Ny = 1 and r divided by two,
in the first case, and the with N7 = Ny = 1, in the second case. As we said
before, this is the only rule where N3 is computed, as it is not necessarily equal
to zero. Rule S Com Out uses the asymmetric Gillespie’s formula. Note that we
can only have a single process offering an output on a same channel, so Ny is 1.
Symmetrically for rule S Com In. Computing the label in rule S Sibling is just
as in the case of rule S Merge. Rules S Res and S Amb are trivial, except for
the last one substitutes the pair (n,n) for (x,y) because the transition modelling
the interaction is wrapped into a membrane. Rule S Par updates the numbers
Ni, N3, and N3 in the Gillespie’s formulas. Note that the information (z,y) is
crucial here because In, and Out, will always return 0 when x or y stand for
the prefix channel name n. Also, note that output always occurs on the right
hand side because the processes involved in —; can only be rearranged, through
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S Cong, as last step of the deduction of transitions. In fact, the last rule applies
the congruence rules and computes the actual transition, by determining its rate
through the Gillespie’s formula with basal rate r and quantities N1, N3, and N3
computed so far.

The property below says that the stochastic BioA transition system conser-
vatively extends the standard one (Table [2]). Its proof is by trivial induction on

the depth of the derivation of P ms P!, noting that the rules in Table B
require the rates of the prefixes involved in an interaction to be the same.
Property 1. Given a BioA process P, let P; be P where each prefix m or M
becames (7, ) or (M, r) for suitable rate r. Then P ms P! implies P — P’.
The last property claims that the transition rate computed in Table Bl is based
on a correct computation of synchronizations:

n,rx(N1*N2—N3)

Property 2. If P ( ) ¢ P’, then P can exactly perform Ny *x Ny —
N3 different synchronizations of the same type and with the same rate, i. e.

p L BN m ), pr with i € [1, Ny + Ny — Ny,

The proof is structured by cases on the transition rules and by induction on the
lenght of the derivation.

4 An Example

Our example is taken from [21I]. We consider the interactions of a simple com-
plex, composed by an enzyme and two molecules, forming its substrate. These are
graphically represented as separated ambients within which we write the names

enz enz allow jinbind €NZ ‘Xl{l unbind
Exit react

1 enter ¢_s_bind 1 exit react
mo acc&epl o s bin exit unbindf MO _ ‘
exit unpind

allow uhd\ % react .
. allow upbi .
! enter ¢ s_bind ) enterels_bind /‘ exit react
mo - mo accept e_s_bind -
accept e_s_bin pé exit unpind

Fig. 1a Fig. 1b Fig. 1c

enz enz
enter ¢ p_bind mol
alloy e_p_bind =T~ i
_p_! enleréJmed

allop e_p_bind
allo Lyb'ndallb\(unbind

unbind

Nokit reac allow es_bind
it react -
exitunfind| mol mol |entere_s_bind
-~ e

Fig. 1d Fig. 1le

Fig. 1. BioAmbient model of the reversible bi-substrate reactions
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mol and enz for readability. The interactions of the two molecules can only hap-
pen if both are inside an enzyme that acts as catalyser. We model the bindings
between the molecules and the enzyme as two successive enter e s bind made by
the two copies of mol that interact through the corresponding co-capabilities of
enz (Fig. 1a). When the complex is formed, the two molecules can communicate
along the channel ¢ (Fig. 1c). Then, they can exit either via exitreact or via
exit unbound (Fig. 1d), coupled with the corresponding co-capabilities offered
by enz. The whole BioA enzyme-substrate model is given below. For brevity,
we detail the parameters of constant only in their definitions and we omit them
otherwise (e.g. we write X (...) when calling constant X). Also, here we use the
enz and mol, as ambient names, which are however ignored by the semantics.

System = mol[S(c, a, e_s_bind, e_p_bind, unbind, react)] |
mol[S(c, a, e_s_bind, e_p_bind, unbind, react)] |
enz|E(e_p-bind, e_s_bind, unbind, react) | E(e_p_bind, e_s_bind, unbind, react)])
where
S(e, a, e_s_bind, e_p_bind, unbind, react) = (enter e_s_bind, rs).P(...)
P(c,a,e_s_bind, e_p_bind, unbind, react) =
(s2sca},re). X (...) + (s2sc{p},re). X(...) + X(...)
X (c,a, e_s_bind, e_p_bind, unbind, react) =
(exitunbind,ry).S(...) + (exitreact,r).(enter e_p-bind,rp).P(...)
E(e_s_bind, e_p_bind, unbind, react) =
(accept e_p_bind,rp).ES(...) + (accepte_s_bind,rs).ES(...)
ES(e_s_bind, e_p_bind, unbind, react) = (expel unbind,r,).E(...) + (expelreact,r,).E(...)

The complete transition system of our example is in Fig. Bl To clarify how
stochastic rates are computed we show the derivation of the first transition where
a mol ambient enters the enz ambient by executing the rule S In. In this case,
the functions I'n, and Out, return 1, because in the ambient mol there is a single
enter e s bind prefix, and 2, because enz offers two accept e s bind prefixes. The
application of rule S Par only changes the label by rewriting its first part (n,n),
where n = e s bind. Finally, rule S Cong computes the actual rate.

(n,n)),(rs,1,2,0)

mol[S()|0]lenz[E()|E()] < ¢ enz[mol[P()[0]|(ES()|E())]

(n,n),(rs,1,2,0)
ALt N

¢ mol[S()|0]|enz[mol[P()|0]|(ES(|E())]
s mol[S()[0]enz[mol[P()|0]|(ES ()| E())]

mol[S()|0][(mol[S()|0]|enz[E()|E()])
mol[S()[0]|(mol[S()[0]enz[E()|E()])

(n,2xrs—0)
-/ 5

where we assume that the basal rates be r = 0.5, r, = 0.6, r, = 0.3,7. = 0.4,
r = 0.7, thus the label of the above activity is (n,1). Similarly, we compute the
labels of the other transitions.

The resulting vector of the stationary probability associated with each of the
10 states of Fig. [2is:

(0.0805 0.2638 0.1464 0.1603 0.269 0.0728 0.1164 0.0442 0.0085 0.0072).

E.g. consider Sy, ready for executing the s2s interaction or the two different
capabilities exit unbind and exit react, the probability of the system to be in this
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(e-s-bind,2r) (unbind,2r,) (e-p-bind,2rp) (unbind,2ry,)
(unbind,ry) (eyre) (unbind,ry) (unbind,ry)
Sy ——— 51181 ——s S |Ss ————s S3|S10 ———s 51

(react,ry) (unbind,ry,) (react,ry) (unbind,ry,)

Sa s SS SS s SS SS s S7 SlO SS
e_s_unbind,rg e_p_bind,r. e_p_bind,r. e_s_bind,rs
§p LT, | 5|55 LTI, 8y |5y SR, 5|y SN, s

(e-p-bind,2rp) (react,ry)
-

s 2|85 ——=s  S7|S

s S
Ss oS|G remet2m), g g, (reactr) g

S4 5,186 (unbind,2ry,)
where Si1 = System

S2 = enz[(E(|ES())|mol[P()]]|mol[S()]

S3 = enz[E()|E()]|mol[S()]|mol[(enter e_p_bind, ). P()]

S1 = en[(ES(|ES()|(mol[P()]lmol P())

Ss = enz[(ES()|E())|mol[P()]]|mol[(enter e_p_bind, rp).P()]

So = enzl(ESO|ESO)|(mollX Olmol[X()])]

S7 = enz[E()|E()]|mol[(enter e_p_bind, rp).P()]|mol[(enter e_p_bind, rp).P()]

Ss = enz[(ES()|E())|mol[ X ()]]|mol[(enter e_p_bind, rp).P()]

Sy = enz[(ES()|ES())|[mol[X ()]|mol[X ()]

S10 = enz(ESOIES()lmoll X ()]]jmol[S()]

(unbind,2ry,)
-

Ss

(e-s-bind,27y)
—_—

(react,2r;)

s S10|S9 — 5 Ss

(unbind,2ry,)
—_—

Fig. 2. The transition system of the BioA process System

state is 0.1603. The actions that have the highest execution probability, 0.2638,

are those activated in Sy that offers exit react, enter e s bind and exit unbind.
Suppose now to have the following reward array, where non zero values are

assigned to the states where the capabilities can be fired:

(0 1/3 0 1/3 1/3 1/2 0 1/3 1/3 0). Then, the weighted troughtput of the

exit react capability is 0.285, i.e. the system is busy firing this capability for a

little more than }1 of the whole execution time.

5 Conclusions

We have defined a stochastic operational semantics for the calculus of BioAm-
bients, exploiting the Gillespie’s algorithm. To the best of our knowledge, this
is the first such semantics, which makes the calculus usable by biologists in per-
forming their experiments in silico. Through a very simple example, with no
significance in biology, we show that techniques for performance evaluation typ-
ical of process calculi can help analysing the behaviour of biological systems.
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Abstract. Timed transition systems are a widely studied model for real-
time systems. The intention of the paper is to show the applicability of
the general categorical framework of open maps to the setting of test-
ing equivalence on timed transition systems, in order to transfer general
concepts of equivalences to the model. In particular, we define a cate-
gory of timed transition systems, whose morphisms are to be thought
of as simulations, and an accompanying (sub)category of observations,
to which the corresponding notion of open maps is developed. We then
use the open maps framework to obtain an abstract bisimilarity which
is established to coincide with timed testing equivalence.

1 Introduction

In the core of every theory of systems lies a notion of a behavioural equivalence
between systems: it indicates which particular aspects of a system behaviour
are considered to be observable. In concurrency theory, a variety of behavioural
equivalences have been promoted, and the relationship between them has been
quite well-understood (see, for example, [I3/14]).

Testing [20] is one of the major equivalences of concurrency theory. Testing
equivalences and preorders are defined in terms of tests which processes may
and must satisfy. Two processes are considered as testing equivalent, if there is
no test that can distinguish them. A test is usually itself a process applied to
a process by computing both together in parallel. A particular computation is
assumed to be successful if the test reaches a designated successful state, and
the process guarantees the test if every computation is successful.

Recently, in an attempt to explain and unify apparent differences between the
extensive amount of research within the field of behavioural equivalences, several
category-theoretic approaches to the matter have appeared (see [I8/I9] among
others). One of them was initiated by Joyal, Nielsen, and Winskel in [I9] where
they proposed an abstract way of capturing the notion of bisimulation through
the so-called spans of open maps: first, a category of models of computations
is identified, then a subcategory of observation is chosen relative to which open
maps are defined; two models are bisimilar if there exists a span of open maps

V. Malyshkin (Ed.): PaCT 2007, LNCS 4671, pp. 35146 2007.
© Springer-Verlag Berlin Heidelberg 2007
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between the models. The abstract definition of bisimilarity makes possible a uni-
form definition of an equivalence over different models ranging from interleaving
models like transition systems to true concurrent models like event structures
and higher dimensional automata. On transition systems, abstract bisimilar-
ity readily corresponds to interleaving bisimulation. On event structures and
higher dimensional models, abstract bisimilarity leads to a slight strengthening
of history preserving bisimulation, as shown in [19)25] and [8I12], respectively.
Furthermore, the categorical setting turned out appropriate for defining, among
others, trace and testing equivalences, barbed and weak bisimulations (see [21]).
Moreover, as argued in [I1], combining the open maps and presheaf approaches
allows one to avoids some obstructions to a treatment of weak bisimulation on
true concurrent models.

However, none of the models and approaches above has taken into account
real-time. It is generally recognized that time plays an important role in many
concurrent systems. This has motivated the development and extension of several
models and analysis methods to support the correctness of real-time systems.
As a result, timed extensions of interleaving models have been investigated thor-
oughly. Various recipes on how to incorporate time in transition systems —
the most prominent interleaving model — are, for example, described in [2J16],
whereas the incorporation of real time into equivalence notions is less advanced.
There are a few papers (see, for example, [92224]), where decidability questions
of time-sensitive equivalences are investigated in the setting of timed interleaving
models.

The contribution of the paper is to show the applicability of the general
categorical framework of open maps to the setting of testing equivalence on
timed transition systems, in order to transfer general concepts of equivalences
to the model. In particular, we define a category of timed transition systems,
whose morphisms are to be thought of as simulations, and an accompanying
(sub)category of observations, to which the corresponding notion of open maps
is developed. We then use the open maps framework to obtain an abstract bisim-
ilarity which is established to coincide with timed testing equivalence.

There have been several motivations for this work. One has been given by
the number of papers on timed testing. For instance, [I0] and [22] have treated
interleaving testing for discrete time and dense time transition models, respec-
tively. In order to analyze the behaviour of real-time and concurrent systems,
the testing approach has been extended by timing constraints in the setting of
true concurrent models like timed Petri nets [5] and timed event structures [4]. A
next origin of our study has been the paper [6] where the categorical setiing has
been developed for different kinds of transition systems to establish correspon-
dences with net based systems. Furthermore, in [2I] abstract bisimilarity has
been shown to coincide with testing equivalence on transition systems. Finally,
another motivation has been the paper [I7] that illustrates the use of open maps
for providing an abstract characterization of bisimulation on timed transition
systems. Besides, the category-theoretic approach has been applied to partial
order based equivalences in the framework of timed event structures [23].
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The rest of the paper is organized as follows. The basic notions and nota-
tions concerning timed transition systems and their behaviour are introduced in
section 2. In the subsequent section, we define a category of timed transition sys-
tems whose morphisms are to be thought of as simulations. An accompanying
(sub)category of observations and the corresponding notion of open maps are
developed in section 4. Also, an alternative characterization of the open maps is
provided. Further, the abstract equivalence based on spans of the open maps is
shown to coincide with timed testing equivalence. Section 5 contains conclusion
and some remarks on future work. In Appendix, we give a short introduction to
open maps as presented in [19)].

2 Timed Transition Systems

In this section, we first introduce some basic notions and notations concerning
timed transition systems [2/17] and then define the notion of testing equivalence
in the setting of the model.

Before doing so, it will be convenient to introduce some auxiliary notions and
notations. Let RT be the set of non-negative reals, and X a finite alphabet of
actions. A timed word over X is a finite sequence of pairs « = (01,71) (02, 72)
(03,73) ... (00, 7n) such that o; € X, 7; e RT forall 1 <i < n, and 7; < 7341
for all 1 <i < n. A pair(o;, 7;) represents an occurrence of an action o; at time
7; relative to the starting time (0) of the execution. We consider a finite set V/
of clock variables. A clock valuation over V is a mapping v : V — R* which
assigns time values to the clock variables of a system. Define (v+c)(x) := v(z)+c
for all clock variables x € V. For a subset A of clock variables, we shall write
v[IA = 0](z) :=0,if z € A\, and v[\ — 0](z) := v(z), otherwise. Given a set V, we
define the set A(V') of clock constraints by the following grammar: § ::= ¢ # x
| z+c# y| 6N, where # € {<,<,>,>,=}, cis a real valued constant and
x,y are clock variables from V. We shall say that a clock constraint ¢ is satisfied
by a clock valuation v if the expression 6[V(ac)/m] evaluates to true. A clock
constraint ¢ defines a subset of R™ (m is the number of clock variables in V).
We call the subset as the meaning of 6 and denote it as ||6]y. A clock valuation
v defines a point in R™ (denoted ||v||v). So, the clock constraint § is satisfied
by the clock valuation v iff ||v|v € ||6]|v.

We are now prepared to consider the definition of timed transition systems.

Definition 1. A timed transition system 7 is a quintuple (S, so, X, V,T) where

— S is a set of states and sq is the initial state,
— X is a finite alphabet of actions,
— V is a set of clock variables,

—TCSxXxAWV)x2V xS is a set of transitions. We shall write s 613\ s

to denote a transition (s,c,6,\,s’).

! 8[y/x] is the substitution of y for x in 8.
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Fig. 1.

Ezxample 1. The timed transition system T shown in Fig. 1 has three states sy
(the initial state), 51 and Sa, three actions a, b and ¢, and two clock variables z
and y. Four transitions are depicted between the states. &

Define the behaviour of timed transition systems.

Definition 2. Let T = (S, s9, X, V,T) be a timed transition system.
A configuration of 7 is a pair (s,v), where s is a state and v is a clock
valuation. The set of configurations of T is denoted as Conf(T).
A run of T is a sequence (So, Vo) (s, V1) B .3 (sn,vp) such that for
T1 T2 Tn

all 0 < i < n there is a transition s;_1 s; such that ||vi—1 + (13 — Ti—1)||v

q
> I3

€ ||6:llv and v; = (Wi—1 + (s — Ti—1))[Ni — 0]. Here, sq is the initial state, v
is the constant 0 function, and 1o is defined to be 0. A run as above is said to
generate the timed word o = (o1,71) (02,72) (03,73) ... (On,Tn). We will use
Runs(T) to denote the set of runs of T.
The language of T is the set L(T) = {a = (01,71) (02,72) ... (On,Tn) |
(so,v0) 2 (s1,v1) B ... T (s,,v,) € Runs(T)}.
T1 T2 T

n

Ezample 2. To illustrate the concepts, consider the language of the timed tran-
sition system 7, shown in Fig. 1: L(7) = {a | aw = (a,71) (21, 72) (a,73) ...
(Tn, Ton) (@, Tong1) | T2ip1 —T2s <3 (1 =0..n), z; € {b,c}, 1 < Toj —Toj_1 < 4

for X5 = b, T2j — T2j—1 < 2 for xT;=¢C (] = 17?,)} <>

Testing equivalences [20] are defined in terms of tests which processes may and
must satisfy. Two processes are considered testing equivalent if there is no test
that can distinguish them. A test is usually itself a process applied to a process
by computing both together in parallel. A particular computation is assumed to
be successful if the test reaches a designated successful state, and the process
guarantees the test if every computation is successful. However, following the
papers [TJT5], we use an alternative characterization of the testing concept. Then,
in timed interleaving semantics, a test consists of a timed word and a set of
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actions occurred at some times. A process passes this test if after every execution
of the timed word, occurrences of the actions at the times are inevitable next.

Definition 3. Let 77 and 73 be timed transition systems. Then,
— for a timed word o = (01,71) ... (On,Tn) and for a subset L C (¥ x RY),
T; after « MUST L iff for all (s,v) € Conf(T;) such that Co(T;) = ...
T1
Z8(s,v) there exists (o, 7)€ L and (s',v') € Conf(T;) such that (s,v) Z(s' V')

(i=1,2),
— T1 and Ty are testing equivalent iff for all timed words o = (o1,71) ...
(0, Tn) and for all subsets L C (X x RT) it holds:

T, after « MUST L <= 7, after « MUST L.

C
y<2{ry

0
1< y<4{z,y}

Fig. 2.

Ezample 3. Consider the timed transition systems shown in Fig. 1 and 2. The
timed transition systems 7 and 7 are testing equivalent, while the timed tran-
sition systems 7 and 7 are not, because 7 after (a,1) MUST {(c,2)} but it
is not, the case for 7. &

3 A Category of Timed Transition Systems

In this section, we define a category of timed transition systems, C7 7Sy, and
consider its useful property.

We start with introducing some auxiliary notions and notations. For a timed
transition system 7, we define the following:

— for v = (s0,110) ... B(s,,,vn) € Runs(T),
T1 T

n

tw(y) = 0171 ... OnTn,

A7 (7) = {(0n41, Tag1) | Hsna1, Vnr1) sbe (8n, Vn) Jn_+)l<5n+lvl/n+1>}a

Tn+1
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— SR(T) is the least subset of (2547*(7) \ {(}) such that
e Vy € Runs(T) AIX e SR(T) -« v € X,
e VX € SR(T) Vv, € X o tw(y) = tw(y'),
— for X,Y € SR(T),
A7 (X) ={A7(7) | v € X},

tw(X) = tw(v) for some v € X,
XZY = twY) = tw(X) (o,7).

Ezxample 4 To illustrate the notions and notations defined prior to that, consider
some run 5 € Runs(7) and some set of runs X € SR(T) of the timed transition

system 7 shown in Fig. 1. For instance, take 7 = (S0, 0) i (s1,v1), where
vi(z) = 1, ni(y) = 0, and X = {(3o,0) > (31,1), (30, v0) > (3.
vi(z) =1, 1 (y) = 0 and v} (z) = v} (y) = 1. Clearly, tw(7) = tw(X) = (a,1).
Moreover, we have Az(¥) = {(b,7),(c,7") |1 <7 -1 < 4,7 =1 < 2} and
.A%(X) = {{b,7),(e,7) |1 <7—-1< 4, 7 —1 < 2}, 0}. Next, consider

€ SR(T) such that tw(Y) = (a,1)(¢,2), ie. Y = {<§0,uo)% (81, v1) %
<§ vo)}, where vi(z) = 1, vi(y) = 0 and va(z) = v2(y) = 0. We then get

X? &

S9,v1)}, where

Now we are ready to define the notion of a morphism.

Definition 4. Let 7 and T’ be timed transition systems. A map p: T — T’
is called a morphism, if p : SR(T) — SR(T') is a function such that for all
X € SR(T) it holds:

~ tw(X) = tw(u(X)),
— VA € Ap(u(X)) 3A € A7(X) s AC A

Notice, the morphisms defined prior to that are to be thought of as simulations
— the morphisms reflect correspondences of timed words and matches of sets of
actions occurred after the timed words at some times.

Ezample 5. Tt is easy to check that there is the (only) morphism from the timed
transition system 7 in Fig. 1 to the timed transition system 7 in Fig. 2. &

Timed transition systems (with alphabet X') and morphisms between them form
a category of timed transition systems, C77 Sy, in which the composition of
two morphisms p1 : 7o — 77 and pe : 77 — To is (u2 o p1) : 7o — 7o, and
the identity morphism is the identity function.

Theorem 1. CT7T S5 has pullbacks.

Proof. Assume 7Ty BT 22 75 to be a diagram, where 7; = (S;, X, s8, Vi, T;)
(¢=0,1,2) is an object and p; (j = 1,2) is a morphism of the category CTTS 5.
Construct the system 7 = (S, X, s0, V,T) as follows:
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- S ={(X,Y,D) € SR(T1) x SR(T3) x 2E*B") | ;) (X) = po(Y) and D €
M(X,Y)}, where M(X,Y) = {An( U (Y)B) | Ae A, (X)} U {BnN
Ced2 x A) | B € Ar,(Y)},

— 50 = ({Co(T1)}, {Co(T2)}, A7, (Co(Th)) N Az, (Co(T2))). Notice, so € S,

-V =A{u},

~ (XY, D),0,(u=7),0,(X"Y',D') €T & (0,7) € D, X > X', Y %Y.

Due to the above construction, it is easy to see that 7 is a timed transition
system. Consider the following properties of 7:

— for v € Runs(T) with last(y) = ((X,Y,D),v8, A7(y) = D and tw(y) =
tw(X) = tw(Y). It follows from the construction of 7 and the definition of
ATt (7).

—for Z € SR(T), Z = {v € Runs(T) | last(y) = (X,Y,D),v) with D €
M(X,Y)}. It follows from the construction of 7" and the definition of SR(77)
and SR(7z) (i-e. the uniqueness of X and Y).

Define the mappings m : SR(7) — SR(71) and 73 : SR(7) — SR(7T2) as
follows: m1(Z) = X and m2(Z) =Y, for all Z € SR(T). Using the properties of
7T and the definition of m; (i = 1,2), it is routine to show that 7; is a morphism.

By the construction of 7" and the definition of 7 and me, we get g om = pgoms.

Suppose 7 bl 75 to be a diagram in the category C7 7 Sy, such that p;0

@1 = p2 0 ¢a. Define the mapping £ : SR(7') — SR(T) as follows: £(Z') = {vy €
Runs(T) | last(y) = (($1(Z), $2(Z"), D),v) with D € M(¢p1(Z'), p2(Z"))}, for
all Z/ € SR(T'). Using the properties of 7 and ¢; (i = 1,2) being a morphism,
it is straightforward to show that £ is a morphism. The equations ¢; = 7 0 £
and ¢o = 7o o & follow from the definition of the morphisms &, 1 and 7. &

4 Psx-Open Morphisms

In this section we first define a subcategory of observations allowing us to develop
the corresponding notion of open maps (see Appendix) and then provide an
alternative characterization of the open maps. Further, the abstract equivalence
based on spans of the open maps is shown to coincide with testing equivalence.

Following the standards of timed transition systems and the paper [2I], we
choose the subcategory Py of observations which are trees consisting of a ’trunk’
and ’branches’ of length one, except for the "top’ of the tree, where a more general
branching structure is assumed.

Definition 5. The subcategory Px of the category CTTSx contains objects of
the form

2For v = Co(T)2...3((X,Y,D),v) € Runs(T), we write last(y) to denote
T1 Tn
(X,Y,D),v).
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and morphisms between the objects, where ki,...,ky, m1,...,mg, > 0.

Our next aim is to characterize Px-openness (see Appendix) of morphisms rel-
ative to the subcategory of observations defined prior to that.

Theorem 2. Let T and T’ be timed transition systems. Then, a morphism p :
T —>T inCTTSs is Ps-open iff for allY € SR(T") there exists X € SR(T)
such that u(X) =Y and for all A € Ar(X) there exists A’ € A (Y) such that
A C A

Proof. (=) Assume p : 7 — 7’ to be a Px-open morphism. Take an arbitrary
Y € SR(T’) such that tw(Y) = (01,71) ... (0pn, Tn). Construct the system O =
(0, X,00,X0,To) as follows:

- 0= {00701"%70,7“’19’(2@) li=1.(n—1),y€Y,(a,d) € A (7)},

- Xo ={u},

_TO_{(O’L 1,0'1,{“—7'1} @ )|Z:1(’I’L—1)}U
{(0i—1,00,{u=7},0,) | i=1..(n— 1)} U
{(op—1,0n,{u="1,},0,0)) | yEY} U
{(0,a,{u=d},0,9, ) | v €Y, (a,d) € Ar(7)}.

Due to the construction, it is easy to see that O is a timed transition system.
For the sake of clarity, consider the set SR(O) = {Zo, Z1, ..., Zn, Z(q,a) | (a,d) €

U A/}, where Z() = {C()(O)}, ZZ = {C()(O) 2) :f_i—_>1 <Oi,17l/i,1> 2)

A€ A (Y) T1 i—1 Ti

(0i,vi), Co(O) DB ... "5 (oiq,vi1) D, vi)} (i =1.n—1); Zn = {Co(O) S

T1 Ti—1 Ti -

ad (On—1,vn-1) =5 (o), vm) | v € Y} Zad) = {Co(0) S ... 8 (o), vy)
Tn—1 Tn 1 Tn

LW 1) | Y €Y, (a,d) € Ar(v)} ((a,d) € U  A4’). Moreover, we

d (a,d) "
€A (Y)
{{(oit1,7i+1)}, 0} (i = 1.n — 1);

have that Ao (Zy) = {{(01,71)}}; Ao(Z;)

Ao(Zy) ={Ar(7) | v €Y} Ao(Z(a,q) = {0} ((a,d) e U A).

A'€AL(Y)
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Define the mappings p1 : € — O and pg : € — T as follows: pu1({Co(E)}) =
{Co(0)} and pa({Co(€)}) = {Co(T)}, where & = ({eo}, X, eo,0,0). Clearly,
p1 and pe are morphisms. Also, define the mapping us : O — T’ as follows:
p3(Zi) = {7 € Runs(T') | tw(y') = tw(Z;)} (i = 1.n) and p3(Z4,q) = {7 €
Runs(T') | tw(y') = tw(Za,q))} ((a,d) € U  A). Due to the construction

AT €A (Y)

of O and the definition of us, it should be easy to see that ps is a morphism.
By the definition of SR(7"’), we conclude that us(Z,) = Y. Clearly, we have
oy = pg o pp. Since p is a Px-open morphism, there exists a morphism
@ : O — T such that po = po p and pz = po p. Assume X = p(Z,).
Due to the commutativity property of the triangles, we have Y = p(X). Take
A€ Ar(X) = Ar(u(Z,)). Since p is a morphism, there exists A’ € Ao (Zy)
such that A C A. Moreover, we have Ap(Z,) = A (Y) = A (u(X)). So,
there exists A" € A7/ (u(X)) such that A" C A.

(<) Assume g : 7 — T’ to be a morphism in C7T7Sy. Take arbitrary
morphisms pq : O — Oy in Py, and pus : O1 — 7T, pu3z : O3 — T'in CTTSx
such that poue = pgopg. Define the mapping p’ : SR(O2) — SR(T) as follows:
W (Z) ={y € Runs(T) | tw(y) = tw(Z)}, for all Z € SR(Oz). It is routine to
show that p’ is a morphism. The equations u3 = po p’ and s = p' o py follow
trivially. Thus, p is a Px-open morphism. &

Ezample 6. Consider the transition systems 7 and 7 shown in Fig. 2. The (only)
morphism, g, from 7 to T is not Px-open because, for instance, for A = /@ €

~

Az (X) there is no A" € Az(X = p(X)) such that A” € A = 0, where X =
{(50,v0) % (s1,11), (50, v0) %@2, 11), (80, 10) %@3, vy)}, where vy (z) = vi(z) =

L n(y) = vi(y) = 0, v (z) = v{(y) = 1, and X = {(s0,v0) > {s1,1)}, where
vi(z) =1 and 14 (y) = 0. ¢

Finally, the coincidence of Pg-bisimilarity and testing equivalence is established.

Theorem 3. Timed transition systems are Px-bisimilar iff they are testing
equivalent.

Proof. (=) For a timed transition system 7, X € SR(7) and o € L(7T), we
shall write A7 (a) = A7 (X) if tw(X) = . Suppose 71 & T 22 75 to be a span
of Px-open morphisms. It is easy to show that L(77) = L(73). We shall prove
that for all timed words a and for all sets L C (Y’ xR™"), if 7; after « MUST L,
then 75 after « MUST L (the proof of the converse direction is similar). Take
arbitrary « and L such that 7; after « MUST L. Two cases are admissible.

— o € L(7Tq). This implies o € L(73). Then there exists X; € SR(71) and
X9 € SR(732) such that tw(X1) = a = tw(X2). Hence, we have Ar, (X;) =
A7z (o) and Az, (X3) = Az, (a). Since pp is a Px-open morphism, for X
we can find X € SR(T) such that u1(X) = X7 and for all A € Ar(X)
there exists A; € Az, (X1) such that A1 C A, by Theorem [2] Next, since
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2 is a morphism, it follows that Xy = p2(X) € SR(72), and for all A, €
A7, (X2) there exists A € A7 (X) such that A C Ay. So, we have that for all
As € A, () there exists A; € A, («) such that 4; C Ajy. Since 77 after o
MUST L, it follows A;NL # (), for all A; € Az, (a). This means AsNL # 0,
for all A € Ag,(a). Thus, we can conclude that 7, after « MUST L.

— a ¢ L(71). Then, a ¢ L(73). This implies 7, after « MUST L.

(<) Suppose 7; and 73 to be testing equivalent. It is easy to show that
L(Ty) = L(T3). Clearly, we can define a map p : 7; — 7T as a function p :
SR(71) — SR(72) such that: for all X € SR(Th), tw(X) = tw(u(X)), and
for all Y € SR(73) there exists X € SR(77) such that pu(X) = Y. Next, we
shall prove that for all Ay € Az, (u(X)) there exists A; € Az, (X) such that
A1 C Ay (the proof of the converse fact is similar). Suppose a contrary, i.e. there
exists As € Az, (u(X)) such that Ay € Ao, for all A; € Az, (X). This means
that for all A; there exists at least one (o,7)4, such that (o,7)a, € A1\ As.
Define Lo = Ua, ey, (x)(0,7)4,. W.Lo.g. assume tw(X) = a. We then conclude
that 7; after « MUST Ly, but (72 after « MUST Lg), contradicting our
assumption. Thus, p is a morphism and, moreover, a Px-open morphism, due
to Theorem &

5 Conclusion

In this paper, we have presented an application of Joyal, Nielsen, and Winskel’s
theory [19] illustrating that testing equivalence on timed transition systems can
be captured by the span of open maps idea. This allows us to transfer general
concepts of equivalences to the model under consideration and to apply general
results from the categorical setting (e.g. the existence of canonical models and
characteristic games and logics) to a concrete time-sensitive equivalence. It is
worth noting that the developed here category can also be exploited to provide
an open maps characterization of trace equivalence on timed transition systems.

As for future work, we plan to extend the obtained results to other observa-
tional equivalences (e.g., equivalences taking into account internal actions, etc.)
and to other classes of timed models (e.g. timed Petri nets, timed local event
structures, etc.). Also, we intend to exploit the approach from [I1] as part of
our future work. Further, it would be interesting to study the relationship of the
characteristic path logic [I9] to existing real-time logics [3].
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Appendix: Introduction to Open Maps

We briefly recall the basic definitions from [19].

First, a category which represents a model of computation has to be identi-
fied. Let us denote this category M. A morphism m : X — Y in M should
intuitively be thought of as a simulation of X in Y. Then, within the category
M, we choose a subcategory of ‘observation objects’ and ‘observation extension’
morphisms between these objects. We denote this category of observations by P.
Given an observation (object) O in P and a model X in M, then O is said to
be an observable behaviour of X if there exists a morphism p: O — Y in M.
We think of p as representing a particular way of realizing O in X.

Next, we identify morphisms m : X — Y which have the property that
whenever an observable behaviour of X can be extended via f in Y then that
extension can be matched by an extension of the observable behaviour in X. A
morphism m : X — Y in M is called P-open if whenever f : O; — Oy in P,
p:01 — X,q:02 — Y in M such that mop = go f, there exists a morphism
h: Oy — X in M such that p = ho f and ¢ = m o h. When no confusion is
possible, we refer to P-open morphisms as open maps.

Finally, we introduce an abstract notion of bisimilarity. As reported in [19], the
open map approach provides general concepts of bisimilarity for any categorical
model of computation. The definition is given in terms of spans of open maps.
Two models X and Y in M are said to be P-bisimilar if there exists a span

Xz y with vertex Z of P-open morphisms.

Notice that if M has pullbacks, it can be shown that P-bisimilarity is always
an equivalence relation. The important observation is that pullbacks of open
maps are themselves open maps [19)].
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Abstract. A concurrent object is an object that can be concurrently
accessed by several processes. It has been shown by Maurice Herlihy that
any concurrent object O defined by a sequential specification can be wait-
free implemented from reliable atomic registers (shared variables) and
consensus objects. Wait-free means that any invocation of an operation
of the object O issued by a non-faulty process does terminate, whatever
the behavior of the other processes (e.g., despite the fact they are very
slow or even have crashed).

So, an important issue consists in providing reliable atomic registers
and reliable consensus objects despite the failures experienced by the
base objects from which these atomic registers and consensus objects
are built. This paper considers self-implementations, i.e., the case where
a reliable atomic register (resp., consensus object) is built from unre-
liable atomic registers (resp., unreliable consensus objects). The paper
addresses the object failure model where the base objects can suffer re-
sponsive or nonresponsive crash failures. When there are solutions the
paper presents corresponding algorithms, and when there is no solution,
it presents the corresponding impossibility result. The paper has a tu-
torial flavor whose aim is to make the reader familiar with important
results when one has to build resilient concurrent objects. To that aim,
the paper use both algorithms from the literature and new algorithms.

1 Introduction

Concurrent object with a sequential specification. A concurrent object is an ob-
ject that can be concurrently accessed by several processes. As any object, such
an object is defined by (1) an interface providing operations that allow manipu-
lating the object and (2) a specification describing the correct behaviors of the
object. Such a specification can be sequential or not. As an example, a concur-
rent queue has a sequential specification. Differently, a failure detector [2JI0]
has no sequential specification. Sequential specification means that, at some ab-
straction level, the behavior of the object can be described as if each operation
was executed instantaneously and without concurrency. Among the most popu-
lar concurrent objects defined by a sequential specification there are the shared
queue (whose implementation is usually described in textbooks under the name
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producer/consumer problem), and the shared file, also called disk or register (the
implementation of which underlies the readers/writers problem).

Net effect of asynchrony and failures. When operations accessing a concurrent
object overlap, a simple way to ensure that the sequential specification of the
object is never violated consists in blocking all of them but one during some
time in order that one can access the object without being bothered by the
others and consequently be able to proceed in a safe way. This is traditionally
solved by associating locks with each concurrent object [6]. (Such a lock is called
a condition in the monitor terminology [0], and a simple way to implement a
lock consists in using a semaphore.) Due to their (relative) simplicity and their
effectiveness, lock-based implementations are popular.

Unfortunately, in asynchronous systems (i.e., the class of systems where no
assumption on the speed of the processes is possible), the lock-based approach
presents intrinsic major drawbacks. If a slow process holds a lock during a long
period of time, it can delay faster processes from accessing (some parts of) the
object. More severely, the lock-based approach does not prevent by itself dead-
lock scenarios from occurring. Preventing them requires additional mechanisms
or strategies that can give rise to long waiting periods that degrade the whole
system efficiency. The situation becomes even more critical in presence of fail-
ures. When a process holding a lock crashes, as the system is asynchronous,
there is no way to know whether this process has crashed or is only very slow. It
follows that such a crash can block the system during an arbitrarily long period
(i-e., until an appropriate recovery action is started, either manually, or after the
operating system becomes aware of the crash of the process).

Wait-free object implementation and consensus universality. These crucial draw-
backs make a case for implementations of concurrent objects that, instead of be-
ing lock-based, allow each process that executes an object operation to progress
without waiting, i.e., whatever the current state and behavior of the other pro-
cesses. Such implementations of concurrent objects are known as wait-free [4].
Initially proposed by Lamport [§], they basically ensure that no process can be
arbitrarily delayed by the other processes. It is important to notice that “wait-
free” is a property of a protocol implementing an object, not a property of the
object itself.

Very interestingly, it has been shown [4] that any concurrent object that has
a sequential specification (as it is the case for shared queues and shared files)
can have a wait-free implementation for any number of processes as soon as we
are provided with atomic registers (shared variables) and consensus objects [4].
This result is called the universality of consensus. A universal construction is a
wait-free algorithm that, given the specification of any sequential type T, builds
a concurrent object of the type T from atomic registers and consensus objects.
The most known universal construction is described in []; that construction is
bounded. A simpler (not bounded) universal construction is described in [3].

Content of the paper. The previous discussion shows that atomic registers and
consensus objects are fundamental objects as soon as one wants to build high
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level wait-free reliable objects. A universal construction considers that these base
objects are reliable, i.e., they always provide their failure-free semantics. So, to
complete the picture, it is necessary to be able to build reliable atomic registers
and reliable consensus objects from unreliable base objects. Such an investigation
had been done in [7]. In that paper, adopting a very theoretical point of view,
the authors consider several failure models (crash, omission, Byzantine) and
delineate a precise borderline separating what that can be done from what that
cannot be done (impossibility results).

Although some of the algorithms it presents are new, this paper has a more
pedagogical and survey flavor. Assuming that any number of processes can crash
(wait-free case), the paper considers two variants of the object crash failure
model, namely the responsive crash model, and the nonresponsive crash model.
This difference is fundamental. In the responsive crash model, a process that
invokes an operation always receives a response (a default value when the object
has crashed), while it can never receive a response in the nonresponsive model af-
ter the base object has crashed (the invoking operation can then remain pending
forever).

The paper is divided into Hlsections. First, the system model is presented and
important definitions are stated (Section [2). Then, the responsive failure model
is addressed in Section Bl while the nonresponsive failure model is considered in
Section Ml In each case, (existing or new) algorithms are presented and proved
correct. When no algorithm can be designed, an impossibility result is proved. As
already mentioned, in addition to new algorithms, the paper has a pedagogical
and survey flavor. Interestingly, the paper visits also proofs techniques that one
can use to prove that objects are atomic.

2 Computation Model

2.1 Processes, Registers and Consensus Objects

Process model We consider a system made up of an arbitrary number (not nec-
essarily finite) of sequential processes, denoted p1, pa, . .., such that any number
of them can crash (wait-free case). Given any execution of the system, a correct
process is a process that does not crash during that execution. A process that
crashes is said to be faulty. A process executes correctly (i.e., according to its
specification) until it possibly crashes. After it has crashed, a process executes
no operation. There is no bound on the relative speed of a process with respect
to another, which means that the system is asynchronous [I].

Shared Registers. A register [9] is an abstraction of shared variable. A reliable
atomic register is an object that provides the processes with two operations
usually called read and a write operations. Whatever the number of processes
that can concurrently access such a register, the read and write operations issued
by the processes appear as if they have been executed one after the other, each
one being executed instantaneously at some point of the time line between its
invocation event and its response event.
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In the following we consider that each register has a single writer and a single
reader (IW1R register). This is not at the price of generality as multi-writers
multi-readers atomic registers can be built from 1W1R atomic registers (e.g.,
see [11]). The notion of atomic register is the ultimate of the following suite of
definitions [9].

— A 1TWIR safe register is a register such that a read operation that is not
concurrent with a write operation returns the current value of the register,
while a read concurrent with a write returns any value that the register can
contain (let us observe that, in that case, it is possible that the returned
value has never been written into the register!).

— A 1WI1R regular register is a safe register such that any read concurrent with

one or more write operations returns the value of the register before these
write operations, or the value written by one of these write operations.
It is important to see that when two read operations 71 and r2 are concurrent
with two write operations wl and w2 (see Figure [), it is possible that the
second read r2 obtains the value written by the first write w1, while the first
read r1 obtains the value written by the second write w2. When it occurs,
this is called a new/old inversion.

— A 1WIR atomic register is a regular register with no new/old inversion [9].

Consensus Object. A consensus object offers a single operation to its users,
namely propose(). A process p; invokes it at most once, and supplies a parameter
value v;. So its invocation has the form “propose(v;)”, and we say “p; proposes
v;”. Each process invocation returns a result. The semantic of a consensus object
states that (1) all the processes that invoke propose() obtain a result value
(termination); (2) there is single result value (agreement); and (3) the result
value is a proposed value (validity). Restraining, without loss of generality, the
decided value to be the value proposed in the first invocation of the propose()
operation provides a sequential specification of the consensus object [7].

2.2 Responsive and Nonresponsive Crash Failures

Intuitively, an object crash failure occurs when the corresponding object stops
working. More precisely, two different crash failure models can be distinguished:
the responsive crash model and the nonresponsive crash model.

Responsive crashes. In the responsive crash failure model, an object fails if
it behaves correctly until some time, after which every operation returns the
default value L. This means that the object behaves according to its sequential
specification until it crashes (if it ever crashes), and then satisfies the property
“once L, forever 1”. The responsive crash model is sometimes called fail-stop
model.

Nonresponsive crashes. In the nonresponsive crash model, an object does not
return L after it has crashed. There is no response and the invoked operation
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remains pending forever. The nonresponsive crash model is sometimes called
fail-silent model.

Facing nonresponsive failures is more difficult than facing responsive failures.
Indeed, in the asynchronous computation model, a process that invokes an oper-
ation on an object that has crashed and is not responsive, has no mean to know
whether the object has indeed crashed or is only very slow. As we will see, some
objects that can be implemented in the responsive failure model, can no longer
be implemented in the nonresponsive failure model.

2.3 Notion of t-Resilience

As indicated above, we are interested in the wait-free construction of reliable
objects from base object prone to crash (let us recall that “wait-free” means
that the constructions have to work whatever the number of faulty processes).
More precisely we are interested in, self-implementation, which means that we
want to build a reliable object of type T' (atomic register or consensus), from
base objects of the same type T a subset of them being possibly unreliable.

o s [ ]

» Reliable object RO

m base objects, up to t < m can be unreliable

Fig. 1. Reliable object from unreliable base objects

Let us assume that the reliable object RO is built from m base objects of the
same type (Figure [[l). RO is said to be t-resilient if behaves correctly despite
the crash of up to ¢ shared base objects from which it is built. This means that,
for the processes that use RO, there is no difference if none, 1, 2, etc., up to
t < m base objects crash. (If there are differences, those concern efficiency and
could be perceived only by an external observer. Due to the asynchrony of the
system model, they are “hidden” to the processes.) Differently, if more than ¢
base object crash, there is no guarantee on the behavior of RO (that can then
behave arbitrarily).

3 Registers and Consensus Objects with Responsive
Failures

This section presents wait-free self-constructions of ¢-resilient objects from m >
t + 1 base objects prone to responsive crash failures. “Self-construction” means
that the reliable object that is built and the base objects from which it is built
have the same type. It is easy to see that t+1 is a tight lower bound on the number
of base objects required to mask up to ¢ faulty base objects. If an operation on
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the constructed object accesses only ¢ base objects, and all of them fail, there is
no way for the constructed object to mask the base object failures. As previously
indicated, these constructions concern 1W1R atomic registers and consensus.

3.1 Reliable Register When Failures Are Responsive: An
Unbounded Construction

The first construction (that is present on some textbooks without proof) is based
on sequence numbers. It consequently requires base atomic registers that are
potentially unbounded. The ¢ + 1 registers are denoted REG|1 : (¢ 4+ 1)]. Each
register REG(i] is made up of two fields denoted REG]i].sn (sequence number
part) and REG][i].val (value part). Each base register REG]i] is initialized to
the pair (vinit, 0) where vy, is the initial value of the constructed register.

operation RO.write(v): % invoked by the writer %
sn «— sn+1;
for j € {1,...,t+ 1} do REG[j] < (v,sn) end do;
return ()

operation RO.read(): % invoked by the reader %
% The initial value of last is (v init,0) %
for j €{1,...,t+ 1} do
aux — REG[j];
if (auxz # L) A (auz.sn > last.sn) then last «— auz end if
end do;
return (last.val)

Fig. 2. 1IWI1R t-resilient atomic register RO: construction 1

The read and write operation to access the t-resilient 1W1R register (denoted
RO) are described in Figure[2l The write operation consists in writing the pair,
made up of the new value plus its sequence number, in all the base registers
(without specific order) sn is a variable local to the writer that is used to generate
sequence numbers (it is initialized to 0).

The reader keeps in a local variable denoted last, and initialized to (vinit,0),
a copy of the pair (v, sn) with the highest sequence number it has ever read.
This variable allows preventing new/old inversions when base registers or the
writer crash. The read operation consists in reading the base registers (in any
order). Let us observe that, as at most ¢ registers can crash, at least one register
always returns a non-_L value. For all the base registers whose read returns a
non-_| value, if the reader reads a more recent value, it updates last accordingly.
Finally, it returns the value last.val, i.e., the value associated with the highest
sequence number it has ever seen (last.sn).

It is important to notice that the read and write operations access the base
registers in any order. This means that no operation on a base register depends
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on a previous operation on another base register. Said in another way, they could
be issued in parallel, thereby favoring efficiency. (Differently, when base registers
can suffer nonresponsive failures, the parallel invocation approach has to be used
to cope with base operations that never answer. This is illustrated in Figure[§)
Let us also notice that the version of the construction with parallel invocations
provides an optimal construction as far as time complexity is concerned.

Theorem 1. The algorithm described in Figure [A wait-free implements a t-
resilient IW1R atomic register from (t + 1) 1WI1R base atomic registers that
can suffer responsive crash failures.

Proof. As already noticed, the construction is trivially wait-free. Moreover, as
each read operation returns a non-_L value, the register that is built is reliable
(in the sense that it always returns a non-_L value). So, it remains to show that
the register that is built is atomic. This is done by first defining a total order on
the read and write operations on the constructed object, and then showing that
the resulting sequence satisfies the sequential specification of a register. This
second step uses the fact that there exists a total order on the accesses to the
base registers (as those registers are atomic).

Let us associate with each write operation on the constructed object RO (high
level write) the sequence number associated with the value it writes. Similarly,
let us associate with each high level read operation the sequence number of the
value it reads. Let S be the total order on the high level read and write operations
defined as follows. The high level write operations are ordered according to their
sequence numbers. The high level read operations with a given sequence number
are ordered just after the high level write operation with the same sequence
number. If two or more read operations have the same sequence number, they
are ordered in S according to their invocation order. We have the following.

— Tt follows from its definition that S includes all the operations issued by the
reader and the writer (except possibly their last operation if they crash).

— Due to the way the local variable sn is used by the writer, the high level
write operations appear in S according to their invocation order.

— Similarly, the high level read operations appear in S according to their invo-
cation order. This is due the local variable last used by the reader (the reader
returns the value with the highest sequence number it has ever obtained from
a base register).

— As the base registers are atomic, the base operations on these registers are

totally ordered. Consequently, when we consider that total order, a base read
operation that obtains the sequence number sn from a base atomic register,
is after the base write operation that wrote sn into that register.
As S is such that a high level read operation that obtains a value whose
sequence number is sn is after the snth high level write operation, it follows
that S is consistent with the occurrence order defined by the operations on
the base objects.

It follows from the previous items that S is a linearization of the high level read
and write operations (this means that these high level operations can be totally
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ordered in such a way that each operation appears as if it has been executed
instantaneously at some point of the time line between its invocation event and
its end event [4]). Consequently, the constructed object RO is an atomic register.

|:ITheorem |I|

3.2 Reliable Register When Failures Are Responsive: A Bounded
Construction

Eliminating sequence numbers. When we consider the previous construction, an
interesting question is the following: is it possible to design a t-resilient IW1R
atomic register from ¢+ 1 bounded base registers, i.e., are the sequence numbers
necessary? The construction that follows shows that they are not: there is a
bounded 1W1R atomic register construction. Moreover, that construction (that,
to our knowledge, is new) is optimal in the sense that each base register has
only to contain the value that is written. No additional control information is
required.

The corresponding construction is described in Figure @l The writer simply
writes the new value in each base register, in increasing order, starting from
REG[1] until REG[t + 1]. The reader scans sequentially the registers in the
opposite order, starting from REG[t + 1]. It stops just after the first read of
a base register that returns a non-1 value. As at least one base register does
not crash (model assumption), the reader always obtains a non-L value. (Let
us remind that, as we want to build a t-resilient object, the construction is
not required to provide guarantees when more than t base objects crash.) It is
important to remark that, differently from the construction described in Figure
Bl each read and write operation has now to follow a predefined order when it
accesses the base registers. Moreover, the order for reading and the order for
writing are opposite. These orders are depicted in Figure [J] with a space-time
diagram in which the “time line” of each base register is represented. A black
circle indicates a base read or write operation on a base register REG[k]. The
read stops reading base registers when it reads a non-_1 value for the first time.

REG(1]

REG[2]

REG[k — 1]
v# L

L

REGIK]

REG[t]
REG[t +1] L

Write line Read line

Fig. 3. Order in which the operations access the base registers
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Why read and write operations have to access base registers in opposite order.
To understand why the high level read and write operations have to access the
base registers in opposite order, let us consider the following scenario where
both the read and write operations access the base registers in the same order,
from REG[1] to REG[t + 1].The write updates REG]1] to x and crashes just
after. Then, a read obtains the value x. Sometimes later, REG[1] crashes. After
that crash occurred, the reader reads REG[1], obtains L, then reads REG[2]
and obtains y, the value that was written before x. The two high level read
operations issued by the reader suffer a new/old inversion, and consequently, the
constructed object is not atomic. Forcing the reader to access the base registers
in the reverse order (with respect to the writer) ensures that if the reader returns
v from REG(j], then all the based registers REG|[k] such that j < k < t+ 1 have
crashed. More generally, as we have seen previously, if the reader and the writer
do not access the base registers in opposite order, additional control information
has to be used, such as sequence numbers.

operation RO.write(v): % invoked by the writer %
for j from 1 to t + 1 do REG|j] +— v end do;
return ()

operation RO.read(): % invoked by the reader %
for j fromt+ 1 to 1 do
auzr — REG[j];
if (auz # 1) then return (auz) end if
end do

Fig. 4. 1WI1R t-resilient atomic register RO: construction 2

Tradeoff. 1t is interesting to emphasize the tradeoff between this construction
and the previous one. The construction of a IW1R ¢-resilient atomic register de-
scribed in Figure[2is time-optimal (when the invocations are done in parallel),
but requires additional control information, namely, sequence numbers. Differ-
ently, the construction described in Figure M is space optimal (no additional
control information is required), but requires sequential invocations on the base
registers.

Theorem 2. The algorithm described in Figure [] wait-free implements a t-
resilient IW1R atomic register from (t + 1) 1WI1R base atomic registers that
can suffer responsive crash failures. Moreover it is space optimal.

Proof. The wait-free property follows directly from the fact there is no explicit
or implicit wait statement in the construction. Due to the assumption that at
most t base registers crash, the value returned by a high level read operation is
a value that has been previously written. Consequently, the constructed object
never returns L, and is (in that sense) a reliable register.
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The proof that the constructed register is atomic is done incrementally. It is
shown that the register is first safe, then regular and finally atomic. The proof for
going from regularity to atomicity consists in showing that there is no new/old
inversion, from which atomicity follows [9].

Safeness. Let us consider a read operation of the constructed register when there
is no concurrent write operation. Safeness requires that, in this scenario, the read
returns the last written value.

As (by assumption) no write operation is concurrent with the read operation,
we conclude that the writer has not crashed during the last write operation
issued before the read operation (otherwise, this write operation would not be
terminated and consequently would be concurrent with the read operation).

The last write has updated all the non-crashed registers to the same value v.
It follows that, whatever the base register from which the read operation obtains
a non-_ value, it obtains and returns the value v.

Regularity. If a read operation r is concurrent with one or several write opera-
tions, we have to show that it obtains the value of the constructed register before
these write operations, or a value written by one of them.

Let us first observe that a read operation cannot obtain from a base register
a value that has not yet been written into it. We conclude from that observation
that a high level read operation cannot return a value that has not yet been
written by a write operation.

Let v be the value of the register before the concurrent high level write opera-
tion. This means that all the non-crashed base registers are equal to v before the
first concurrent high level write operation. If the high level read operation obtains
the value v, regularity is ensured. So, let us assume that r obtains another value
v’ from some register REG|[x]. This means that REG[z] has not crashed and has
been updated to v’ after having been updated to v. This can only be done by a
concurrent high level write operation that writes v’ and has been issued by the
writer after the write of v. The constructed register is consequently regular.

Atomicity. We prove that there is no new/old inversion. Let us assume that two
read operations r1 and r2 are such that r1 is invoked before r2, r1 returns v2
that has been written by w2, 72 returns vl that has been written by wl, and
wl is before w2 (Figure Bl). The read operation rl returns v2 from some base
register REG|[z]. It follows from the read algorithm that all the base registers
REG(y] such that z < y < t + 1 have crashed. It also follows from the write

wl w2

time line

Fig. 5. Proof of no new/old inversion
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algorithm that the non-crashed registers from REG[1] to REG[z — 1] contain v2
or a more recent value when rl returns v2.

As the base registers from REG[t+ 1] until REG[x + 1] have crashed when r2
is invoked, that read operation obtains L from all these registers. When it reads
the atomic register REG|[z], it obtains v2, or a more recent value, or L.

— If it obtains v2 or a more recent value, there is no new/old inversion.

— If it obtains L, it continues reading from REG[z — 1] until it finds a base
register REG[y] (y < z) from which it obtains a non-_L value. On another
side, as the write algorithm writes the base registers in increasing order
starting from REG|1], it follows that no register from REG[1] until REG[z—
1] (not crashed when read by r2) can contain a value older than v2, namely
it can only contain v2 or a more recent value. It follows that there is no

ssibili £ 1d i - 1so i h .
possibility of new/old inversion also in that case Oheorem

operation RO.read(): % invoked by the reader %
for j from shortcut to 1 do
auz «— REG[j];
if (auz # 1) then shortcut < j; return (aux) end if
end do

Fig. 6. Improving construction 2

An improvement. An easy way to improve the time efficiency of the previous
read operation consists in providing the reader with a local variable (denoted
shortcut and initialized to ¢ + 1), that keeps an index such that, to the reader
knowledge, each REG[k] has crashed, for shortcut < k < t + 1. The resulting
read algorithm is described in Figure[@l It is easy to see that, if after some time
no more base register crashes, shortcut always points to the first (in descending
order) non-crashed base register. This means that there is a time after which
the duration of a read operation is constant.

3.3 Consensus When Failures Are Responsive: A Bounded
Construction

This section presents a t-resilient consensus object RES CONS built from m =
t + 1 base consensus objects. As for the previous register, it is easy to see that
t+1 is a tight lower bound on the number of crash-prone base consensus objects.

The “parallel invocations” approach does not work. Before presenting a construc-
tion that builds a t-resilient consensus object, let us give an intuitive explanation
of the fact that there is no solution when the invocations on the base consensus
objects are done in parallel.
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So, let us assume that we have m = 2t + 1 base consensus objects, and an
invocation on the constructed object is implemented as follows: a process p; (1)
invokes in parallel propose(v) on each base object, and then (2) takes the value
decided by a majority of the base consensus objects. As there is a majority of base
objects that are reliable, this algorithm does not block, and p; receives decided
values from a majority of base consensus objects. But, according to the values
proposed by the other processes, it is possible that none of the values it receives
be a majority value. It is even possible that it receives a different value from each
of the 2t 4+ 1 base consensus objects if there are n > m = 2t + 1 processes and
they all have a proposed different values to the constructed consensus object.

While this approach works for objects such as atomic registers (see below),
it does not for consensus objects. This comes from the fact that registers are
data objects, while consensus are synchronization objects and synchronization is
inherently non-deterministic.

A t-resilient construction. The t+1 base consensus objects are denoted CONS|1 :
(t+1)]. The construction (from [7]) is described in Figure [l The variable est is
local to the invoking process. When a process p; invokes RES CONS .propose(v),
it first sets est to the value v it proposes. Then, p; sequentially visits the base
consensus objects in a predetermined order (e.g., starting from CONS[1] until
CONS|[t + 1]. The important point here is that all the processes use the same
visit order). At the step k, p; invokes CONS|[k].propose(est). Then, if the value
it obtains is different from 1, p; adopts it as its new estimate value est. Finally,
p; decides the value of est after it has visited all the base consensus objects. Let
us observe that, as at least one consensus object is not faulty, all the processes
that invoke propose() on that object obtain the same non-_L value from it.

operation RES CONS.propose(v):

(1) est «— v;

(2) for k from 1tot+1do

3) aux <— CONS|[k].propose(est);

(4) if (auz # 1) then est — aux end if
(5) end do;
(6) return (est)

Fig. 7. Construction of a t-resilient consensus object RES CONS [1]

Theorem 3. The algorithm described in Figure [ wait-free implements a t-
resilient consensus object from (t + 1) base consensus objects that can suffer
responsive crash failures.

Proof. The proof has to show that, it no more than ¢ base consensus object
crash, the object that is built satisfies the validity, agreement and wait-free
termination properties of consensus.
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As any CONS[k] base consensus object is responsive, it follows that any
CONS|k].propose(est) invocation terminates (line [03]). Consequently, when ex-
ecuted by a correct process, the for loop always terminates. The wait-free ter-
mination follows directly from these observations.

When a process invokes RES CONS.propose(v), it first initializes its local
variable est to the value v it proposes. Then, if est is modified, it is modified
at line [04] and takes the value proposed by a process to the corresponding base
consensus object. By backward induction, that value has been proposed by a
process. The consensus validity property follows.

Let CONS|[z] be the first (in the increasing order on z) non-faulty base con-
sensus object (by assumption, there is at least one such object). Let v be value
decided by that consensus object. It follows from the agreement property of that
base object, that all the processes that invoke CONS|x].propose(est) decide v.
From then on, only v can be proposed to the base consensus objects CONS|[x+1]
until CONS[t + 1]. It follows that, from CONS|x], the only value proposed to a
next consensus object is v. Consequently, v is the value decided by the processes
that execute line The agreement property follows. (As we can see, the fact
that all the processes “visit” the base consensus objects in the same order -from
CONS[1] to CONS[t 4 1]- is central in the proof of this agreement property.)

|:ITheorem E

4 Registers and Consensus Objects with Nonresponsive
Failures

4.1 Reliable Register When Failures Are Not Responsive: An
Unbounded Construction

Construction of a IW1R reliable register. When failures are not responsive, the
construction of a IW1R atomic register is still possible but requires a higher cost
in terms of base registers, namely m > 2t + 1 base registers are then required.
This construction is well-known. Its principles are simple. They are:

— The use of sequence numbers, as in the construction for responsive failures
(Figure [2).

— The use of the majority notion, as the model assumes at most ¢ unreliable
base registers, with t < m/2 < m — t. This implies that any two majorities
of base objects do intersect. Moreover, any set of ¢t + 1 base registers contains
at least one correct register.

— The parallel activation of read operations on base registers, as now it is
possible that such a read operation never returns a result if the corresponding
base object has crashed. Due to the majority of correct base registers, we
know that a majority of these base read operations do terminate, but it is
not know in advance which ones.

The construction is described in Figure 8 It is a straightforward extension of
the algorithm described in Figure [ that takes into account the fact that a
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base operation can never answer. So, it considers m = 2t + 1, and issues base
read and write operations in parallel in order to prevent a possible definitive
blocking that could occur if the base operations were issued sequentially. As
in the algorithm described in Figure [2 the reader maintains a local variable
last that keeps the (val, sn) pair with the highest sequence number it has ever
read from a base register. This construction shows that, when one is interested

operation RO.write(v): % invoked by the writer %
sn «— sn+1;
concurrently for each base register j € {1,...,m}
do issue write (v, sn) into REG([j] end do;
wait until (a majority of the previous base write operations have terminated);
return ()

operation RO.read(): % invoked by the reader %
concurrently for each base register j € {1,...,m}
do issue read () on REG([j] end do;
wait until (a majority of the previous base read operations have terminated);
let pairs= the set of pairs (val, sn) received from the previous read operations;
last — the pair in the set pairs U {last} with the highest sequence number;
return (last.val)

Fig. 8. 1IWI1R t-resilient atomic register RO despite nonresponsive crashes

in building a reliable 1W1R, atomic register, the price to go from base object
responsive failures to nonresponsive failures, increases from ¢ + 1 base registers
to 2t + 1 base registers.

Theorem 4. The algorithm described in Figure [§ wait-free implements a t-
resilient 1W1R, atomic register from m = 2t + 1 base 1W1R, atomic registers
that can suffer nonresponsive crash failures.

Proof. The proofis a simple adaptation of the proof of Theorem[Ilto the context
of nonresponsive crash failures. It is left to the reader as an exercise. (The fact
that at least one non-faulty base register is written (read) used in Theorem [ is
replaced here by the majority of correct base registers assumption.) Op . ..

4.2 Consensus When Failures Are Not Responsive: An Impossibility

This section presents an impossibility result. Differently from atomic registers,
no t-resilient consensus object can be built from crash-prone nonresponsive con-
sensus objects.

Theorem 5. There is no algorithm that wait-free implements a consensus object
from crash-prone nonresponsive consensus objects and reliable atomic registers.
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Proof. The proof is by contradiction. Let us assume that there is an algorithm
A that builds a consensus object from reliable atomic registers and any number
x of consensus objects such that at least one of them is crash-prone and nonre-
sponsive. Each consensus object can be simulated by an asynchronous process.
(From a computability point of view, a process is as powerful as any object with
a sequential specification.) It follows that A solves the consensus problem in a
system made up of atomic registers and x asynchronous processes, where one of
them can crash. This has shown to be impossible [], from which we conclude
that no algorithm A can be designed. O rheorem
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Abstract. The paper describes equivalent transformations of structures
of the Sisal 3.1 programming language (based on Sisal 90). These trans-
formations are aimed to decompose the complex language structures into
more simple ones that can be directly expressed by the internal repre-
sentation IR1 (based on the IF1 language). Currently some description
of similar transformations can be found in few works about Sisal 90 in
the form of examples. A front-end compiler from Sisal 3.1 into IR1 per-
forms these transformations, so they can help to understand better its
translation strategy. The paper also briefly describes Sisal 3.1 and IR1.

Keywords: Sisal 3.1, functional programming, parallel programming,
program transformation, internal representation, front-end compiler.

1 The Introduction

Using the traditional methods, it is very difficult to develop high quality portable
software for parallel computers. In particular, parallel software cannot be devel-
oped on low cost sequential computers and then moved to high performance
parallel computers without extensive rewriting and debugging.

As compared with imperative languages, functional languages [1] simplify the
programmer’s work, because an algorithm can be specified in terms of recur-
sive function applications without special care to computing resources and it is
a compiler responsibility to produce effective code. In contrast to many other
functional languages, the functional language Sisal (Steams and Iterations in
a Single Assignment Language) supports data types and operators typical for
scientific calculations. Sisal is considered as an alternative to Fortran for super-
computers [2] and its version 1.2 was implemented for many of them.

Sisal 90 [3] is more oriented towards scientific programming. It has built-in
support for complex values, array and vector operations, higher order functions,
rectangular arrays, and an explicit interface to other languages like Fortran and
C. Sisal 3.1 [4] that has been designed as an input language of the SFP system be-
ing under development at the Institute of Informatics Systems in Novosibirsk [5]
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is based on Sisal 90. Sisal 3.1 simplifies, improves, extends and more exactly
specifies Sisal 90. Sisal 3.1 incorporates the ideas of enhanced module support,
annotated programming and preprocessing of Sisal 3.0 [6]. Sisal 3.1 also supports
function overloading and user-defined types which allow user-defined operations.

The SFP system is intended to support the development of portable high per-
formance parallel computing applications. It runs under Microsoft Windows and
provides target platform independent means to write, debug and translate the
Sisal-programs into target platform optimized code. The SFP uses the interme-
diate representation IR1 [7], which is based on the intermediate form language
IF1 [8] and consists of acyclic, directed, hierarchical graphs [9]. The IR1 allows
the Sisal constructions to be represented in their natural form, close to their syn-
tax. This is convenient for simplification of further optimizing transformations.

Usually, not every form of a language syntax construction can be directly rep-
resented in IR1, so compound nodes correspond to the basic forms, which are
powerful enough to express all their variations. Because of that, during transla-
tion in the SFP system, some complex Sisal 3.1 structures need to be reduced
to more unified objects of IR1. The peculiarities of such transformations are
shown in terms of Sisal 3.1 by rewriting of complex language structures into
more simple ones that can be directly represented by IR1. Such rewriting rules
are described in terms of the Sisal language, because IR1 does not allow natural
representation of the most complex language structures.

The rest of the paper is structured as follows. Section [2] briefly describes the
most important Sisal 3.1 constructions used below. Section [Bl considers the Select
and Forall compound nodes of IR1 to which the most language structures can
be reduced. Sections [, [B, [ and [7] present transformations of complex Sisal 3.1
structures into more simple ones that can be directly represented by IR1.

2 The Sisal 3.1 Language

Sisal defines calculations via a function application in a form of different expres-
sions. Every Sisal type has the dedicated error value, which can be explicitly
produced and tested. In most undefined situations Sisal expressions produce er-
ror values. Since the explanations are very brief, familiarity with the Sisal 90
user’s guide [3] is recommended. As an example, consider function QuickSort in
Listing [[LT] that recursively sorts an input array of integers.

The let expression in its name definitions defines a new scope and its names
that can be used in a calculation of the result expression list:

let name definitions in result expression list end let

The if expression looks as follows, where the chosen result expression list
will define the results of the if expression, so all of them should have the same
number of expressions and the same sequence of expression types:

if Boolean expression then result expression list
{ elseif Boolean expression then result expression list }*
[ else result expression list ] end if
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Listing 1.1. Sisal 3.1 function that sorts array of integers

type Info = array[integer |;
function QuickSort(Data: Info returns Info)
if size(Data) < 2 then Data
// A function liml returns the lower bound of an array.
else let Pivot := Data[liml(Data)];
Low, Mid, High := for E in Data
returns array of E when E < Pivot;
array of E when E = Pivot;
array of E when E > Pivot

end for
in QuickSort(Low) || Mid || QuickSort(High)
end let

end if
end function

The case expression looks as follows, where the control expression can select
a result expression list by value, union tag or type signature:

case [ tag | type ] control expression
{ of condition list then result expression list }+
[ else result expression list ] end case

The where expression of Sisal 3.1 was reconsidered as compared to Sisal 90:
where n-dimensional array A is name I in expression R end where

The where expression returns an n-dimensional array of the same shape as
the array A, where each element which corresponds to the array A element with
the name I equals to the expression R result.

In Sisal 3.1, element selection and replacement expressions are almost the
same as in Sisal 90: “array [ selection construction]l] |7 and “array [ selection
construction =1 replacement construction |”. In addition to arithmetic, rela-
tional and Boolean vector operations of Sisal 90, Sisal 3.1 allows vector forms
for any infix, prefix and postfix operations (including user defined ones). Sisal 3.1
also allows vector operations between streams and arrays that produce streams.

The Sisal loop expressions do not contradict the functional language seman-
tics. Sisal 3.1 has three loop forms, however the paper considers only the for
expression with a range generator, which has the following form:

for range generator [repeat body] returns return statement end for

The loop body defines a new scope and its names like the let expression. The
for expression is parallel, when it has no “old N” names, a stream range sources
in its loop range generator and sequential reductions in its return statement. The
“old N” name equals to the value of the name N at the previous loop iteration.

! In Sisal 3.1 triplets, the symbol “I” is used instead of “” symbol of Sisal 90.

2 Here in Sisal 3.1, the symbols “:=” are used instead of “!” symbols of Sisal 90.



A Functional Programming System SFP 65

The one-dimensional range generator consists of a range or several ranges
joined by dot keyword. A range is a triplet, array or stream. The joined ranges
emit their values simultaneously until at least one of them can do it, while the
others that cannot do it emit the error values.

The return statement consists of the reduction applications. Reductions are a
special kind of functions that work with a sequence of values produced by loop
iterations. There are some predefined reductions to obtain the last loop value,
to compute a sum or product of loop values, to find the least or greatest loop
value, to produce n-dimensionaf] (n > 1) array or stream of loop values and to
catenate loop values that are arrays or streams.

3 The IR1 Internal Representation

Like their nodes, which express operations, IR1 graphs have ordered input and
output ports. Typed edges of these graphs express informational relationships
between ports. Each port can be a destination of no more than one edge. Con-
ditional and loop expressions are represented via compound nodes which are
nodes that additionally hold a sequence of IR1 graphs. Informational relation-
ships between ports of these graphs and ports of the compound node are ex-
pressed implicitly by the kind of the compound node. As an example, consider
Figure [l that contains IR1-graphs, produced by our Sisal 3.1 front-end compiler
for function QuickSort from Listing [[1]

The compound node Select, which can directly represent the if expression of
Sisal 3.1, has an arbitrary number of input ports and non-zero number of output
ports. Let N > 3 be the number of its graphs. The input ports of all graphs are
the same as the input ports of the compound node and directly receive values
from them. All graphs except the first one have the same output ports as the
output ports of the compound node. One of these N — 1 graphs is chosen to
supply values of its output ports to the output ports of the compound node.

The choice is based on the first graph, which has different semantics as com-
pared to its prototype from IF1. The first graph has N — 2 Boolean output
ports (edges that end in these ports have Boolean type), which are sequentially
checked until the true value is found at the output port with a number M. In
that case, the graph with a number M + 1 is chosen. If no true value is found,
then the last graph is chosen.

The compound node Forall, which can represent any one-dimensional for
expression controlled by a range, has four graphs described in Table [II Ports
of these graphs can be divided in the following groups that consist of the same
ports for each separate compound node Forall. A group C contains the constants
imported to the compound node ports. A group R contains the result values
exported from the compound node ports. A group L contains the new values of
old names. A group Lo contains the values which will not be required on the

3 In Sisal 3.1, notation array [n] and stream [n] replaces array nd and stream nd
notation of Sisal 90.
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Fig. 1. IR1-graphs generated for “quick sort” function in Listing [[J] (compound nodes
and non-empty graphs are shaded): 1) the QuickSort graph; 2) the Select node graphs;
3) the condition; 4) the then branch; 5) the else branch (the graph layout was tweaked

by hand to reduce its width); 6) the Forall node graphs; 7) the range generator; 8) the
return statement
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Table 1. Groups of ports for the compound node Forall and its graphs

Graph No. Graph Name Input port groups Output port groups
Forall C R

1 Initialization C L

2 Range generator C D

3 Loop body Lo, D, C L, Lo

4 Return statement Lo, L, L2, D, C R

next loop iteration. A group L,;q contains the values of old names from the
iteration before. A group D contains the values of the loop range generator.

At the beginning, the output ports of the initialization graph are computed
and their values are used as the values of the group L4 at the first iteration of
the loop body graph. The loop body graph computes its output ports, for each
instance of the group D, generated by the range generator graph. The return
statement graph is computed after each loop iteration and after the last one,
its output port values are used as the compound node results. Before the next
iteration, the values from the group L are copied to the ports of the group L.

The return statement graph contains the reduction nodes that can only (and
only they can) supply values to the output ports of this graph. These reduction
nodes directly correspond to one-dimensional reductions of Sisal 3.1 and may
depend on and recompute additional values every loop iteration.

The range generator graph also has the unique Scatter nodes that can only
(and only they can) supply values to the output ports of this graph. The Scatter
node has one input and two output ports. The input port has a type of an array
or stream of a type T'. The first output port has the type T and the second output
port has the integer type. The Scatter node sequentially emits a new array or
stream element with its index for every loop iteration. If there are several Scatter
nodes, then they emit new values simultaneously until at least one of them can
do it, while the others that cannot do it return the error values.

4 Decomposition of Case, Where and Vector Expressions

The conditional expression case is naturally decomposed into the conditional
expression if with additional elseif branches, that is can be directly expressed
by the IF1 language. Every selection list of the case expression is transformed
into one if or elseif condition using logical disjunction and conjunction oper-
ations over the comparison operation results: equality (=), “less than or equal
to” (<) and “greater than or equal to” (>). For expressions “case tag”’ and
“case type”, the infix operation tag (tag function of Sisal 90) and the expres-
sion “type [...]” are used, respectively.
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The Sisal 3.1 where expression is decomposed into one-dimensional loops in
the following way, where A, n, R and I names are taken from Section

for Alﬁ in A returns array of
for A; in A; returns array of ...
for I in A,_; returns array of ezpression R end for
. end for
end for

All vector operations are decomposed into one-dimensional loops. An oper-
ation on multidimensional vectors is decomposed into a vector operation on
vectors of lower dimensions.

Prefix and postfix operations on arrays op (A4) are decomposed into:

for i in A returns array(liml(A)) of op (i) end for
Prefix and postfix operations on streams op (S) are decomposed into:
for i in S returns stream of op (i) end for
An infix operation op on two arrays A; and As is decomposed into:
for i; in A; dot i3 in As returns array of i; op i end for
An infix operation op on an array A and a stream S is decomposed into:
for i, in A dot iy in S returns stream of i, op i; end for
An infix operation op on an array A and a scalar value V' is decomposed into:
for ¢ in A returns array(liml(A)) of i op V end for
An infix operation op on a stream S and a scalar value V' is decomposed into:

for ¢ in S returns stream of i op V end for

5 Decomposition of the Multidimensional Loops

Let us consider the following n-ary m-dimensional loop, in which each reduction
returns unary expression (for simplicity of further notation):

for D; cross D, repeat B
returns RN; of RVi; ...; RN, of RV,
end for

The name D; denotes the loop range generator part without the operator
cross and multidimensional indices of the construction at, the name Dy de-
notes the remaining part of the range generator, the name RN;c;. ., denotes
the reduction name with possible initial values, and the name RV, denotes the
reduction loop values. In this notation, a m-dimensional loop expression can be
decomposed into the following two loop expressions of dimensions 1 and m — 1,
where names RN] and RN/" depend on the name RN, as shown in Table

4 The overlined name denotes any unique name (the same in each code fragment).
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for D; repeat

1, ..., x, := for Dy repeat B
returns RN{ of RVi; ...; RN} of RV,
end for
returns RN{ of z1; ...; RN} of =z,
end for

Table 2. Decomposition rules for multi-dimensional reductions, which show how to
determine the names RN/ and RN/, used in this section before, from the name RN;

Value of the RN, name RN RN}’
Equals to value, product, least, greatest,
catenate, “catenate (...)” or user-defined reduc- RN; value
tion.
Equals to “array [k](i1,...,%)”, where:
— part “[k]” is optional and equals to ) ) )
“Im]” by default; k> 1 array [k—1] (i2,...,i) array (i1)
— last indices of the part “(i1,...,%x)” . . )
are optional like this whole part and k=1 array [1] (iz,. .., ix) catenate (1)

equal to 1 if omitted.

Equals to “stream [k]”, where part “[k]” k> 1 stream [k — 1] stream
is optional and equals to “[m]” by default. k =1 stream [1] catenate

”

If the range generator contains multidimensional indices “n in S at ji,
before the operator cross, then the loop can be represented in the following way:

for D3 n in S at j;, Dy repeat B
returns RN; of RVi; ...; RN, of RV,
end for

The name D3 denotes the range generator part without the operator cross
and multidimensional indices of the construction at, the name S denotes the
array or stream source of multidimensional indices, the name D4 denotes the
remaining part of the range generator. In this notation, a m-dimensional loop
expression can also be decomposed into the following two loop expressions of
dimensions 1 and m — 1:

for D3 n; in S at j; repeat

1, ..., T, := for n in n; at D, repeat B
returns RN] of RVi; ...; RN} of RV,
end for

returns RN{ of z1; ...; RN} of =z,

end for
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6 Decomposition of the Array Element Selection

Let us represent the element selection expression from the array A as “A[ se-
lection construction ]”. If a selection construction does not have the cross (or
comma) operator, then it can be represented as “D; dot Dy dot ... dot D,,”,
where m > 1 and all expressions Dy, ..., D,, are ranges (as required by the
operator dot semantics). If mm = 1 and the part D; is a singlet, then the ar-
ray element selection operation can be represented directly in IR1 and does not
require further decomposition, otherwise the array element selection operation
can be decomposed into the following one-dimensional loop:

for z; in Dy dot z9 in D, dot ... z,, in D,,
A1 = A [ 1, 2, ..., Tm }
returns array of A;

end for

The name z; (here and below) denotes any unique name, if the part D, does
not have the form “name N in D;”, and denotes the name N otherwise. If the
selection construction contains the operator cross, then it can be represented
as “S1, S, ..., Sy cross C1” or “Dy dot Dy dot ... dot D,, cross C5”,
where 51, ..., S,, denote singlets, and the names Cy (that does not begin with
a singlet) and Cs denote the remaining parts of the selection construction.

The array element selection operation beginning with a singlet can be decom-
posed into the following let expression:

let Al = A [ 517 SQ, ey Sm } in A1 [ Cl } end let

The array element selection operation beginning with a range can be decom-
posed into the following one-dimensional loop:

for z; in D; dot 2o in Dy dot ... z,, in D,, repeat
A1 = A [$17$2,...,$m]
returns array of A; [ Cy |

end for

The presented decomposition of the array element selection operation also
explains an additional restriction, which is missed in Sisal 90 user’s manual, for
the selection construction triplets with omitted parts: they should be placed as
the first operand of the selection construction or just after the cross operator. In
the range D1, the first and second omitted triplet parts are explicitly represented
via “liml (A)” and “limh (A)”, correspondingly. In the ranges Do, ..., D,,, the
triplet parts cannot be omitted because there is no corresponding univocal array
dimension available whose lower and upper bounds can be taken. In summary,
any array element selection operation was decomposed into the array element
selection with simple indices.
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7 Decomposition of the Array Element Replacement

This section continues to use the notation of selection construction introduced
before. The array element replacement expression in a general form looks like
“A [ selection construction := replacement construction R]”. As it will be shown
below, any array element replacement expression can be decomposed into series
of the array replacements that alter one element pointed by its index.

If the selection construction is a singlet list Sy, ..., Sy, then the replacement
construction is allowed to be an expression list 1, ..., E; and the array ele-
ment replacement operation is elementary represented as a composition of the
following one-element replacement operations:

A[Sl7..7SnZ=E1][Sl,...,(Sn)—FlI:EQ]
[ S10 s (Su ) + (t-1) == B, |

Let us consider the case when the selection construction is not a singlet list
and the replacement construction is an expression of type of the n-th dimension
of the array A, where n is the number of the selection construction ranges and
singlets. In this case, the array element replacement operation can be decom-
posed into nested one-dimensional loops obtained after the recursive application
of the decompositions given below.

If the selection construction does not have the cross operator, the array ele-
ment replacement operation can be presented as the one-dimensional loop:

for z; in Dy dot z9 in D, dot ... z,, in D,,
A:=o0ld A [ z1, 22, ..., Ty := R |
returns value of A

end for

The array element replacement operation beginning with a singlet can be
decomposed into the following let expression:

let Al = A [ 517 SQ, ey Sm } in A1 [ Cl = R ] end let

The array element replacement operation beginning with a range can be de-
composed into the following one-dimensional loop:

let A :(= A in for z; in D; dot zo in Dy dot ... z,, in D,
A2 := old A1 [ 1, 2, ..., Tm },
Ag = A2 [ CQ = R ];
Al := old Al [ L1, T2, ...y, Ty = Ag ]
returns value of A;
end for
end let

Let us consider the case when the selection construction is not a singlet list and
the replacement construction is an expression of type of a k-dimensional array
of elements that have the type of the n-th dimension of the array A. In this case,
k should be a sum of ranges in the selection construction minus the number of
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its dot operators. In this case, the array element replacement operation can also
be decomposed into nested one-dimensional loops obtained after the recursive
application of decompositions given below.

If the selection construction does not have the cross operator, the array ele-
ment replacement operation can be presented as the one-dimensional loop:

let i := 1 in for 27 in D; dot x9 in Dy dot ... z,, in D,,
A:=90ld A |z, z2, ..., 2, == (R ) [ ¢ ] ]
i := old 7 + 1
returns value of A
end for
end let

The array element replacement operation beginning with a singlet can be
decomposed into the same let expression as in the previous case when the re-
placement construction is an expression of type of the n-th dimension of the
array A. The array element replacement operation beginning with a range can
be decomposed into the following one-dimensional loop:

let A := A; ¢ =1

in for z; in Dy dot x5 in D, dot ... z,, in D,,
A2 := old Al [ L1, T2, ..., T };
Ag = A2 [ 02 = ( R ) [ 1 ] ],
Ap = old Ay [ =1, ®2, ..., Ty = A3 ];

i = old i + 1
returns value of A;

end for
end let

8 Conclusion

The paper briefly presents the input language Sisal 3.1 and intermediate language
IR1 of the functional programming system SFP intended to support supercom-
puting. During translation from Sisal 3.1 to the internal representation IR1, some
complex Sisal 3.1 structures need to be reduced to more unified objects of the
IR1 language. These transformations have been shown in terms of Sisal 3.1 by
decomposition of complex language structures into more simple ones that can
be directly represented by IR1. These transformations can help to better under-
stand the translation strategy of front-end compiler from Sisal 3.1 into IR1. They
can be used also as a basis for formal description of semantics of Sisal 3.1. For a
general-purpose machine (without any special hardware support for the opera-
tions considered in this paper), the described transformations do not introduce
unnecessary inefficiency and open additional optimization opportunities.
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Abstract. This paper proposes an implementation of the data structure called
bag or multiset used by descriptive programming languages (e.g. Gamma, Linda)
over an open system. In this model, a succession of “chemical reactions” con-
sumes the elements of the bag and produces new elements according to specific
rules. This approach is particularly interesting as it suppresses all unneeded syn-
chronization and reveals all the potential parallelism of a program. An efficient
implementation of a bag provides an efficient implementation of the subsequent
program. This paper defines a new communication and synchronization model
adapted from workqueues used in parallel computing. The proposed model al-
lows to benefit from the potential parallelism offered by this style of program-
ming when only an approximate solution is needed.

Keywords: Bag data structure, Chemical reaction, Distributed programming,
Fault-Tolerance, Open system, Parallel programming, Synchronization,
Workqueue.

1 Introduction

Context. Most programming languages use sequential control. Even parallel execu-
tions are composed of sequential processes. A sequential control flow offers simplicity
of the design, better fits the functioning of processors and moreover, benefits from many
theoretical results (e.g. decidability and computability). This style of programming in-
troduces unneeded control as it orders operations that are not semantically related (e.g.
a loop that initializes an array to zero). Those constraints make the mapping of sequen-
tial programs on machines automatic and straightforward as it perfectly fits the von
Neumann processing model. However, this leads to high interprocess synchronization.
The consequence is that the unneeded control limits the potential parallelism of the
program that may benefit from the continuously increasing power offered by platforms
like parallel machines, local area networks and more recently peer-to-peer systems. Al-
most parallel programs are designed for an a priori given and generally fixed number
of processes although this has nothing to do with the problem to solve. This motivated
research of a programming model that abstracts this aspect.

A bag is a data structure (also called multiset [2], tuple space [S]] or more recently
JavaSpace [8]]) is the basis to implement a parallel program on the model of a chemical
reaction over the elements of the bag. The execution ends when the bag reaches a stable
state. The following example taken from [2] represents a program that computes the
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maximum value of a set: max : z,y — y < = < y. The right part (x < y) specifies
the reaction condition whereas the left part specifies the action. Each time two elements
x and y satisfy the reaction condition, they are replaced by the result of the action on
then (the maximum, i.e. y). The parallelism is implicit as several pairs of distinct values
can react simultaneously; notice also the nondeterminism concerning what values do
react together. This style of programming is free from unnecessary synchronization.
The number and relative speed of processes are totally absent from the program and may
vary at runtime. The efficiency of the execution is mainly determined by the efficient
implementation of the bag data structure and its accessing operation (insert data, pick
data and look for data that could react).

In timesharing, each process is granted a quatum of time (neither too small nor too
big). In our model, data represents this “energy” or ’potential of computation” instead
of time. If no data satisfies the reaction condition, the potential of the bag is null. The
more there is reacting data the higher the potential of the bag. Any number of processes
can execute the same program code each at its own speed. They only interact via the
bag when they access it (each access gets/inserts a quantum of data). The finest grain
depends on the arity of the reaction condition/action.

Contribution of the paper. This paper proposes a new approach to implement a bag. It
has been pointed out by previous works that any implementation faces two main prob-
lems: (1) synchronization between the different processes through the basic operations
on bags and (2) termination detection. To detect termination, it is necessary to test the
reaction condition on all possible combinations of data. This means that if the reaction
condition is n-ary then any subset of n elements should be eventually tested. Hence,
no locality of accesses could be defined on the bag. The “data quantum” should be as
small as possible n elements (n-uples) as considered by all existing implementations.
This leads to frequent accesses and thus frequent synchronizations.

In this paper, a bag is implemented by a distributed data structure called MergeQueue
that resembles the workqueue structure used in parallel programming. The MergeQueue
is composed of blocks of equal size it is initialized to the values of the inital bag. When
a process requests a block, it gets the block at the head of the MergeQueue and produces
an output block not necessarily of the same size that is dispatched over several blocks at
the tail of the MergeQueue. The insertion of the resulting data is done when its estimated
potential of computing is lower than a threshold. The potential of computation being
the ratio of n-uples that may react. Finally, we propose some parameters that allow
tuning the system (size of a block, number of new blocks over which inserted data is
dispatched, value of the potential computation below which a block is changed).

Related works. Since the publication of the first results on bag-transformation lan-
guages (e.g. Gamma and Linda), many implementations have been proposed. They are
based on compilation [3]], shared memory [6] or database [8]. Compilation-based imple-
mentations try to translate bag-based programs to classical programs by using derivation
reintroducing the unnecessary synchronization. The concept of DSM is closely related
to the classical imperative programming languages that use variables and control-driven
executions. Consistency algorithms and cache coherence are based on the relation be-
tween successive read and write operations. Caching allows improving the efficiency of
memory systems thanks to what is called the locality property. It is not hard to see that
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this locality property is in fact due to sequential programming. In a bag, data is totally
anonymous. Grid computing is static compared to the chemical reaction paradigm. In
term of data quantum, they have a very big quantum. Moreover, processes do not nec-
essarily execute the same code and cannot be added on the fly transparently. The flow
of data in well-controlled and the failures are detected and treated in a static way. Im-
plementations that use databases are not in the scope of this work as the main goal of
databases is to ensure persistence and consistency of data. The object oriented approach
like JavaSpace has a main drawback that is the granularity of data (one object=one el-
ement) that may entail high synchronization time overhead. The most close work is
the one on workqueues. However, the main difference, is that a workqueue is used
mainly to communicate they are constituted of cells (insert/get a cell) in a strict fifo
policy. The MergeQueue as proposed in this paper serves mainly to merge the blocks
obtained by different processes. Moreover, the access operations are not as strict as for
the workqueue (they are not necessarily atomic).

2  Computing Model

We consider a three-layer architecture: the underlying system is represented any dis-
tributed platform prone to failures and mobility (dynamic systems) and the upper-layer
is represented by the processes that execute a bag-based program. The distributed data
structure represents the medium layer.

System Model. The assumed underlying system offers the possibility to launch a pro-
gram by assigning to it a group of processes that execute its reactions. We first consider
a message-passing synchronous system (the duration of internal instructions and the
communication delays are bounded).

Each application process is associated with a controller (a kind of daemon) that
serves as an interface with the system. It gets a block, provides the process when re-
quested with a given number of elements (according to the arity of the reaction condi-
tion), inserts in the block the result of the action and keeps an estimation of the potential
of computing of the block. When the potential of computing is lower then a threshold,
the controller inserts the block in the MergeQueue and gets a new one.

In Section[3 we consider a more general case where processes may crash and where
there is no assumption on time. This represents a typical open asynchronous system
prone to process failures where processes may arrive and leave and where the exact
number of processes is not known.

Bag Transformation-Based Programming Language. As said in the Introduction, the
bag transformation is defined by pairs (reaction condition, action). When the bag reaches
a stable state the program ends. In the program max given in the Introduction, the re-
action condition is of arity 2. The associated action takes two parameters and produces
one value. This means that the size of the bag can only diminish. Let us consider a sec-
ond program that sorts an array. The initial bag is composed of pairs of values (index,
value). The final bag is composed of the same number of pairs, the same projection on
the domain of indices and the same projection on the domain of values. This means that
the program only permutes non sorted values. sort : (i,v), (j,w) — (i,w), (j,v) <
(i< g)N(v>w).
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In a general case, the arity of the reaction condition is not necessarily two although
small values of the arity imply less combinatorial. For example, the reaction condition
of a program that computes the transitive closure of a graph is of arity 3. Note that
the program that suppresses any two identical consecutive values from an array has
a locality property due to data dependence. In such situation, the selection of pairs of
values that may potentially interact is deterministic. This suggests to offer the possibility
to use structured bags.

3 The Distributed MergeQueue

A MergeQueue is an abstract type close to the workqueue data structure. It is composed
of a series of blocks of the same size. It offers two main atomic operations get and
insert. No two processes can get the same block nor insert two blocks at the same
place in the queue. When a process calls get, the block at the head of the queue is with-
drawn from the queue and returned to the process. When a process inserts data in the
MergeQueue, it is inserted at the tail of the queue but dispatched over several blocks
(Figure [I). Initially, all the elements of the bag (for sake of simplicity, we consider a
unique bag) are inserted in a contiguous way in the MergeQueue. A queue could be
seen as a circular management of a physical memory. There is no interaction between
processes except when they access the MergeQueue, thus the necessity to fix a reason-
able size for a block of data which represents the quantum (the unity of data allocation).
To respect the (weak) atomicity of the accesses, synchronization is necessary each time
a process accesses the queue.

The management of the MergeQueue is done through locks put on blocks of data
(block allocation) and slot reservation (data insertion). The synchronization needed be-
tween processes, is not necessarily mutual exclusion or consensus. The renaming agree-
ment problem [1]] seems to be more appropriate. The renaming problem differs from
consensus in the agreement property. Consensus: all processes make the same decision.
Renaming: no two processes make the same decision. It has been proved that consen-
sus is harder to solve than renaming [[1]. If the underlying system is message-passing,
a queue can be implemented using active replication (partial or total replication). Each
process (in the case of total replication) keeps a copy of the queue. Allocation of blocks
of data and of free slots is done through ordered communication primitives (total order
multicast) or explicit calls to agreement primitives (renaming, consensus).

The proposed approach does not ensure termination detection of a program as it is not
sure that two different elements will be associated in the same block to be considered
for reaction unless processes access ’enough” blocks and the bag is shacked between
the different accesses. The shaking of memory is not done on the whole memory, it is

block i block i+1 block i+2 block i+3

T T

first block | |
to allocate | |
|

|

|

Data to in%erl over 4 bloci(s ; ‘

Fig. 1. Management of the MergeQueue data structure
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done locally (over a given number of blocks) each time a process inserts its output data
(recall that the inserted data has a low potential of computing i.e. only few of its element
can react). The inserted data is thus sliced and each part is inserted in a different block.
This means that when a process obtains a free slot to insert its data; in fact, it gets as
many slots from different blocks as the number of slices it has to insert. It is not hard
to see that the more a block is thinly sliced during the insertion, the more processes
need synchronization (the future block a process gets is a combination of the results
of many processes) but the memory is better shacked. Conversely, the less a block is
thinly sliced, the less processes need synchronization (the future block a process gets is
a combination of the results of few processes) but the memory is less shacked.

4 About Termination

As stated before, the proposed implementation does not ensure termination this is why
approximate computing is assumed (i.e. the produced result is only an approximation
of the expected one). It can be advocated that many computations are such that the data
they use is a result of physical measures (e.g. sensors), images, and sound, or the data
is by itself not very precise. In such situations, it is not shocking if the obtained result
is also an approximation. There are classical approximate computations (Runge-Kutta,
Monte Carlo, probabilistic SAT, simulated annealing).

After the potential of computation of a considered block is beyond a threshold, the
process inserts its resulting data in the bag and asks for a new block. For this, we define
a metrics that associates with any set of data a numeric value numerical (its potential of
computation) that could be defined as the ratio of the number of n-uples (n being the
arity of the condition/action) that may interact over the total number of possible com-
binations. Obviously, if this number is null, no reaction is possible and the execution
program is finished. In this paper, we consider the execution of a program as finished
as soon as its potential of computation is beyond a threshold.

Each program is materialized by a non-fixed number of processes. A program is also
composed of a process “sentinel” that does not need synchronization to access to the
bag (read-only accesses). Its role consists of computing the potential of computation of
the bag. As soon as this potential is beyond a threshold, the sentinel process sets a flag
that will cause the other process to stop their execution. This sentinel process will be
the only alive process when the program execution is finished. It will act as the frontal
process with respect to the user. It is also possible to have a timer-based termination.

5 Open Systems

The approach proposed in this paper could be extended to encompass asynchronous dis-
tributed systems prone to process failures (local area network, open system). In such sys-
tems, agreement services are essential (consensus, total order multi/broad-cast, renam-
ing, etc.). Moreover, there exist randomized solutions to distributed agreement problems
cited above [4/7]]. If we consider an open system, a process could be materialized by a
group of f processes (active replication - they all do the same work) assuming that no more
than a minority of those f processes disconnect/crash simultaneously without informing
other processes. Each of the processes composing a group ask for a block. They do it
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through a consensus in order to get a same block. Each of them transforms the block and
the insertion is also made through a consensus as the resulting multiset is not necessarily
the same for all the processes of the group due to the non-determinism. If we consider
that each group is alive then the system composed of the “macro-processes” (groups) is
fault-free. The sentinel process also is implemented using a group of processes.

It is important to mention that there exist approximate agreement services. This
means that the agreement property is weak. This is not a problem for some programs.
For the program that computes the maximum value of an array, if the operation that
allocates the block is not atomic, the resulting value is always the same. This is also the
case for the program that computes the transitive closure of a graph. The problem that
may appear is an increase of the potential of computation. Of course, if the atomicity
is always violated, the program may be prevented from terminating even according to
our new definition. If the atomicity violation seldom happens and the efficiency of the
agreement services is greatly enhanced than this may be very interesting if allowed by
the program. Some other programs may see wrong values inserted in the bag if atomic-
ity is violated. For example, a program that computes the number of occurrences of each
element of a bag. If the atomicity is violated, the number of occurrences of some values
could be a little bit augmented/diminished. The proposed approach mainly targets open
systems to offer them a computing model.

6 Concluding Remarks

This paper presented a data structure called MergeQueue. A bag is the basis of program-
ming languages like Gamma which use the chemical reaction principal. This structure
can serve as a starting point to offer a programming model to open systems. This paper
also pointed out many research directions on different parameters that need to be fixed
such as the size of a block, the number of new blocks over which an inserted block is
dispatched, the value of the threshold for changing a block.
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Enhancing Online Computer Games for Grids
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Abstract. Massively multiplayer online games (MMOG) require large
amounts of computational resources for providing a responsive and scal-
able gameplay for thousands of concurrently participating players. In
current MMOG, large data-centers are dedicated to a particular game
title. Such static hosting requires a huge upfront investment and carries
the risk of false estimation of user demand. The concept of grid comput-
ing allows to use resources on-demand in a dynamic way, and is therefore
a promising approach for MMOG services to overcome the limitations of
static game provisioning. In this paper, we discuss different paralleliza-
tion mechanisms for massively multiplayer gaming and grid architecture
concepts suitable for on-demand game services. The work presented here
provides both a state-of-the-art analysis and conceptual use case discus-
sion: We outline the new European project edutain@grid which targets
at scaling real-time interactive online applications and MMOG, including
First Person Shooter (FPS) and Real-Time Strategy (RTS) games, in an
on-demand manner using a distributed grid architecture. Finally, we de-
scribe our experimental online game Rokkatan and report experimental
scalability results for this game on a multi-server grid architecture

1 Introduction

Online gaming has become a major worldwide trend and experienced a massive
growth during the past years. According to the game search service gamespy [1I,
currently about 250.000 users are online playing First Person Shooter (FPS)
games on more than 70.000 servers at any time of the day worldwide. The Steam
platform reports 140.000 servers with more than 2.8 million individual users
monthly for the games hosted on that platform [2]. In the area of Massively
Multiplayer Online Role-Playing Games (MMORPG), the number of players has
doubled over the last three years and more than 12 million users are currently
subscribed to different games [3].

While the number of players drastically increases, the basic concepts and
technologies of hosting games on the Internet have not been changed since the
beginning of online gaming. Most of the game servers have to be manually set
up, started and administrated in a static way, which does not allow for automatic
service adjustments with regard to the dynamic user demands.

! The work described in this paper is partially supported by the European Commission
through the project edutain@grid (IST 034601).
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In this paper we discuss how the concept of grid computing developed in the
academic and business area can be used in the realm of distributed interac-
tive applications including online games. The term grid [4] originates from the
conceptual analogy to the power grid, where computational power can be as
easily and transparently obtained as electricity by inserting a plug into a power
socket. Although there are already some commercial game-related grid systems
like Butterfly [5] or the BigWorld system [6] available, these systems target the
MMORPG genre and are barely suitable for running FPS or RTS games. A
consistent grid approach for a broad class of real-time interactive applications
including e-learning, interactive simulation and training is still missing.

This paper summarises our recent work on scalable network architectures for
real-time games and discusses scalability dimensions of different online game
genres. We present a novel concept of multi-server game world replication as a
feasible approach to scale FPS and RTS games, which so far have been only
played in small-scale game sessions. The proxy-server architecture, is described
as an operational network architecture for our replication approach. We outline
real-time computation and communication framework inside the edutain@grid
architecture[7] for scaling a variety of interactive online application classes. Fi-
nally, we present a practical implementation of our approach within a novel
real-time strategy game Rokkatan and report experimental scalability results.

2 Parallelisation Approaches to Scaling Online Games

Small-scale sessions of online games usually run on a single game server. This
server runs a game-update loop in a periodic manner, in which it has to receive
and process all user inputs, process user-independent parts of the game (compute
artificial intelligence of NPCs, respawn items, etc.), and send the resulting new
state to all game clients. The frequency of the game state update depends on the
particular responsiveness requirements of an actual game and ranges from about
5 updates per second for RTS and RPG up to 35 updates per second in fast-
paced FPS action games. The update frequency leaves the server a particular
maximum time for processing a single loop (less than 30 ms in case of 35 updates
per second): if the server is not able to finish the calculations in time and send
the new state back to clients, then the users will immediately be disrupted in
their game immersion due to this computational lag.

Because the server has to maintain the update rate of the periodic real-time
state processing, there is a maximum amount of data which can be processed in
time. When increasing the number of players, the demand for data processing
is rising. However, the computation power of a server is constant, which makes
the single-server architecture approach unable to support MMOGs.

2.1 Scalability Dimensions

In order to scale a game application, i.e., to increase particular characteristics like
the number of players without violating the real-time constraints of the game
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update loop, the processing has to be parallelised. Before discussing different
approaches to parallelisation, we summarize three main scalability dimensions
identified in our previous work for different MMOG genres:

1. The overall number of participating users needs to be scalable in
every massively multiplayer game. All these users are connected to a single game
session and generally able to interact with each other.

2. The game world size needs to be scalable in particular in MMORPGs,
where the world usually is very large. Scaling the game world size requires
increasing of two resources: (1) processing power for processing more actively
computer-controlled entities filling the world, and (2) main memory for storing
an increasing amount of static terrain geometry and dynamic entities.

3. The player density has to be scalable especially in action-oriented Player-
versus-Player (PvP) games like FPS. In contrast to the huge game world of
MMORPG, these games are played in much smaller environments; users move
their avatars where some action is going on, and thus dynamically create local
player clusters with a high density. Player density has to be scalable in order to
provide responsive gameplay for situations with a lot of action.

There have been different parallelisation approaches discussed in academia
as well as implemented in commercial games to scale some of these dimensions
for different types of genres. In the following, we briefly discuss the well-known
zoning concept and our novel replication approach.

2.2 Game World Zoning

In the zoning parallelization approach, the game world is partitioned into inde-
pendent zones which are processed in parallel on several servers. The game client
has to change the server connection if the user moves his avatar into a different
zone. Figure [[] illustrates an example of a game world with four zones.

The game world zoning is usually incorporated in MMORPGs. Regarding the
scalability dimensions discussed above, this approach is very suitable for scaling
the total number of users and the overall game world size, as long as the users
scatter themselves regularly in the huge game world. However, the third dimen-
sion of player-density is not scalable, because a particular single zone is only
maintained at a single server. If, as for example in an action-oriented FPS game,

Server A Server D
Game World

Gar}me Entities

Fig. 1. Game World Zoning
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a lot of players gather within a small area in a large fight, the corresponding
zone server will become congested, similar to the single server in the conven-
tional client-server architecture. Zoning is, therefore, a suitable and important
approach for MMORPG, where users are encouraged to spread out, because due
to advancing avatar level and proceeding quest lines only a particular subset of
zones is interesting for a particular user. For action-oriented PvP games, how-
ever, zoning is not feasible because users are interested in fighting other players
and therefore gather together, which dynamically increases the player density
and congests a single zone.

2.3 Game World Replication

Our concept of game world replication [§] is an alternative parallelization ap-
proach for scaling the density of players in a real-time game session. In this
approach, each server holds a complete copy of the game state as illustrated in
Fig. 2l and the processing of entities is distributed among participating servers:
Each server has to process its active entities, while shadow entities are main-
tained at remote servers. After each entity update, the corresponding server
broadcasts a corresponding update message.

Game World
y 4 S v Server A
Shadow Entity —— =z _
— L .y

update Active Entity at B

— Ay 7 y 4 au
update y Shadow Entity

-— L > Server C

Fig. 2. Game World Replication

The replication concept allows to scale the density of players, because the
processing amount available for a particular static region of the game world can
be increased this way. If players cluster together in a big fight, then the processing
of all the interactions and visibility checks is split up among all participating
servers. We implement this approach in our prozy-server architecture [9] and
demonstrate its feasibility in our scalable RT'S game Rokkatan (Section[Bl) which
can be played by several hundreds of users in a single session on a comparatively
small game world.
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3 Grid Computing for Online Games

A computational grid allows users to access resources (processing power, stor-
age space, network bandwidth, etc.) in an on-demand fashion. Instead of buying
resources and setting them up statically and privately inside of academic or busi-
ness institutions, resources are shared over institutional boundaries by so-called
virtual organisations. If a user asks for a particular resource (for example, an
SMP server with at least eight CPUs running at 1.2 GHz or higher), then a grid
middleware like the Globus toolkit [10] or Unicore [I1] acts as a market broker
between the user and resource providers for negotiating resource characteris-
tics, usage time and prices. After successful negotiations, the user can start own
computations on the remote server by running a binary copied over or using
pre-installed services.
The main functional characteristics of grid systems are as follows:

— Dynamicity: instead of statically running services regardless of the actual
user demand, a grid allows to automatically start and stop services with
respect to the demand and provides resources in a just-in-time manner when
they are actually needed by users.

— Scalability: in order to provide a high amount of computational power, the
goal of modern grid middleware is to create a virtual cluster of several servers
for a single performance-demanding application.

— Checkpointing and Migration: several grid infrastructures allow to store the
state of running user applications, which can be used to periodically check-
point the state of a long-time computation and restart it from the last state
in case of a server crash or other failures. Additionally, this functionality
allows to migrate a computation from one host to another, for example for
load-balancing purposes.

— Accounting and Billing: users and service providers usually have their own
personal account in the grid infrastructure which is used for authentication
and billing purposes.

There exist grid systems and middleware which provide the basis for pro-
ductive grid environments especially in the academic area, where physicians,
meteorologists or geologists run distributed and collaborative simulations in an
on-demand manner.

In the challenging area of online computer games, there have been some aca-
demic and commercial grid-related infrastructures developed and presented. Ba-
sically, existing approaches can be distinguished to follow one of the following
two concepts:

Grids for Single-Server FPS

In the current state of the art of FPS game hosting, users rent servers at a flat
rate from hosting companies on a monthly basis. Casual users which do not have
control over such a server can only play on public servers and are not able to
set up an Internet-based session for a closed group of users with their own rules.
Grid systems for single-server FPS allow users to start FPS game sessions in an
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on-demand manner for short durations. Instead of statically renting a server at a
particular hoster, users specify the game and related characteristics like number
of players, private/public game etc. and the grid system negotiates these require-
ments with several hosters participating in this infrastructure. After contracting
with a particular hoster, the user can configure game-specific settings like the
map being played on, the score or time limit to win. The system then schedules
the start of a binary game server featuring the user-specific settings according
to the booking. Such a grid system was discussed, for example, in [I2]; we also
presented a prototype of an infrastructure providing this functionality in [I3].
Such a FPS grid system does not use the general grid concept to its full poten-
tial. Regarding the general features described in Section B only the dynamicity
of the grid approach and potentially its accounting applies to the hosting of a
particular subclass of online games. Such a single-server grid using the available
game server binaries can neither scale a single game session nor migrate it onto
a different host for overall load balancing. However, it still provides an improve-
ment over the static server hosting and is a first partial demonstrator of what
grids can provide for online game hosting.

Grids for Multi-Server MMORPG

The user demand for playing a particular MMORPG is dynamic in several di-
mensions, the most important are: (1) short-time variation of logged-in users
depending on daytime and weekday, and (2) changing total playerbase. The first
dimension reflects peak usage times of a constant total subscriber number, while
the second dimension usually varies more slowly and reflects the game’s over-
all lifecyle of release, growth, saturation and finally decrease, possibly restarted
with the release of expansions. Following these varying user demands, the game
provider has to ensure that sufficient computation resources are available. In
order to provide the required flexibility regarding the setup of an MMORPG,
different grid infrastructures have been proposed and commercially applied, as
for example Butterfly.net [5] or BigWorld [6]. These infrastructures provide a
server-side API to define game zones and instances and map them to actual
server hosts at runtime. In comparison to grids for single-server FPS, these infras-
tructures provide more sophisticated functionality of the general grid concept (as
summarized in Section[3)) to online gaming: They enable dynamic game services,
scale a single massively multiplayer session by providing zones and instances and
incorporate accounting functionality. However, these grids are especially target-
ting MMORPGs and are barely usable for other online gaming genres for which
the built-in zoning concept is not appropriate. Additionally, the servers used
by a single MMORPG realm still reside at a particular hoster and there is no
option to migrate sessions between data centers for load-balancing reasons and
for enabling an open market of MMOG hosting.

Existing game-related grid infrastructures mainly target a specific MMOG
genre. For optimizing the distribution of server processing power for overall on-
line gaming, a comprehensive approach suitable for all classes of online games
is required. The recently started edutain@grid project [7] targets at providing
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the grid concept not only to online gaming, but also to other online interactive
multi-user applications like e-learning, training and simulation applications.

In the following, we outline the concept and use cases for a grid infrastruc-
ture which provides dynamicity and scalability for all major types of online
games. Our main idea is to scale all the different scalability dimensions intro-
duced in Section 2] by combining several scalability approaches suitable for
the various game genres. The resulting architecture should be practically us-
able, i.e. the complexity and dynamicity of the multi-server parallelisation has
to be hidden as much as possible from the game developer inside of a conve-
nient API, without restricting optimization possibilities for a specific application
implementation.

Our grid concept follows the familiar paradigm of game entities and game-
loop-centric processing. In particular, a comprehensive infrastructure has to sup-
port zoning, replication and instancing of particular game world regions. The
overall resulting concept is illustrated in Figure Bl
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Fig. 3. Comprehensive Scalability Framework

The particular combination of zoning and instancing is already practically
used by commercial MMORPGs. However, using replication in combination with
zoning is a novel concept which allows to scale the density of players inside
of a particular zone. Combining these different approaches allows to scale all
three main scalability dimensions for a single application instance and, therefore,
results in a parallelisation architecture generally suitable for scaling all classes
of multiplayer games.
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4 Dynamic Scaling of Game Environments

While the overall architecture illustrated in Figure Bl combines the different scal-
ability approaches, an enclosing grid infrastructure is still required to provide
server resources for the zones, instances and replicas in a dynamic manner. In
the following, we illustrate two main use cases of dynamically mapping game
world regions to servers, for particular user demand and behaviour.

In Player-vs-Player scenarios using several zones, it can be expected that users
dynamically gather in a particular area and fight each other. The corresponding
zone then should be replicated using several servers for scaling the density of
users as illustrated for the bottom right zone in Fig.

(b) Fight Moving to Bottom Left Zone

Fig. 4. Dynamic Clustering of Users

In such a scenario of a fight with a high user density, it can be expected
that users eventually move over to an adjacent zone. In Figure the bot-
tom right zone then becomes less frequented because users move over to the
bottom left zone. This zone now has to be replicated in order to scale the den-
sity of users, while the replication degree of the previously frequented zone can
be lowered due to decreasing load. Our concept of the comprehensive scalabil-
ity framework supports dynamic adding and removing of replications, and the
overall grid infrastructure has to dynamically reassign the replication servers to
zones according to the user behaviour.
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Increasing Instance Demand. As another example of how our concept of the
overall scalability framework can be dynamically orchestrated by a grid infras-
tructure respecting the actual user demand, let us imagine that the users are
distributed across several zones of the virtual world. Besides the zones, there are
particular instanced areas which are only barely frequented in the beginning as

illustrated in Fig.
l instance l
servers

) Low Instance Usage

instance

E\[..]E/E /5[..]%55

(b) High Instance Usage

Fig. 5. Changing demand for Instances

Especially in MMORPG, it is a common scenario that the instance utiliza-
tion increases drastically during night time, because users pre-arrange groups
to adventure collaboratively. As a result, many more instance servers are re-
quired as illustrated in Figure while the general zoned game world might
be less frequented. A grid infrastructure therefore has to be able to dynamically
increase the number of instance servers and possibly combine zones to reassign
zone servers to instances.

5 Case Study: Rokkatan

In this section, we present our demonstrator game Rokkatan, which belongs
to the popular genre of real-time strategy (RTS) games. The development of
Rokkatan pursued three major goals:
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1. Evaluation of the proxy-server topology: Rokkatan serves as a de-
tailed case-study of how to design and implement a sophisticated and scalable
real-time game using the proxy-server approach. In particular, our goal was to
detect potential difficulties in the usage of the eventual consistency model for
server synchronisation and possible problems in providing the required respon-
siveness for a fast-paced real-time game.

2. Incorporation of the Game Scalability Model (GSM): The GSM
[14] provides the possibility to be incorporated in a particular game implemen-
tation by measuring execution times for several basic tasks that have to be
accomplished during a running game session. Based on these times, the model
calculates a forecast of maximum player numbers without exhaustive tests. Such
a mechanism, integrated into a real game implementation, helps to determine
required server capabilities and provides hints for an efficient setup of servers
and session rules.

3. Conceptual evaluation of a massively multiplayer RTS game de-
sign: Current large-scale game designs concentrate on Massively Multiplayer
Online Role Playing Games (MMORPG) like Everquest or World of Warcraft,
which provide a huge persistent world for the users to adventure in. However,
other game genres like First Person Shooter or Real-time strategy games have
rarely been adapted to massively multiplayer sessions so far. With Rokkatan, we
propose a possible game design which extends current real-time strategy gaming
to the massively multiplayer realm.

5.1 Rokkatan: The Game

In Rokkatan, each user has control over a single unit, his avatar, and belongs to
a particular team. The number of teams playing in a single game session is set
up arbitrarily upon session creation. After connecting to a running game session,
the user chooses a team to join and the class and name of his avatar. Currently,
there are two classes implemented in the game: the warrior, fighting within close
range, and the archer who can shoot arrows at distant enemies.

Users of the same team coordinate themselves and move around to occupy
flags scattered in the game environment. For each flag currently occupied, a team
periodically gains score points. Each team has an initial amount of score points
and the team with most points will win the session after a certain time of playing.
Therefore, avatars of opposite teams have to fight for supremacy of flags. Such
real-time fights, as depicted by the screenshots of Fig. [l for a small duel and a
large battle, play a major role in Rokkatan. Each avatar has a particular amount
of health points which decreases when the avatar is hit by an enemy warrior or
archer. If the health points of an avatar drop to zero, then he is "dead” for a
short period of time, after which he respawns at the starting area of his team.
Additionally, the team score points for an avatar which temporarily lost his life.

The game style of Rokkatan is comparable to RTS games like Command and
Conquer or Warcraft III, with the main difference that not few users control
large groups of avatars, but each avatar of the game is controlled by a single
user. Therefore, it is necessary for all users of a single team to coordinate their
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(a) Small Duel (b) Massive Encounter

Fig. 6. Small Duel and Massive Encounter in Rokkatan

actions. Some avatars guard the occupied flags, while others try to conquer new
areas of the game environment. This goal of occupying flags is comparable to
tactical FPS games like Battlefield 1942, in which several flag points have to be
captured in order to win the game session.

A Rokkatan game session takes place in a particular game environment, the
game map, which is described in an easily editable text-file. At different locations
in the map, potions are available, which can be picked up, carried by avatars and
used later on. If the user decides to use such a potion, his avatar immediately
regains health points, which makes potions very valuable when fighting enemies.

5.2 Processing of User Actions

There are two main types of user actions in Rokkatan: Movement commands
and interaction commands. A movement command can be processed directly
at the proxy a client is connected to, because this action only affects the state
of the user’s avatar. The proxy it is connected to is the only process allowed
to alter this data for a particular client, such that the position change of the
avatar resulting from a movement command can immediately be performed and
acknowledged. Additionally, the proxy communicates this game state change to
all other servers which update their local game state replicas accordingly.

The processing of interactions, however, can not be done solely by the local
proxy of a particular client. The interaction command can affect either other
avatars, e.g., by attacking an opponent, or the general game environment, e.g.,
by picking up a potion. Therefore, the state of the target game entity like an
avatar or a potion has to be changed. In the general case, a remote proxy will
be authoritative for the state of the interaction target, which requires sending
the interaction to this remote proxy for evaluation. Fig. [[] depicts an example of
user interaction processing in Rokkatan.

In Fig. [[ the user at client A issues an interaction affecting the avatar of
client B, e.g., attacking the position of the avatar of B in the game environment.
In step @, client A submits the action to its proxy server which validates the
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Fig. 7. Interaction Processing

received input in step @. If the validation was successful, i.e., the state of the
avatar allows to perform the attack, then the proxy sends an acknowledgement
back to client A (step ®) and forwards the interaction to all other participating
servers in step @. The other proxies update their local game state, i.e., they
update the avatar’s state of the attacking client A in step ®. Additionally, each
remote proxy checks whether a game element it is responsible for is affected by
the attack of avatar A. In this example, the avatar of client B is hit by the attack.
The local proxy of client B updates the state of its avatar by decrementing health
points and informs all other proxies about this state change (step ®). Finally,
in step @, all proxies inform local clients which are directly affected by the
interaction (client A and B). Additionally, all clients, whose avatar is located
near to the interacting avatars, are notified about the interaction. For example,
users at the clients D and E observe the interaction and the proxies inform the
clients about it.

5.3 Rokkatan Implementation and Scalability Experiments

Rokkatan is implemented in C++ and uses the Kyra sprite engine and the
Simple Directmedia Layer (SDL) for client graphics and sound. The game com-
munication is based on our Game Proxy Architecture (GPA) library which we
developed to make the usage of the proxy-server approach convenient for game
developers. The library provides a simple API for clients and proxy servers to
send and receive game messages at different levels of reliability. For the inter-
proxy communication, game messages are sent using IP-Multicast. If proxies are
not able to participate in the IP-Multicast group, the GPA automatically falls
back to unicast message sending. This way, scalable multicast communication is
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used whenever possible and the unicast fallback ensures general functionality of
game sessions in networks not supporting multicast.

While the concept of the proxy-server topology determines the general de-
sign of the Rokkatan implementation, some Rokkatan-specific issues had to be
additionally addressed in order to ensure the scalability of the game. For these
particular problems, we developed solutions and implemented them directly into
the Rokkatan application. Although developed for Rokkatan, these solutions can
be reused in other games using the proxy-server topology and thus provide an
extension of the generic proxy architecture.

We ran numerous test sessions in order to studyy the scalability of the actual
Rokkatan implementation using the proxy-server architecture and to verify our
analytical model. Although we tested Rokkatan with various connection types
of clients (modem, ISDN, DSL) in order to confirm the general functionality of
Rokkatan under higher latencies, the scalability tests were conducted in the local
area network of our department because a large number of hosts was required.

The Rokkatan client includes a special ”"bot” mode, which automatically par-
ticipates in a game session. This client-side bot issues actions based on the
current gaming situation and makes full usage of all possible game interactions
like moving, attacking, occupation of flags and pickup of potions. It uses potions
to recover health points and retrieves from fights when all stocked potions have
been consumed. For a server, the bot-mode of a client is transparent and can
not be distinguished from a human user.

The experiments were conducted for two test maps of different sizes (64x64
and 128x128 ground tiles). The dimensions of both maps are comparable to those
of commercial real-time strategy games like Warcraft 3. It takes about 90 seconds
for the smaller and 180 seconds for the larger test map to walk diagonally from
the upper left to the lower right corner.

Our reference server host is a Pentium 4 1.7 GHz system with 640 MB RAM
running Linux with kernel 2.6, of which we have several systems available.

For our tests, a total of 25 computers were used. Five of them act as proxy
servers while the other hosts run the bot clients, of which several can be started
on a single computer. For the experiments using both test maps, Fig. [§shows the
maximum number of clients which were able to play before servers became con-
gested. Additionally, the plots show the maximum client numbers as predicted
using the Game Scalability Model[14].

The scalability of a game session depends on the size of the game map. In the
smaller map, the density of avatars increases faster than in the larger map, which
leads to congestion much earlier. Fig.[§ demonstrates that the GSM forecasts are
very near to the actually measured player numbers, with a maximum deviation
of 5 %. The model’s forecasts for larger session setups with more than five proxy
servers (which we were not able to measure experimentally) show that more than
500 players are expected to be able to participate in a large session of Rokkatan.

The forecasts and actual measurements for the average bandwidth at a single
proxy server are shown in Table[] for the smaller test map; again, our measure-
ments were done for up to five servers. With a maximum deviation of 7 %, the
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Table 1. Estimated and measured bandwith at a single proxy server for a 64x64 map

Session estimated measured deviation
1 pr., 115 cl. 150.7 kB/s 152.0 kB/s 2 %
2 pr., 170 cl. 2139 kB/s 210.3 kB/s 2 %
3 pr., 220 cl. 245.3 kB/s 2355 kB/s 5%
4 pr., 250 cl. 237.0 kB/s 222.7kB/s 7%
5 pr., 290 cl. 243.7 kB/s 242.5 kB/s 1%
6 pr., 310 cl. 257.1 kB/s - -
8 pr., 375 cl. 284.8 kB/s - -
10 pr., 410 cl. 291.2 kB/s - -

bandwidth predictions are quite accurate as well. Due to the dead reckoning used
in Rokkatan, the amount of data sent to a single client is quite low, ranging from
about one to ten kBytes per second depending on the game situation. However,
the proxy servers fully synchronize their state at each tick in order to provide
the required responsiveness for direct interactions. Overall, the bandwidth uti-
lization at a single proxy is low enough to allow sessions with a large number of
users when the servers are hosted at high capacity Internet connections.

6 Conclusion and Related Work

In this paper, we summarized the main scalability dimensions of online com-
puter games and provided an overview of existing scalability approaches. The
zoning concept [I5IT6], which is widely used by existing MMORPG, scales the
total number of users and the game world size. For scaling the density of play-
ers, however, our replication concept using the prozy-server architecture [9] is
more feasible. As a general result of this discussion, we outlined our approach of
a comprehensive scalability framework which combines zoning, instancing and
replication and is thus suitable to scale all contemporary genres of online games.
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Besides scalability, three other functional characteristics of grids — dynamicity,
migration and accounting — promise an enormous improvement over the currently
usually static online game hosting. The current game-related grid infrastructures
target specific game genres and do not provide the full benefits of grid computing
to general online game hosting yet.

There has been a lot of work in the area of scalable network topologies dedi-
cated to massively multiplayer gaming. Most of the presented architectures par-
tition the game world into several zones. The authority for such zones, which
commonly are used in MMORPG, is either assigned to single servers as in, or
distributed dynamically in a decentralized way. However, in our Rokkatan game,
due to the much smaller size of its map in comparison to an MMORPG envi-
ronment, a map partitioning is not feasible. In the worst case, all avatars would
be clustered within a single zone and the single responsible server would quickly
become congested. The proxy-server approach performs much better in such a
scenario with a high avatar density. Rokkatan shows the feasibility of the proxy
architecture to host game sessions for hundreds of users in a small game envi-
ronment at very high responsiveness of 25 updates per second.

In the area of game design for other MMOG genres besides role playing games,
only little research has been done, although there are already commercial games
of the FPS genre, suitable for a high number of participating players. Such
games like Joint Operations or Soeldner take place in a huge area and simulate
a small warfare, in which users have to coordinate themselves in a team. The
single-server approach used by these games limits the player number, although
the game design itself would support many more players in a session. The proxy
approach is feasible for these fast-paced action games and will allow a much
higher number of users.

With the development of Rokkatan, we showed the scalability of our proxy-
server architecture for game designs requiring high responsiveness. The behaviour
of the client bots in the experiments was sophisticated enough to make the test
sessions comparable to human user sessions. There were always several large bat-
tles taking place, bots fought for supremacy of flags, used potions and tried to save
themselves when being low on health points. This proves that, with a game map
of adequate size, fluent and responsive game sessions involving several hundreds
of users are possible in Rokkatan.
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Abstract. In this paper we present methods for parallelization of 3D
CFD forest fire modelling code on Non-uniform memory computers in
frame of the OpenMP environment. Mathematical model is presented
first. Then, some peculiarities of this class of computers are considered,
along with properties and limitations of the OpenMP model. Techniques
for efficient parallelization are discussed, considering different types of
data processing algorithms. Finally, performance results for the paral-
lelized algorithm are presented and analyzed (for up to 16 processors).

1 Introduction

This work is carried out within the context of the European integrated fire
management project (Fire Paradox) aiming to obtain a full-physical three-di-
mensional model of forest fire behaviour. The proposed approach accounts for
the main physical phenomena involved in a forest fire by solving the conservation
equations of physics applied to a medium composed of solid phases (vegetation)
and gas mixture (combustion gases and the ambient air). The model consists in
coupling the main mechanisms of decomposition (drying, pyrolysis, combustion)
and of transfer (convection, diffusion, radiation, turbulence, etc.) taking place
during forest fire propagation [I]. This multiphase complete physical approach
already exists in 2D approximation [2] and consists in solving the described
model in a vertical plane defined by the direction of fire propagation. The 3D
extension of the existing model will enable to render 3D effects observed in real
fires and to represent the real heterogeneous structure of the vegetation. The
CFD code under development is currently at the stage of predicting turbulent
gas flows and has been validated on several benchmarks of natural, forced, and
mixed convection [3].
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The extended 3-dimensional formulation requires much more computational
resources than the previous 2D model. The new model needs substantially bigger
grids (N x Ny x N, vs. N, x N, grid points), more complicated discretizations
(more terms in the equations), additional grid compression in problematic areas
(because of non-flat fire interfaces), more robust and expensive algebraic solvers.
As a result, the total computational complexity of the algorithm increases by
two orders of magnitude or more.

In order to be able to perform precise computations in reasonable time, it
is necessary to exploit efficiently all available resources and improve computa-
tional performance by combining the following considerations: efficient numeri-
cal method and procedure, robust algebraic solvers, optimization of the code for
modern superscalar microprocessors with memory hierarchies, and paralleliza-
tion of the algorithm for moderate number of processors. However, this last
consideration remains the most efficient way for increasing the speed of compu-
tations.

The next important point is the choice of a parallel computer architecture and
parallelization model for this work. Generally, distributed memory parallel com-
puters (clusters) are used for large-scale computations. However, such parallel
computers, used with the appropriate MPI message-passing model, result in very
complex algorithms and require tight optimization of communication exchanges
[4]. In addition, a model with relatively slow communication exchanges can’t be
efficiently used for many algorithms [5]. Finally, it is difficult to implement a
portable code that would work on any parallel platform with required efficiency.

Thus, shared-memory computer architecture was chosen as a target for the
new parallel code. An OpenMP parallelization model without explicit exchanges
is used for the algorithm [6]. This model, which is the natural choice for shared-
memory computers, is just an extension of high level languages (Fortran, C).
With appropriate programming, the code may work on a parallel system with
any number of processors. Consequently, the new code becomes portable and
compatible with many parallel platforms.

However, implementation of the shared-memory paradigm encounters another
difficulty: almost all modern shared-memory systems with moderate or high
number of processors (4, 8, 16 and more) belong to the class of Non-uniform
Memory Access (NuMA) computers. It means that every processor or group of
processors (processor node) is directly connected only to its own (local) memory
while an access to the non-local (remote) memory is performed through interme-
diate communication network. Due to such organization, remote accesses become
much slower than local ones. This restriction requires a special approach for the
organization of parallel algorithms in order to ensure that most or all accesses
from every processor node occur within this node’s local memory.

Thereby, in the presented paper we will describe the mathematical model
and numerical method, strategy of OpenMP parallelization on NuMA comput-
ers, results of parallelization efficiency of the new 3D code, and summary with
conclusions.
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2 Mathematical Model and Numerical Method

We consider Newtonian fluid whose flow is governed by non-stationary Navier-
Stokes equations in Boussinesq approximation. The model is also capable to
handle the Low Mach number approximation in the context of perfect gas [3].
The set of equations consists of the continuity equation, the momentum equa-
tions in three spatial dimensions (i = 1,2,3) and the equations for energy and
turbulent quantities. The generalized governing equation for all variables is ex-
pressed in the following conservative form:

gt (p¢) + 88$2 (p¢ul) = 88$z (F (g;i)) + S¢ with ¢ = 17”17“27“37T7k76
where ¢ represents the transported variable; p and u; are respectively the local
density and the i-th component of velocity; I" — the effective diffusion coefficient;
Ss — the source term for the corresponding variable.

The Finite Volume discretization is applied to the non-uniform Cartesian
staggered grid. Second-order discretizations are used, employing the quadratic
upstream interpolation of advective terms with flux limiters.

The transport equations are solved by a fully implicit segregated method based
on the SIMPLER algorithm [7]. The non-symmetric linear systems obtained from
the discretized equations are solved by the BiCGStab iterative method, while
the symmetric linear system of the pressure equation is solved by the Conjugate
Gradient method (CG). The use of under-relaxation techniques, when necessary,
allows better convergence and stability of the solution.

The code is applicable for simulation of flows in rectangular domains. Valida-
tion of the sequential version of the code has been performed for several common
benchmarks (lid driven cavity, differentially heated cavity etc.).

3 OpenMP Parallelization on NuMA Computers

We will consider the strategy of OpenMP parallelization using the SGI Altix 350
shared memory system with non-uniform organization. It consists of 10 processor
nodes, each with two Intel Itanium 2 processors (1.5 GHz, L3-cache 4 Mbyte) and
4 Gbyte of the local memory. Processor nodes are interconnected by the special
NuMA-link interfaces through the high-speed switch that provides accesses to
non-local (remote) memories. Logically, the considered system belongs to the
shared-memory class, when every process may transparently access any memory
location in a system. However, remote accesses are much slower than local ones.
For example, the peak memory read rate (throughput) within a node is equal to
6.4 Gbyte/s, while the peak throughput of NuMA-links is two times less.

Direct measurements show that the speed of regular read accesses achieves
6.1 GByte/s for local memories, and only 2.4 GByte/s for remote locations.
This speed is very important for many computational algorithms that perform
processing of data in big 3-dimensional arrays. Performance of such memory-
bound algorithms depends on the memory throughput almost linearly.
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Therefore, it is necessary to ensure that all processes of a parallel program
access only (or mostly) data located within a local memory. On the system level,
it can be done by the special utility that affiliates (bounds) every process to its
own processor. This binding is needed to avoid migration of processes between
processors and to guarantee that every processor executes only one process. In
a multi-user computer system, some discipline must be established in order to
avoid interference of processes from different programs.

On the application level, it is important to organize an algorithm in such a
way that every thread (branch) of a parallelized algorithm would process only
(mostly) a corresponding piece of data. Additionally, these data must be dis-
tributed between processor node’s memories by the appropriate way (in the
beginning of the execution). If these requirement are not fulfilled, parallel per-
formance may drop two times or more.

The same rules and restrictions apply to another types of NuMA computer
systems. For example, systems built on AMD Opteron processors also use rela-
tively slow interprocessor links. In these systems, processors are interconnected
into a mesh that imposes an additional limitation: access to some particular
memory location may pass through several intermediate (transit) processors if
the target processor (who owns the required location) is not connected directly
to the requesting one. Therefore, Opteron-based systems (with mesh topology)
may become less flexible and less efficient for OpenMP parallelization, in com-
parison to switch-based systems (with star topology).

Generally, the OpenMP extension to a high level language (Fortran in our
case) is very simple and complements this language by several comment-like
directives. These directives instruct a compiler how to perform parallelization
of a program. The most important and popular directive is "PARALLEL DO”
which is usually applied to an outermost ”do” statement (for nested loops) (see
example on Fig. [Tl left). In accordance with the number of processors requested,
iterations of this loop are evenly distributed between branches (threads) of a
program for execution in different processors. This corresponds to the geometric
splitting of a processed data array (3-dimensional, as a rule) into sub-arrays by
the last spatial dimension (Fig. [l right).

1$0MP DO 1
do K=1,Nz et
do J=1,Ny
do I=1,Nx
Wo3(I,J,K)=Wo2(I,J,K)+
& beta*Wo3(I,J,K)
enddo
enddo K
enddo 01 2 3
1$0MP END DO processors

Fig. 1. Example of ”’PARALLEL DO” directive (left); geometric splitting of data array
by this directive (right)
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The OpenMP parallelization model is very convenient for ”true” shared-
memory computers with uniform memory. For these computers, it is possible
to split a multidimensional computational domain by any spatial direction. For
non-uniform systems, only splitting by the last direction ensures that neces-
sary portions of data are fully located within the corresponding processor node’s
memory. In order to avoid remote memory accesses, algorithms must be rear-
ranged. Some sorts of algorithms (for example, those with recursive dependences
in all spatial directions) can’t be parallelized easily and efficiently within the
OpenMP model. On the other hand, algorithms of the ”explicit” nature, that
pass sequentially through data arrays and use small local data access patterns
(stencils), may benefit from this model. Accesses to remote memory occur only
within boundaries between subdomains in this case.

One-dimensional splitting of multidimensional arrays imposes another limi-
tation on the OpenMP model for NuMA computers: subdomains become very
"narrow” by this dimension, and, as a result, accesses to remote memory through
boundaries become frequent enough (compared to the number of local accesses).
Also, the last dimension may become not divisible by the number of proces-
sors that results in a bad load balance. These limitations restrict the degree of
efficient parallelization by moderate number of processors (typically 8-16).

Unfortunately, OpenMP in the current state has no special tools or directives
for NuMA parallelizations. Therefore, only indirect techniques (as described in
the current paper) may by applied to customize parallelization methods for this
sort of computers.

4 Parallelization Approach and Results

In the current implementation, the considered CFD code has the ”explicit” na-
ture, i.e. it doesn’t employ direct implicit solvers. Most part of its computational
time (about 80 %) is consumed by two Conjugate Gradient type solver routines
— CG (for pressure) and BiCGStab (for transport equations). These routines
process data arrays with 7-point local stencils and therefore perform remote
memory accesses only when processing data near subdomain boundaries. As a
result, these CG-type routines can be efficiently parallelized using the OpenMP
model for NuMA. Another time-consuming routines also belong to the ”explicit”
class and can be parallelized without difficulties.

In order to ensure that data are correctly distributed within local memories
of corresponding processor nodes, it is necessary to perform special initialization
of all important data arrays. Neither the current OpenMP standard, nor the
OpenMP-aware compiler used in this work (Intel Fortran 9.1) have any tools
for explicit data distribution. To provide this distribution, a simple routine is
used that initializes all arrays in nested loops with ”PARALLEL DO” directives.
This routine is called in the beginning of the code when memory pages for arrays
are not yet allocated. Since this allocation occurs ”by demand”, it is necessary
to issue the first request to any element of data from the same processor node,
which will be used for further processing of this element. Therefore, parallel loops
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for initialization of data must be organized similarly to data-processing ”do”
loops with exactly the same splitting of outermost iterations between processors
(Fig. ).

Validation of the parallelized code and measurements of its parallelization
efficiency were performed on the benchmark problem of natural convection in
differently heated cavity [8]. We used the Boussinesq flow configuration with
Rayleigh number Ra = 10° and grid size 60 x 60 x 60. Performance results are
presented on Fig. 2l In the table, results of relative acceleration (compared to the
previous grade with half number of processors), absolute acceleration (compared
to one processor) and parallelization efficiency are shown.

No. of processors 1 I I I |
12 4 8 16 8 g -
time (seconds) 1966 1448 523 246 173 | ,,,,,,,,,, J/ 777777777 i
relative speedup  —  1.36  2.77 213 1.42
total speedup - 136 376 799 1136 [ 7/ """"""""""" 7]
efficiency - 68% 94% 100% T71% 1 I I I

Fig. 2. Parallelization results for the benchmark problem

Relative acceleration for two processors is not high because both processors
compete for the same memory, and performance is limited by its throughput.
On the other hand, for 4 and 8 processors we see a superlinear speedup owing
to the help of a large 4 MByte L3-cache in each processor. As a result, total
acceleration for 4 and 8 processors corresponds to the linear profile. For 16
processors, some negative effects are accumulated: load disbalance (60 is not
divisible by 16) and influence of big boundaries (1 boundary grid point per 2 or
3 internal points). Due to these effects, parallelization efficiency drops. It follows
that the reasonable degree of efficient parallelization for this configuration is 8,
at most 16, that corresponds to the goal of the current work.

The presented parallel code is based on a serial code that was initially opti-
mized for modern pipelined processors with memory hierarchies. Further opti-
mization of the code will be devoted to the acceleration of algebraic solvers by
applying efficient preconditioners. It was demonstrated that the explicit-class (lo-
cal) Jacobi preconditioner can be easily parallelized. However, for more efficient
implicit (global) line-Jacobi preconditioner, new parallelization technique must
be developed with parallel solution of tri-diagonal linear system. This paralleliza-
tion will be based on the previous work [4]. Another direction of the development
of the current CFD code will consist in incorporation of the radiation transfer
algorithm. This algorithm can’t be parallelized by geometric manner and will
need a special approach based on the concept of input data parallelism.
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5 Conclusion

In this work we developed the strategy of OpenMP parallelization for NuMA
computers and parallelization method for 3D CFD code for modelling of for-
est fire behaviour, taking into account restrictions and limited flexibility of the
current state of the OpenMP environment. This new method allows to achieve
good parallelization efficiency for moderate number of processors (up to 16). The
obtained results correspond to the general goal of the work — to obtain a tool
for performing precise 3D computations in reasonable time.
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(Work Package WP2.2 ”3D-modelling of fire behaviour and effects”), and by the
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Abstract. The paper presents IARnet toolkit, a set of high-level tools and
services simplifying integration of software resources into a distributed
computing environment and development of distributed applications involving
dynamic discovery and composition of resources. A case study of using IARnet
for solving large scale discrete optimization problems is discussed.

Keywords: distributed computing, Grid, integration of software resources,
middleware, information service, distributed workflow, discrete optimization.

1 Introduction

The Grid, emerged from the relatively narrow problem of wide-area access to high-
performance computing resources, is transforming now into a general-purpose
infrastructure for coordinated resource sharing within dynamic virtual organizations.
Resources being “plugged” to Grid are no more limited to computing facilities, but
include any resources that can be used in collaborative scientific applications:
knowledge bases, software libraries and applications, instruments, etc. This extends
the scope of Grid applications from high-performance computing to a wider class of
complex problems which are decomposable into multiple subproblems being solved
by existing resources. Next-generation Grid applications will involve dynamic
composition and orchestration of various types of distributed resources and services
forming an application workflow.

The widespread adoption of Grid computing among scientists is impeded by the
difficulty of developing Grid services and implementing Grid-enabled applications.
Among the several efforts targeting this problem most are focused on a simple unified
API for various Grid middleware platforms [1, 2]. The presented in this paper [ARnet
toolkit differs from above approaches by providing a set of tools and services
simplifying both deployment of existing software resources and remote access to
deployed resources, as well as dynamic discovery and composition of resources into
workflows. Despite its focus on integration of software applications IARnet has
proven its usefulness in traditional high-performance computing, as demonstrated by
the BNB-Grid application described in the end of this paper.

* Partially supported by the REBR grant 05-07-90182-8 and RAS Presidium Programme 1511.
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2 TARnet Toolkit

The IARnet toolkit, aimed at the integration of software resources rather than “raw”
computational facilities and data storages, extends classical view on the Grid
computing while conforming to the modern service-oriented architecture (SOA).

At the core of IARnet is the notion of information-algorithmic resource (IAR), by
which we generally mean any software component with certain specified capabilities
aimed at solving a well-defined range of applied problems, such as special-purpose
collections of applied computational algorithms, mathematical and simulation models,
etc. Following this definition, IARnet provides a set of high-level tools for exposing,
discovering and accessing IARs enabling development of distributed scientific
applications. The IARnet architecture is composed of resource agents, services and
IARnet API (Fig. 1).

Grid Application

Computing facilities

1""‘

Software
applications,

Instruments

N
&

Fig. 1. IARnet architecture

Resource agents are software components acting as mediators between resources
and client applications. An agent provides unified access to a resource in accordance
with its type, integrates it into the system, and controls user's access to it. In terms of
SOA, agents expose resources to applications as standard services.

IARnet services are general-purpose components which provide basic mechanisms
required by applications, such as resource discovery. Current version of IARnet
contains two services — Information Service and Workflow Management Service,
which are described later in this paper. It is important to note that IARnet services are
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considered as special types of IARs, so they are implemented and accessed using the
same tools as resources.

IARnet API defines a high-level application programming interface for develop-
ment of applications on top of IARnet. Current version of IARnet API is implemented
in Java and represents a library used by applications to discover and access resources
and services. [ARnet API is also used by resources and services for interactions
between each other.

As shown in Fig. 1, unified access to “typical” Grid resources such as computing
and data storage facilities can be provided for IARnet applications by special agents
which interact with these resources indirectly via existing Grid middleware (GMW),
basic Grid services, or simple Grid APIs.

2.1 Integration of Software Resources

The problem of resource integration can be stated as how to expose a given software
resource as a remote-accessible service with standard interface expected by clients.
This requires one to provide a remote access to a resource, as well as implement
mapping between unified and implementation-specific interfaces. These two tasks are
separated and accomplished by different components of [ARnet.

One of the main goals of IARnet was to make the development of distributed
applications easy for people unfamiliar with distributed programming and middle-
ware. To abstract developers away from details of remote access the transport level of
IARnet is completely hidden from them by IARnet API. This also means that agent
and application developers don’t have to manually generate or use any stubs.

Resource Agent. The different resource implementations providing same func-
tionality are highly heterogeneous, so there’s a strong need in unified interfaces for
different types of IARs which hide this heterogeneity from user and provide
transparent access to dynamic collections of resources. The basic functionality of
resource agent conforms to adapter design pattern where agent implements mapping
between the unified interface for a given resource type and the native interface of
resource implementation. Each agent implements two interfaces: base general-
purpose interface, which is used for operations such as resource type inspection, and
an interface of the corresponding resource type. Current version of IARnet supports
development of resource agents in Java and C++. As a rule, agent developer needs
only to implement resource-specific interface by extending from base agent class.

Container. Resource agents don’t provide remote access to resources. To ensure
flexibility and extensibility of IARnet this task is isolated in another component called
container. Container is a hosting environment for resource agents which provide
remote access to agents by means of some middleware technology. [ARnet supports
multiple implementations of transport level, called middleware profiles. Current
version of TARnet includes three middleware profiles based on CORBA (JacORB
[3]), Web services (Apache Axis [4]) and Ice [5], accompanied with corresponding
container implementations. Upon deployment of agent container returns a string
reference which is used to access the resource from client applications as discussed in
the next section.



106 A. Afanasiev, O. Sukhoroslov, and M. Posypkin

Client API. An application developer uses IARnet API to access resources via proxy
objects instantiated by resource references. Each proxy implements a standard
interface Resource (Fig. 2) which corresponds to the base interface of resource agent
and contains methods for inspection and invocation of resource operations.

=< interface ==
Resource

+getOperations): O peration(]

+getOperation(signature: O peration): Operation
+hasOperation{signature; O peration fhoolean

+hasOperati onf{operation: O peration):boolean

+invok efsignature: String parameters: O bject[] 1 Object(]
+invok e{operation: O peration param eters: Object[]T Object[]

Fig. 2. Resource interface

2.2 Information Service

The Grid applications require ability to dynamically discover resources currently
available in Grid and inspect their metadata. This functionality is provided in IARnet
by Information Service (IS). While following the basic producer-aggregator-consumer
architecture IS differs from widely deployed systems, such as MDS [6] and R-GMA
[7], by exploring the use of Semantic Web technologies [8] in Grid along with
Semantic Grid projects [9].

IS enables information producers to publish information about resource types and
individual resources. The information models of resource type and resource are
defined in the core IARnet ontology by means of Web Ontology Language (OWL).
The core ontology can be further extended by domain-specific ontologies, e.g.
mathematical resources. Standard RDF/XML format is used for information repre-
sentation and exchange with clients. Information consumers can query IS by means of
SPARQL language. There is also a simple interface for common queries, such as
searching resources by type. For basic RDF/OWL operations and RDF data storage IS
uses Jena RDF toolkit [10].

Among the other components IS includes a high-level Java API for constructing
and exploring metadata conforming to the core IARnet ontology, which doesn’t
require from developer a knowledge of RDF/OWL. Recently developed Web
interface allows users to explore metadata published in IS via Web browser.

2.3 Workflow Management Service

The composition and orchestration of Grid services is another hot topic targeted by
many experimental projects. The focus on integration of software resources and
solving of decomposable problems necessitate the support for workflow composition
and execution in IARnet. This functionality is provided by the Workflow
Management Service (WfMS).

Among the various workflow representation techniques we have chosen high-level
Petri nets [11] as an approach based on a strict mathematical formalism and neutral
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with respect to middleware technologies in contrast to such languages as WS-BPEL.
The use of high-level Petri nets for Grid workflows was first introduced in [12].
IARnet WEMS is built on top of Renew framework [13] which provides graphical
Petri Net editor (Renew GUI) and simulator.

The workflow composition is carried out in Renew GUI. A user can annotate net
transitions with invocations of IARnet resources and use typed tokens as arguments
and return values for resource calls. Composed workflow can be deployed in WfMS
as a new [ARnet resource ready for remote execution. The workflow deployment and
control of workflow execution is also carried out in Renew GUI by means of specially
made plug-in. The deployed workflow instance is opened in a new window where
user can examine its state during the execution. The user is also supplied with a string
reference to the workflow instance which he can use later to reopen the instance
window or to send it to the other users. Via the [ARnet WfMS plug-in menu user can
start, pause and resume the execution of workflow or terminate it.

Since all workflow instances are deployed as resources the other IARnet resources
can use standard mechanisms for interaction with the workflow. This is especially
useful for the implementation of asynchronous callbacks which are often required by
Grid workflows. Each workflow resource has a standard operation which can be used
by participating resources to send a callback. The received data is placed as a new to-
ken in a specified place in the net and then processed according to defined transitions.

The initial tests of [ARnet WfMS showed promising results to be further proved by
a real-world application.

3 BNB-Grid: Using IARnet for Solving Large Scale Discrete
Optimization Problems

In a most general form the discrete optimization problem is formulated as follows:

given a finite set G and a function f:G— R find x € Gsuch that

F(xX)= f(x) forall xe G (or f(x )< f(x) forall x& G). Many discrete

optimization problems are NP-hard and their resolution requires significant computa-
tional resources. That is why this sort of problems is a traditional subject for parallel
and distributed computing. The branch-and-bound method is one of the main
approaches to solve discrete optimization problems. The approach is based on a tree-
like decomposition of the search space. Since different branches can be processed
almost independently the branch-and-bound method perfectly suits for implementing
in parallel and distributed computing environments.

The BNB-Grid is a programming infrastructure for solving optimization problems
with branch-and-bound method in a distributed computing environment. The
distributed computing environment is characterized by the following issues:

1. computing nodes may have different architecture and significantly differ in
performance;

2. a computing node may not be available all the time along the search: it may
join or leave the system at an arbitrary moment;

3. computing nodes are connected via Internet or Intranet: links may be rela-
tively slow and an access may be secured.



108 A. Afanasiev, O. Sukhoroslov, and M. Posypkin

The approaches based on “Grid”-MPIs (MPICH-G2, PACX etc.) are unacceptable
because of three reasons. First these versions of MPI do not efficiently cope with
issue 2 listed above: there is no a reliable mechanism to handle occasional failure of
one of computing nodes. Second MPI is not a best platform for shared-memory
systems. Third, setting up a Grid-enabled version of MPI and its integration into a
particular batch-system requires administrative privileges. That may not be feasible
on a large system running in a production mode (like publicly available
supercomputers). The completely distributed approach based on some Grid middle-
ware like Condor or Globus Toolkit faces similar difficulties with administrative
privileges. Second the comprehensive utilization of computing resources of a given
node is difficult: for shared memory machines tools based on threading technologies
are better and on HPC clusters the conventional MPI is the best solution.

Ny LY

BNB-Solver BNB-Solver| L___1__

= T
= Agent 1 Agent 2
LY §E gy

Node 1 22 e
Scheduler Agent Agent 3
BNB-Solver

° | Node 3

Fig. 3. The structure of the BNB-Grid application

The BNB-Grid approach is as follows. Inside each computing node the solver is
implemented according to the best technology appropriate for this node. From the
outside the computing node is visible as an IARnet resource (IAR). Different IARs
cooperate via IARnet. This structure is depicted at the Fig. 1. A sample distributed
system consists of three nodes: nodes 1 and 2 are multiprocessor systems while node
3 is a powerful workstation. Each computing node runs a BNB-Solver [14]: a branch-
and-bound solver targeted at uni- and multi-processor systems. The BNB-Solver is
represented in a system as an IAR through an agent (agents 1,2,3 in the case under
consideration). Besides agents representing computing nodes there are also the
scheduler agent and the user interface agent. The former manages work distribution
among computing nodes. The latter handles the user input and allows the user to load
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problem type and data, manage the distributed environment and control the search
process.

During the search computing nodes may join or leave the distributed system at
arbitrary moments. It may happen because nodes are turned on and off or because of
batch system running on HPC cluster introduces delays in starting the BNB-Solver
application or terminates it before the computation is completed. To cope with this
issue BNB-Grid backs up tasks sent to a computing node agent and if the computing
node fails the tasks are rescheduled to other nodes.

Computational experiments were run on a system consisting of a central work-
station at Institute for systems analysis of Russian academy of sciences and two HPC
clusters: MVS 15000BM and MVS 6000IM located at Joint Supercomputer Center
and Computational Center of Russian academy of sciences respectively. Both clusters
contain CPU nodes of approximately same performances on the considered kind of
problems.

The following knapsack problem instance was selected for experiments:

30 30
D 2x, »max, » 2x,<31, xe{0,1},i=12,..,30. This problem is
i=1 i=1

known as a hard one: the number of vertices in the search tree is 601080389. Three
configurations were tried. The average running times obtained from several runs are
given in the Table 1.

Table 1. Running times for different configurations

# Description: Running time:

1 8 CPU MVS 15000 BM 5.57 minutes
2 8CPU MVS 6000 IM 6.03 minutes
3 8 CPU MVS 15000 BM + 8 CPU MVS 6000 IM 3.15 minutes

The simple stealing-based scheduling policy was used: when one node runs out of
work the given number of subproblems is “stolen” from the other node. Experimental
results show that even with this simple scheduling policy remarkable speedup could
be obtained. However for some problems the speedup is much less than the
theoretically estimated. This is the subject for future research to improve the
scheduling policy.

7 Conclusions

The presented IARnet toolkit fills the gap between the low-level middleware
technologies and the needs of application developers by providing high-level tools for
development of distributed scientific applications. These tools allow developers to
focus on a problem being solved instead of becoming an expert in middleware and
Grid technologies. The distinctive feature of IARnet is a support for easy integration
and deployment of software resources.

The availability of multiple transport level implementations allowed us to evaluate
different middleware technologies, namely CORBA, Web services and Ice. Our
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experience indicates that Web services, which are being widely adopted by Grid
projects, offer the poorest performance and suffer from immaturity issues. While the
Ice technology provides consistent and powerful framework lacking deficiencies of
both aged CORBA and immature Web services.

The next version of IARnet will be completely based on Ice to introduce the
advanced functionality, such as secure communication, authentication, session
management, flexible configuration and administration of a local resource pool. The
future work on IARnet will also focus on integration with popular Grid middleware.
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Abstract. The application of the Orthogonal Organized Finite State
Machine (OOFSM) to the representation of data acquired by sensor net-
works is proposed. The OOFSM was proposed in earlier work; it is suc-
cinctly reviewed here. The approach and representation of the OOFSM
to sensor acquired data is formalized. The usefulness of this OOFSM
application is illustrated by several case studies, specifically, gradients,
contouring and discrete trajectory path determination. In addition, this
paper informally discusses the OOFSM as a Cellular Automata.

1 Introduction

Finite State Machines (FSMs) have a long history of theoretical and practical
developments. In brief simplicity, an FSM is characterized by a set of states
and a set of transitions between these states, often together with definitions of
the set of start and terminal states as well as perhaps with other attributes.
The majority of FSMs in the literature do not consider the spatial relationships
between states. In [I], an orthogonal arrangement of states is considered: this
is termed an Orthogonal Organized Finite State Machine (OOFSM). There are
several advantages of such an organization including the definition of indexing
and selection functions to select regions of interest as well as the state space
discretization of continuous complex dynamic systems [I].

The intent of the OOFSM as developed in [I] is to realize a discretized repre-
sentation of a continuous complex dynamic system. In particular, trajectories in
the continuous system are represented by a sequence of labeled transitions be-
tween states in the OOFSM, these labels are in fact based on the index (metric)
space. The goals of the original work include the understanding of the behavior of
the regions that trajectories pass through. In the OOFSM representation, these
regions can be identified by the indexing/selection functions. Ultimately, one of
the aims is to predict trajectory evolutions towards cascading failure states.

Sensor networks are especially designed for data acquisition. Sensor networks
can be wired or wireless, static or mobile, and may have other properties such
as autonomic, low-power budgets and small physical size [2]. Sensors may be
placed in a physical environment that is modeled by a dynamic system. In such
cases, the sensors provide observations of the partial or full state space of the
dynamic system.

V. Malyshkin (Ed.): PaCT 2007, LNCS 4671, pp. 111{118) 2007.
© Springer-Verlag Berlin Heidelberg 2007
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The earlier work is extended in a new direction in this paper. First, we consider
the problem of observable data given an OOFSM representation. In particular,
we consider sensor network acquired data and treat these data points as obser-
vations. In this work, we generate the acquired data via simulation, although,
empirically obtained data could also be used. Our objectives are: a) representing
the observable data as a discrete labeled trajectory in an OOFSM, b) describing
the discrete regions of interest and/or behavior associated with these discrete
trajectories. We do not consider the problem of relating the observable data in
the discrete space back to a continuous system in this paper.

This paper is organized as follows. The next section, Section 2l reviews the
definition of OOFSM based on [3] and is provided here as the succinct for-
mal definition of the OOFSM abstraction. Section [J describes the approach
and methodology used in this paper. Section [ describes several applications of
the OOFSM applied to sensor acquired data. The relationship with Cellular Au-
tomata is discussed in Section[Bl Technological aspects are discussed in Section [Gl
Conclusions are given in Section [1

2 Review [3]

Orthogonal Organized Finite State Machines (OOFSM) [I] represent a lattice
partitioned, and therefore a discretized, state space of a dynamic system. For-
mally, it is defined by M = (Y, £, Vy). A lattice partitioning £ applied to an n
dimension state space X = {x1,22,...,2,},x; € R leads to a set of discretized
states £ : X — Y where Y = {yo0,91,-.-,Yo—1} for some finite o. In general, £
defines a set of partition boundaries P = {p;;[1 < i < n,0 < j < o — 1} with
pi; € R~ = (b, bu)i;>bu > by. Each p;; is aligned normal with the correspond-
ing ith state variable; ¢(b) denotes this value. A discrete direction vector field
vj = (...,ai,...) where a; = |J, vj,, is the union of a set of discrete direction
vectors {v;, | K > 1} in state y; of Y; a; € {—1,0,1}. The intersection of a
trajectory e € I with p; € P for a fixed j derives v;; the intersections of all
e € E with p; € P derives v, for a fixed j. Lastly, the set Vg = {v; | j € R} for
region R defines a region field; Vy denotes some general region field. A uniform
region field has the same region field for each y; € R. For convenience, elements
of Y may be interchangeably expressed in terms of the dimension of the system.
Figure [ illustrates an OOFSM for: n = 2, uniform unit £ so that o = 16 and
P = {ploap207p117p217 <o P15 P25, - -p1157p215} such that py, = (bh(o,o) ) bul(o,o))
where ¢(by, , ,,) = 0 and ¢(by, , ,,) = 1 (i-e., the values on the z; axis correspond-
ing with the lower and upper boundaries of the ‘vertical’ partition pair compris-
ing the ‘left’ and ‘right’ sides of state yo0) and so forth with X = {x1,z2},
and Vy = Vg, UVg, where vg3 = ({0}, {0}) defines the uniform region field
Vg, for Ry = {yx3/0 < k < 3} and voo = ({0},{1}) defines the uniform
region field Vg, for Ro = {yx |0 < k < 3,0 <[ < 2} (i.e., there are two uni-
form region fields with the first being null (terminal states) associated with the
‘top row’ and the second being ‘up-wards only’ associated with the remaining
states).
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3 Approach and Methodology

The initial inputs are obtained from a sensor network. Such a sensor network
typically has many spatially distributed sensors that acquire data at specific
times. In general, the data has two fundamental properties: structure and value.
Its structure is derived from two possibilities, either the physical placement of the
sensors determines physical coordinates (e.g. ,y,z coordinates, GPS coordinates,
etc.) or the data itself has some apriori defined structure (e.g. vectors, tensors,
etc.) Its value refers to the semantics of the actual measurement. Values have
ranges (e.g. an interval in R). These properties have been noted elsewhere in the
literature, for example, in data visualization [4[5].

Let the set D* = {Dy, Ds,...} denote a collection of temporal organized
data values where D; denotes all the sensor data at some ith time. And, D =

(di,ds,....d;, ,di,ds,...,dy, ) where d,d; denotes, respectively, structure and
value components and each di, dj such that 1 <i,j < my, ms is in the, respec-

tively, maximal measurement range of the associated sensor’s data organization
and data value.

If a dynamic system is known, than X and Vy are also given. Given X, then
d; — z; for 1 <i < m and j € [1..n], that is, there are m observable states in
an n dimensional state space, m < n.

For the case where there is no dynamic system or it is unknown, both X and
Vy need be determined from the sensor data. Let X denote the determined
space (the shift of notation provides the semantics that no underlying dynamic
system is involved). Consider the two cases:

1. X is determined from the data’s structure: d; —zyforl <i<mg,n=
m1. Here, the structure states are observable and the state space directly
represents the organization of the data. £ reflects the OOFSM structuring
imposed on the organization of the sensors. Transitions through this space
reflect ordered selections of the value elements. Let some arbitrary bijective
function f(D*) — Vg, that is f applied to the sensor acquired data results
in a set of state transitions. The choice for f is motivated by seeking logical
orderings of the sensor data subject to the nearest neighbor connections
mandated by the OOFSM.

2. X is determined from the data’s value: df — z; for 1 < i < mgy, n = mg,
that is, all states are considered to be observable. £ reflects the discretization
over the sensor measurements: in this paper we assume that the discretization
results in well-behaved transitions, for example, to ensure nearest-neighbor
state changes. In [I], a partial region field was discussed as a model for
transitions determined by a finite sub-set of all possible trajectories in the
underlying dynamic system. Similar here, we can say that D +— y; for some
kth state and D* — V i where the region field is a partial field. The larger
D*, the more state transitions may be defined and the more complete the
region field becomes.

Now, Y has been determined. Each state in Y is labeled; a simple practical
method is to select b; from all P in N™ (e.g. y0,0, Y1,0, €tc. in Figure [II).
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uniform unit partition £ OOFSM

4 Applications to Sensor Acquired Data

This section consists of simulated examples as case studies. The first two case
studies are based on a simulation of 50 two-dimensional lattice-arranged tem-
perature sensors constructed with each sensor’s location placed such that the
location represents the center of the state determined by £ = {boundaries in-
tersecting the axes at ordinal values}. Hence, the data’s structure consists of
x,y coordinates and its value is a scalar in R (we ignore the operating ranges of
sensors here). The third case study eliminates the structure and instead, con-
siders the state system to be composed of discretized ranges over each sensor’s
value. This more closely represents the view-point adopted by observable states
associated with a dynamic system.

4.1 Gradient

A temperature gradient is considered in this case study. The temperature val-
ues are distributed according to simple (linear) assumptions (since we are not
interested here in simulation accuracy with thermo-models). Figure 2 shows the
raw data temperature distribution in the corresponding OOFSM while Figure [3]
shows a typical visualization of the temperature distribution in the OOFSM.
These figures are generated by AVS/Express visualization software. Neither the
raw data nor the visualization provide sufficient clarity regarding the possible
bifurcation in the system; as shown dramatically in Figure @ In this figure, the
uniform vector fields corresponding to the transitions from low-values to high-
values are plotted; hence two regions of behavior are identified.

4.2 Contouring

A temperature contour is considered in this case study. The distribution, shown
in Figure[[] is somewhat modified from that used earlier (the change better clar-
ifies the results). Figures[6] and [ show typical visualizations of the data, the first
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OOFSM

uses a standard scatter-to-uniform 2ed-order interpolator to fill-in data values
in-between the sensor points, and the second graphs the contours based on the
interpolated values. As before, AVS/Express software is used. The correspond-
ing OOFSM in which the contours are represented by state transitions only to
neighboring states of the same value is shown in Figure 8l The discontinuity in
the trajectory path between states 6,2 and 7,1 containing the data value of 17
occurs due to the non-neighboring transitions, exactly in this case, corner-wise.
A refined lattice partitioning would usually take care of this situation. Further-
more, we could allow the corner-wise transition to pass by the corresponding
neighboring states (e.g. via state 6,1 or 7,2) Note that there were many such
corner-wise transitions in the previous case study.

4.3 Temperature System

Let the lattice partitioning impose a discretization over the ranges of sensor ac-
quired temperatures. Since each sensor uniquely monitors its environment, each
sensor provides an independent temperature measurement. For each such mea-
surement, the discretization reflects a single dimension of the overall state space;
hence, the number of temperature dimensions equals the number of sensors. Such
high dimensional state systems are very common in dynamic systems.

For this discussion, we assume two sensors, hence a two-dimensional state
space. Let us choose a partitioning such that each state is unit temperature as
illustrated in Figure [@ This figure shows a hypothetical trajectory as might be
determined by a sequence of temperature measures over time.

5 Cellular Automata Discussion

There is a close relationship between the OOFSM described in this paper and
cellular automata (CA). In [6], four features are identified to characterize a
CA: geometry, cell neighborhoods, cell states and local transition rules for cell
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state changes. The orthogonal structure of the OOFSM, i.e. as given by L,
corresponds with an n-dimension CA of the orthogonal neighborhood type. The
neighborhood is defined by all the transitions into a given cell state, that is, all
the states in the OOFSM with at least one discrete direction vector defining a
transition from that cell state to the current cell state. For example, in Figure [T
the neighborhood of y; ; is y; ;-1 for 0 <7 < 3,1 < j < 3. Cell states and
the local transition rules are contextually defined by the applications. In this
paper, the cell states reflect properties of the sensor acquired data. The local
transition rule is a cell-centric interpretation of the factors that determines the
discrete direction vectors defining the neighborhood. This refers to f(D*) for
Case[lland D* for Case ] of Section [Bl This completes the informal description
of the OOFSM as a CA.

An example for the Gradient application discussed in Section ETl is given.
Recall, the sensor data is D* with temperature dj and that f defines transitions
from low to high temperature values. Let ¢, = dY for the kth cell state (a matter
of convenience). Then, the local rule may be defined as max, .y (tx) < t; where

Y denotes the set of states of the neighborhood. For the particular temperature



OOFSM Application to Sensor Acquired Information 117

Sensor 2
°

15 16 17 18 19 20
Sensor 1

Fig. 9. Two temperature sensor state space, a hypothetical trajectory is shown

values given in Figure 2] a specific local rule could be: select any neighbor and
add one to its state. The interpretation of local rule here suggests that the
local rule is representation-driven and not compute-driven. The state values are
already known, but the local rule is not. The process is to infer the local rule
from the known parameters.

6 Technological Aspects

Some brief comments about the concurrency inherent in the application of the
OOFSM to sensor acquired data are made in this section. A full treatment of the
concurrency inherent in the OOFSM, the related CA and associated processes
is beyond the scope of this paper.

Consider the computations needed for to determine Y. For Case[Ilof Section[3]
without loss of generality, Y is computable by considering two states which share
a surface. Each such pairing is independent of another (assuming that concurrent
updates are handled in concept by appropriate semaphore locks). Hence, there is
a high degree of inherent fine-grained parallelism. For example, in the Gradient
application, Section {1} the pairings are: (y; j, Yi+1,5), (Yi,jsYi—1,5), (Yij» Yij+1)
and (yi,;, ¥i,j—1). For Case[2of SectionB], Y is computable by considering the time
sequences in D*. When D* is known (as for example when the data is stored at a
centralized database), then there is inherent fine-grained parallelism between D;
and D;;,. However, when D* is available as a real-time stream, then the process
itself is inherently sequential due to the streaming. Each vy is local to the state
k and may be stored locally in a distributed-memory multicomputer. The issues
of partitioning and mapping fine-grained parallelism onto multicomputers have
been well investigated (see for example [7]); past experience suggests that further
performance analysis is needed.

7 Conclusion

The Orthogonal Organized Finite State Machine (OOFSM)was proposed in ear-
lier work as a mathematical model that supported representation and visual-
ization of dynamic systems. In this paper, its use is broadened by considering
the OOFSM representation of data acquired by sensors. The usefulness of this
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OOFSM application is illustrated by several case studies. Specifically, gradients,
contouring and discrete trajectory path determination were studied. In addition,
this paper informally discusses the OOFSM as a Cellular Automata.

This paper concentrated on the ideas behind these novel application areas of
the OOFSM. Clearly, enhanced simulations and experimental results are needed
to provide realistic data sets which in turn would be used in realistic evaluations
of our approach. This constitutes the bulk of our intended future work.
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Abstract. The numerical analysis of some broadband electromagnetic
fields and frequency-dependent materials using a time domain method is
the main subject of this paper. The spatial and time-dependent distri-
bution of the electromagnetic field is approximated by the finite element
method. The parallel form of the algorithm valid for some linear materi-
als, and the formulation of the FE code for a dispersive electromagnetic
problem are presented and compared. The complex forms of these al-
gorithms have an effect on the memory and computational costs of the
distributed formulation. The properties of the algorithm are estimated
using high performance cluster of workstations.

1 Introduction

Investigation of time-variable electromagnetic fields using high performance com-
puter systems is a useful tool for computer aided analysis and designing of
broad spectrum of electromagnetic systems (e.g. some microwave circuits, wire-
less communication networks, medical equipments) [II2I3J4]. A typical problem
in computational electromagnetic (CEM) includes analysis of some broadband
electromagnetic waveforms and their interaction with some solid structures.

Ideally any CEM algorithm should model time-dependent electromagnetic
phenomena accurately and efficiently. The analysis of the propagated nonhar-
monic electromagnetic waves is possible owing to direct integration of partial
differential equations in time domain. In general case, the size of the model rel-
ative to the wavelength of the electromagnetic wave, as well as the implemented
schemes of numerical integration lead to a definition of a hard computational
problem. The CEM algorithm for broadband problems should also have enough
flexibility to represent complex properties of any material structure (including
geometry and material properties). Unfortunately these expectations tend to be
mutually exclusive. Depending on the aim of the analysis a compromise must be
find.

* The work has been performed under the Project HPC-EUROPA (RII3-CT-2003-
506079), with the support of the European Community - Research Infrastructure
Action under the FP6 Structuring the European Research Area Programme.

V. Malyshkin (Ed.): PaCT 2007, LNCS 4671, pp. 119 2007.
© Springer-Verlag Berlin Heidelberg 2007
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Fig. 1. Dependency of the formulations of a CEM problem, including problem formula-
tion and form of the parallel algorithm. The q indicates the field quantity q € {e, h, p}.

The CEM methods have evolved to more accurate and real-time algorithms
based on either frequency-domain (FD) or time-domain (TD) formulation of
the problem (Fig. 1). The direct integration of the Maxwell’s equations in time
domain is more suitable for complex analysis than any frequency domain formu-
lation. The numerical complexity of the algorithm increases, but the formulation
of time-domain algorithm is suitable for parallel analysis of electromagnetic prob-
lems in either shared or distributed memory computer system [I/4/5]. Both the
domain decomposition and task decomposition can be implemented in a parallel
version of the CEM-TD algorithm.

According to the Fourier’s theory, the time domain representation of any
complex electromagnetic waveform is equivalent to the related frequency domain
form. Analysis of the broadband EM phenomena forces definition of a multiplica-
tive frequency domain algorithm [5]. In this way, any full wave electromagnetic
problem must be reduced to a set of single-frequency problems. Unfortunately,
direct implementation of this scheme in numerical analysis of a large-scale EM
problem is not efficient. The size of the analyzed electromagnetic problem, and
infinite spectrum of some real signals are the main constraints. The split-step
frequency domain approach provides a powerful tool for analysis of some lin-
ear electromagnetic problems with a simple, reduced spectrum of the waveform,
and significantly reduced model of dispersity. The real spectrum of dispersive
material is sampled in frequency domain. The parallel implementation of the



Parallel Broadband Finite Element Time Domain Algorithm 121

single-frequency CEM algorithm can be developed with domain decomposition
and/or task decomposition paradigm [I16].

The objective of this paper is a finite element time domain (FE-TD) method
in a parallel version. The effect of medium dispersion is incorporated in the
presented algorithm. Two forms of the parallel finite element-time domain al-
gorithm for linear and dispersive materials are presented and discussed. The
efficiency of these algorithms is analyzed. The memory cost and performance of
the FE-TD formulations for dispersive materials are presented. The properties
of the algorithm are validated using a cluster of workstations system.

2 Problem Formulation

The common form of the wave equation is derived from the time-dependent
Maxwell’s equations [7]. It describes the physical state of the analyzed system,
assuming linear and dispersionless properties of material structures
1 OE O’E
quVxE+yat+f(t)+eat2 =0, (1)
where f(t) denotes imposed currents, v, €, i represent electrical conductivity, per-
mittivity and permeability of the medium respectively. The distribution of the
field is expressed by the vector of electric field intensity e = e(x,y,z,t) =
Ey-1,+E,-1,+ E,-1,, defined in the four dimensional continuum. This form
of the constitutive equation is valid for a narrow-band analysis of the electro-
magnetic filed or a problem where, the properties of the media do not depend
on the frequency of the electromagnetic wave (Fig. 1).

Some widely implemented material structures have dispersive properties (e.g.
non-ideal dielectrics, composites, fiber-wires, biological tissues). An induced high
frequency polarization of molecules and particles changes the resultant spa-
tial distribution of electric flux density in this system, D (w) = epecoE (w) +
eoX (w) E (w), where ¢ is permittivity of free space, e is the infinite frequency
relative permittivity, and x (¢) is the electric susceptibility. Therefore, the time-
dependent distribution of electric field in the broadband formulation, assuming
dispersity of some materials, is stated by equation

1 OE O°E 2 ([
V x MVXE—#Wat + €0€oo 912 +608t2 </0 X(t—T)E(t)dT> =0, (2

where x (t) = F~! {x(w)} is a time domain form of frequency dependent sus-
ceptibility. In this formulation, the dispersity of the model is described by the
empirical, multipole resonance Lorentz model of susceptibility [7I8/9]

m=rr [y, Ao S AT G gt 1), (3)
X = . = e 2 sin(wgpt)u
= Wk, + jury —w? = w3, P ’

where P is the order of the model, Ae¢, is a decrement of permittivity for p-th
pole, w, , - plasma frequency, w, , - resonant frequency, v, - damping frequency,

Wap = \/o.)g’p —0,2502, and wu(t) is the unitary step function.
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The equation (2), after implementation of Galerkin method, is solved with the
finite element (FE) algorithm. The geometry of the model is discretized using the
first order tetrahedral, edge elements [I]. In this formulation of the FE method,
the distribution of electric field is approximated by circulation of electric field
along any edge of the model. Therefore, the total number of degrees of freedom
(Npor) is equal to number of edges in the model (Ng).

The convolution of susceptibility and time-dependent distribution of electric
field in the model is approximated by the PLRC (Piecewise Linear Recursive
Convolution) method [89]. The second order derivative of the convolution is
calculated using unconditionally stable Euler-backward scheme. The approxi-
mated form of the wave equation (1) or (2) is integrated in time domain using
the unconditionally stable, second order accurate Newmark-beta method [419].
Therefore the final form of matrix equation is given by

M 2
A-E, = <QZTOW— A; s) B, —
m=1
M 2
- (Z Too,m - AtR_ At S) 'En—l +
— 2 2
M P
+ Z Z (2 — e—gpAt) . TO,me,n - TO,me,n—la (4)
m=1p=1

where the A matrix is a linear combination of T« 1, Ro, and S matrices

M
At
A= Z/Veoo,mUindeL 5 /VUUindV+
m=1

A2 1

+ / (V x U;) (V x Ujy)av. (5)
4 Jvp

Dispersity of any material in the model changes the form of the matrix equation.

A supplementary matrix associated with dispersity of the model is added in the

PLRC form

A A4S S0, TR0 (A, g e 6

These additional components change the form of the resultant matrix. Simulta-
neously, the stability and convergence of the algorithm can drastically degrade.
The temporary value of convolution is expressed by equation

P
—rp At § :

Cpntl =€ p Cp.n + En+1
p=1

Aepwg »
5 At _ 1 —fipAt _|_
Atk2wa p (Atrep =1+ )

P

E AGPOJ(%J) 1— At —kp At —kpAt 7
+Z nAmQde( — Atrpe —e )- (7)
p=1 pd,
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3 Distributed Formulation of the Problem

Concerning parallelization of the time-domain algorithm, a common 1D domain
decomposition paradigm is used. The set of edges in the FEM model is decom-
posed into non-overlapping sub-domains. Depending on degrees of freedom in the
FE model and implemented model of dispersion, the algorithm can be flexible
matched to a multi-computer platform [TI/4].

The distributed FETD algorithm is elaborated by explicit parallelization of
the sequential code. The own, parallel implementation of preconditioned con-
jugate gradient (PCG) algorithm is used to solve the matrix equation (4) [10].
Since the resultant matrices A, R, S, T », and Ty, are sparse, they full repre-
sentation in the computer memory are squeezed with the CRS (Compressed Row
Storage) algorithm. However, these matrices remain the largest data structures
in the algorithm, and they are homogeneously decomposed between processing
units PE. The size of common matrices A, T, R, S for the linear problem, as
well as T, To,p in dispersive formulation, makes data transfers between com-
puting units non-efficient or even impossible. These data structures are included
into the critical section of the algorithm (Fig. 2). The critical section of the
common FE-TD algorithm gathers the operations with some distributed parts
of matrices. The spatial decomposition of the matrices on either distributed or
shared memory environment is the general constraint of the presented algorithm.
The critical section of the algorithm consists of tasks, where one of the operands
is a part of local sub-matrix.

The implemented model of electromagnetic dispersion shapes the final form of
the distributed FE-TD algorithm. Dispersity of materials and broadband anal-
ysis of EM field yield the complex formulation of the FE-TD algorithm (Fig.
3). The broadband formulation of the electromagnetic phenomena requires to
solve the large scale matrix equation and step-by-step calculation of convolution
between time-dependent distribution of electric field and the complex-form time
dependent susceptibility (2). Two coupled sets of unknowns are defined. The first
one, typical for a common, linear version of the algorithm (1), consists of three
vectors of electromagnetic field in the successive time steps {E,_2,E,_1,E,},
dim (E,,) = Npor. The time variable vectors of convolutions form the set
of extraordinary variables, {C1,,-1,C1n, s Cpn-1Cpn, ", CPn-1,Cpn},
dim (Cp,) = Npor. The vectors of calculated electromagnetic field, as well as
the vectors of convolution {C1 p,--,Cppn_1} are duplicated in the computing
nodes. As some consequences, the computational cost of the algorithm drasti-
cally increases. If the number of the matrix-vector multiplications in the linear
problem is stated by equation N }VIXU = 3+ Npcg the FE dispersive problem re-
quires N}\}lxv =3+ Npca+ Z%:l P,, multiplications in each time step. The M
denotes number of dispersive materials, and P, - the order of dispersity for the
m-th material. The Npog means the number of iterations in the implemented
iterative matrix solver (e.g. preconditioned conjugate gradient algorithm).

Finally, the structure of the distributed algorithm must be changed, since

some new bottlenecks are determined, and calculation of coupled unknowns
{En—2,E,_1,E,} and {Cy -1, --,Cp,} must be interlaced. The distributed
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szﬁ GD Geometry data of the FEM
model.

MD Material data.
BC Boundary condition.
IC Initial condition on time-
domain formulation.
A Assembling of T, R, and S
matrices.
A4 Assembling of incident wave
in each time-step.
m  Matrix-vector dot product.
Initialization and step-by-step
calculation of the E vector.
Formulation of the right-
jxgp 100 sided vector of equation (4),
= (5) and (6).
- S Iterative solver of matrix
Critical section equation [10].
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Fig. 2. Graph of the finite element time domain algorithm for a linear narrow-band
EM problem. Weight coefficients of threads (nodes on the graph) and relations between
threads (thin arrows) are estimated for a medium sized FEM model Npor = 337620.
Wide, gray, horizontal arrows indicate data transfers between processing units.

E;,~f(1)

174
A4 27
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Critical section Critical section

Fig. 3. Graph of the FE-TD algorithm for a dispersive, broadband EM problem. The C
denotes initialization and step-by-step calculation of the (M - Py,,) convolution vectors,
and A4 is the assembling task for the dispersive components of the A matrix.

version of the algorithm must bring together memory cost and distributed struc-
ture of data structures of the extended formulation and the computational cost
of some extraordinary subroutines.
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4 Numerical Performance

The algorithms mentioned above are tested using NEC Xeon EM64T Cluster
with Npp = 64 computing nodes connected by the Infiniband network. The
distributed processing is supported by the MPI 2.0 standard. The final form of
the code is tuned and optimized with the aim to get the best performances on
this platform.
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Fig. 4. Comparison of the memory cost for linear and dispersive algorithms

The total memory cost depends on the number of computing units in the
cluster, and assumed dispersity of the model (Fig. 4). The number of computing
units Npg can be matched to the size of the model, but some extraordinary data
structures enlarge the memory cost of the distributed algorithm. The dispersive
form of the EM problem introduces some new data structures, therefore its
relative scalability is quite worse than the linear formulation. Increasing the
number of dispersive materials and the order of dispersity in the analyzed CEM
problem either the size of the FE model must be reduced or the number of
computing units in the COW should be enlarging.

Some improvements of computing time are found when the number of com-
puting units is less then 48 (Fig. 5). If Npp > 48, the speedup of the algo-
rithm degrades, since communication cost of the distributed solver exceeds prof-
its of parallel processing. The speedup of the elaborated algorithms depends
on the bandwidth of communication network in the multi-computer, memory
distributed system. Therefore, the calculated speedups increase linearly with
respect to number of processing units for some small and medium size COW
systems. The speedup curves are saturated, when the communication network
could not cope with some indispensable data transfers.
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Fig. 5. Speedup of the FE algorithm as a function of the order of dispersity

5 Conclusions

Implementation of dispersive materials has an effect on memory cost and overall
performance of the distributed analysis. The number of interlaced and coupled
distributed tasks in the dispersive EM problem is larger than in the linear one.
The throughput of the network and the latency of the communication constitute
the limits of efficiency of the presented algorithms. The interdependences be-
tween decomposed data structures demand the simultaneous, step-by-step pro-
cessing of the electromagnetic field and the convolution vectors. It should be
stressed that, the distributed subtasks in the presented time domain linear and
dispersive algorithms are tightly coupled. Therefore, the implemented model
of communication is constrained by the mathematical formulation of the EM
problem. The consistency of numerical solution of electromagnetic phenomena
requires implementing some blocking communication commands, including the
point-to-point communication and broadcast commands. An alternative pattern
of communication with non-blocking commands has to be implemented with
some predefined barrier points in the algorithm. The locations of these synchro-
nization points are extorted by the causality of the leapfrog form of the time
domain algorithm (i.e. Eg — Cy — E; — C; — --+). They do not depend on
the properties of implemented distributed-memory platform.

Therefore, the dispersity of the EM model enlarges the memory as well as
computational cost of the FE-TD algorithm. The presented formulation of the
finite element time domain method for dispersive materials results in an I/0
bound algorithm.
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Abstract. Protoplanetary disc simulation must be done first, with high
precision, and second, with high speed. Some strategies to reach these
goals are presented in the paper. They include: the reduction of the 3D
protoplanetary disc model to quasi-3D, the use of fundamental Poisson
equation solution, the simulation in the natural (cylindrical) coordinate
system and computation domain decomposition. The domain decompo-
sition strategy is shown to reach the simulation goals the best.

1 Introduction

The origin and evolution of protoplanetary discs have been widely studied in
recent time (for a review see e.g. [I]). The problem of organic matter genesis in
the Solar System is a matter of special interest. In [2] the protoplanetary disc is
considered as a catalytic chemical reactor for the synthesis of primary organic
compounds.

N-body interaction in self-consistent gravitational field is one of the most
important problems in the study of physical processes in protoplanetary discs
[6]. The mathematical model of the interaction consists of the two equations:
Vlasov-Liouville collisionless kinetic equation and Poisson equation. Numerical
solution of Vlasov-Liouville equation is carried out by the Particle-in-Cell (PIC)
method [45].

The bottleneck of the numerical experiments is the solution of 3D Poisson
equation at each timestep. Moreover, it is necessary to trace the individual move-
ment of a large number of particles [7]. Finally, the 3D grid arrays of density,
potential and gravitational forces must be stored in the RAM.

The spatial resolution (that is, the computation grid size) must be high enough
to study the nonlinear processes such as formation of clumps [6]. The clumps
are thought to be probable planet embryos and their size is much lower than
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?Biosphere origin and evolution”, Subprogram [7-04 of RAS Presidium Program
”Stars and galaxies origin and evolution”, RFBR (grant 05-01-00665), SB RAS Pro-
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PHII.2.2.1.1.1969.
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the computation domain size. Thus the formation of clumps would be simulated
incorrectly with low spatial resolution (on a coarse grid).

The above listed difficulties were partially removed by reducing the 3D model
of the disc to a quasi-3D one [8I9/10]. In the quasi-3D model the matter has no
vertical velocity, but the gravitational field distribution must still be considered
three-dimensional, that is why the model is called quasi-3D, not just 2D.

The quasi-3D model is probably valid in the case of the protoplanetary disc, its
thickness being by one order of magnitude less than its radius. Another stipula-
tion for the quasi-3D model of the disc is the presence of a large body in the centre
of the disc [12]. Thus the quasi-3D model is suitable to study the later stages of
the protoplanetary disc evolution. On the other hand, there are problems that
cannot be solved with the quasi-3D model. For example the reconstruction of
the observable spectral emission diagram (SED) of the protoplanetary disc [3]
can be done only by means of the full 3D simulation.

On the basis of the PIC method we have designed a number of numerical
implementations of mathematical model of protoplanetary disc that differ by
the Poisson equation solver [7U8IT2TT]. It is necessary due to the following two
reasons:

— the problem lacks an analytical solution in a wide range of initial parameters
and the comparison of numerical experiments with different programs could
be used for the verification of the numerical solution,

— the designed parallel algorithms may work differently with various param-
eters of the numerical experiment such as the number of particles and the
number of grid nodes.

In the present paper we consider various strategies of parallel implementation
of the protoplanetary disc model depending on the features of the model. In
section [2] the considered protoplanetary disc model is presented and its numer-
ical implementation is briefly discussed. Then in section Bl the goals of parallel
implementation of the protoplanetary disc model are listed (section B.2) and
the general method for reaching these goals is proposed (section B3)). In further
sections the different strategies for implementation of the protoplanetary disc
model are presented.

All the numerical experiments were conducted with the supercomputer MVS-
1000M based on Alpha21264 processor in both Siberian Supercomputer Center
(Novosibirsk) and Joint Supercomputer Centre (Moscow). MPI library is used
to perform the interprocessor communications.

2 Protoplanetary Disc Model

2.1 Basic Equations

The dynamics of the dust component of a protoplanetary disc is described by
Vlasov-Liouville kinetic equation. The gravitational field is determined by Pois-
son equation. These equations have the following form:
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0 0
/ +vVf+a / =0
ot v (1)
AP = 4Gy,
where f(t,r,v) is the time-dependent one-particle distribution function along
coordinates and velocities, a = —V@ is the acceleration of unit mass particle.

G is the gravitational constant, @ is the gravitational potential. Here we employ
the collisionless approximation of the mean self-consistent field. The detailed
description of the model could be found in [7SI9IT0].

The full-scale model of the protoplanetary disc also includes gas dynamics,
radiation, chemical reactions, coagulation of dust particles etc. But the present
paper is focussed on the two presented equations since their solution is the
bottleneck for parallel implementation.

2.2 Numerical Implementation of the Model

Protoplanetary disc simulation involves solution of the complex system of equa-
tions: Vlasov-Liouville kinetic equation and Poisson equation. Vlasov-Liouville
equation is widely ] solved by the Particle-in-Cell method [5].

There are a lot of Poisson equation solvers (they can be found in [14]). However
for our model we have special requirements and restrictions. First of all, we
need to solve 3D dimensional Poisson equation on very fine grids. The fastest
techniques based on circular reduction (e.g. FACR, DCR) could not be used
on fine grids due to intrinsic numerical instability. Second, numerical method
must be easily parallelized. And finally, Poisson equation must be solved at
every timestep of the computational experiment. Thus the iterational methods
are worth using since they can capitalize on the potential from the previous
timestep into account.

The parallel programs that we have designed differ by the Poisson equation
solver in the first place. The following methods were employed:

— 3D Fast Fourier Transform (in the program with domain decomposition),
— Fast Fourier Transform with Successive Over-Relaxation (3D program in

cylindrical coordinates and quasi-3D program)
— and the solver based on the fundamental solution of Poisson equation.

In sequential program FFT is the fastest if the Poisson equation is solved once,
FFT with SOR is faster than mere FFT when there is a number of timesteps
in a sequence. Solver based on the fundamental solution is the slowest from the
three but it is parallelized the best.

3 Parallel Implementation of the Protoplanetary Disc
Model
3.1 Necessity of Parallelization

The computational resources required for the solution of the present problem
could be estimated, for example, in the following way.
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The most interesting area in the simulation of the Solar System genesis is
situated inside the Mars orbit, its radius being 40 times smaller than the full
radius of the system (the radius of Pluto orbit). If 10 grid nodes are set at the
length of Mars orbit, which is at least necessary, then the total grid size is 400
nodes along radial direction in the cylindrical coordinate system. In such a way
we get an estimate of 400® nodes for the 3D grid.

For the noise level to be less than 10% it is necessary to have more than 100
particles for a grid cell. Thus we get 6.4 billion particles, which is about 300 Gb
RAM (3 coordinates and 3 velocities for each particle in double precision).

Modern workstations are capable of numerical experiments with the maximal
number of grid nodes 1282 and the number of particles not more than 10 million.
And even this requires from two up to seven days [12].

Thus the parallel implementation of the mathematical model () is absolutely
necessary for simulation of the protoplanetary disc.

3.2 Goals of Parallelization

Goals for parallel implementation of the mathematical model of the protoplan-
etary disc are the following:

— Conduct the numerical experiments with both the number of grid nodes
and number of particles high enough to provide the desired precision of the
computation. Computational experiments of such a large size are usually
impossible for single processor workstations.

— Conduct a set numerical experiments (possibly including dozens of exper-
iments with different initial parameters) at a reasonable time. From our
point of view, this reasonable time for a set of numerical experiments aimed
at validation of a hypothesis should not exceed one month.

In such a way high values of speedup are not relevant for a parallel program
implementing the mathematical model of a protoplanetary disc. Moreover, the
concept of speedup itself should be refined. If it is considered as a sign of quality
of the parallel implementation of a mathematical model, it should be corrected.
The speedup is usually defined as a ratio of the computation time on a single
processor to the computation time on a multiprocessor system. But the problem
is that the single processor computations might be of no interest for a physicist.

The main requirement to the parallel program implementing the model of
the protoplanetary disc is the ability to distribute the computation uniformly
between the maximal number of processors. It is necessary to achieve the high
precision of computation by means of using large amounts of RAM, and to
achieve the high speed of computation by means of using a large number of
processors. To provide the ability to distribute the computation it is necessary
to have:

— uniform workload of processors
— minimal amount of interprocessor communications.
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3.3 Strategies of Parallelization

It should be taken into account that different parallel implementations may result
in different computation times depending on the parameters of the numerical
methods. That is why we consider various parallelization strategies.

Special numerical methods should be selected for the parallel implementation
of a mathematical model. That is, the methods that could be naturally divided
into an arbitrary number of equal independent parts. It is one of the key ideas of
the assembly technology for parallel program synthesis [15]. This requirement is
satisfied by the PIC method for Vlasov-Liouville equation and Fourier Transform
method for Poisson equation.

The Discrete Fourier Transform reduces the 3D Poisson equation: (in cylin-
drical coordinate system)

10 ( 8@) 100 0%

ror \" or 72 0?2 + 022 ArGp (2)

to a set of independent 2D equations of potential harmonics (here denoted as
Hy(r, 2)):
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So it was quite natural to use this feature to parallelize the solution of Poisson
equation by assigning groups of harmonics to processors.

The PIC method [5] reduces the solution of Vlasov-Liouville kinetic equation
to the solution of movement equations for separate particles. Since the com-
putation of coordinates and velocities of a particle does not depend on other
particles, then the PIC method is the natural method for the parallel solution
of Vlasov-Liouville equation.

In such a way the possibility of parallelization must be present in the very
structure of the employed mathematical methods, as it is seen in formulae [3

N, R = 3 ez cos

4 Parallel Program for Quasi-3D Disc Model

A parallel implementation of the 3D disc model would require interprocessor
communications involving 3D arrays. The easiest way to implement a parallel
model of the protoplanetary disc is to reduce the 3D model to quasi-3D. In quasi-
3D model the vertical motion in the disc is neglected, however, the gravitational
field must be considered three-dimensional.
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Poisson equation is solved on a grid in cylindrical coordinate system in order
to take disc symmetry into account and rule out the non-physical structures
appearing in Cartesian coordinates. The details of the Poisson equation solver are
given in [8IT3]. First, the FFT is applied along the angular coordinate and then
each harmonic of the potential is evaluated by the Successive Over-Relaxation
method.

The considered Poisson equation solver succeeds to completely avoid the data
exchange during the iteration stage. This is because equations for potential har-
monics do not depend on each other. After iteration stage the potential should
be gathered from all the processors for further computation. Therefore it is pos-
sible to divide the computation domain into completely independent subdomains
along angular wavenumbers.

Particles are also uniformly distributed between the processors with no de-
pendency of their spatial location. Since a particle might fly to any point of the
disc in the course of simulation every PE should possess the potential values for
the whole disc surface.

At each timestep data exchange is performed twice. First, after the conver-
gence has been reached the potential harmonics in the disc plain are gathered
for inverse Fourier transformation. Then the partial density fields, computed in
each PE, are added up and sent to all processors.

These all-to-all communications are only possible because the model is quasi-
3D: 2D arrays are sent from one processor to another instead of 3D arrays in
the case of a full 3D model.

The 2D equation systems for potential harmonics require different number
of iterations for convergence, as figure [Il shows. Here the number of iterations
depends on the conditionality of the equation system matrix. It means that the
processors would have different workload when provided with the same num-
ber of harmonics. Thus, initially equal workload can not be provided for all
the processors. There are two ways to solve this problem: first, to use faster

10000 -
» 1000 -
[ =
2
E 100 -
£ 10

1 T T 1
1 10 100 1000
wavenumber

Fig. 1. Number of SOR iterations depending on wavenumber
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methods when the convergence rate is slow, and second, to use dynamic load
balancing. Dynamic load balancing here means to move some harmonics from
the overloaded processor.

As a result of the reduction of the 3D model to the quasi-3D one we obtain a
parallel program that is quite easy to implement and also capable of production
of reasonable physical results. Nevertheless, in the quasi-3D model the processor
workload is non-uniform and the speedup is not very high: 5 on 32 processors
for grid size 400 x 512 x 200 nodes with 20 million particles. The worktime for
one timestep of simulation is 25 seconds on one processor for the given model
size. The speedup is low because of the restictions of the Poisson equation solver.
Thus a new solver should be introduced to increase the speedup.

5 Parallel Program Based on the Fundamental Solution
of Poisson Equation

Poisson equation has its fundamental solution in the form:
p(t')
&(1) = / dr (4)
|R|

where |R| = |7 — 7’|, &(7) is the potential that is to be computed at the point
7. Let the two-dimensional computation domain be defined by the radius Ry
in polar coordinates. Then a uniform 2D grid is introduced for the potential &
with grid steps h, and h:

Ti:h"l"ia i:07177NT7 h"l‘:RN
L pE ()
@j:htp']? J:O71a7NgDa h’gﬁ: o

In the nodes of the defined grid the integral in (@) is replaced by the sum:

M;,
s 2T 0
i

Sy
2,754,

@y ;¢ is evaluated by summation of point mass potentials, the masses are set in
the centres of the grid cells. In such a way masses form their own grid that is
shifted relatively to the potential grid and R; ;s ;- - is the distance from the
node (i, j¢) of the @ grid to the node (4, 7) of the mass grid.

The evaluation of potential by the formula (@) could be easily divided between
processors, for example, as follows:

=Ny /Nproc*(rank+1)

Dy jr = > > RMi)j (7)

S,
i=Nr/Nprocxrank 7 LY

here Nproc is the number of processors, rank is the rank of current processor
(rank =0, ..., Nproc — 1). The present method makes processor workload com-
pletely uniform, and consequently the speedup of the parallel program is high:
see table [l
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Table 1. Worktime for different number of processors for a grid with N, = 400,
N, = 400 nodes

Number of processors Worktime, minutes

1 75
12 5.55
25 2.63
50 1.36
100 0.75
200 0.49

Unfortunately for small number of processors the evaluation of potential with
formula (@) is much slower than with the method described in the section [
Moreover, both described programs are capable of simulation of the protoplan-
etary disc dynamics only for some restricted set of problems.

6 3D Parallel Program in Cylindrical Coordinate System

As it was mentioned in section [3] there are problems requiring full 3D sim-
ulation. Thus a numerical model was implemented with the matter posessing
vertical component of the velocity [12].

Poisson equation is solved by a combination of the FFT applied to the angular
coordinate and the SOR applied to the separate potential harmonics as in section
@ As it was mentioned above in section H one of the difficulties here is the
non-uniform workload of the processors due to different computation time for
different harmonics. This difficulty is present in 3D case as well as in quasi-3D,
despite these model have lots of differences, for example in boundary conditions,
density distribution etc.

Thus it is necessary to design an algorithm for distribution of harmonics to
make processor workload close to uniform. Taking into account that dynamic
load balancing might have negative effect due to the increase of interprocessor
communications, we have decided to make static load setting. This load setting
algorithm is based on the experimental data about the computation time for
each harmonic:

— A separate processor is assigned for the evaluation of the harmonic with
wavenumber m = 0.

— Each processor (except the above mentioned one) has harmonics with both
low and high wavenumbers. Each harmonic was evaluated by one processor

This simple algorithm provided processor workload close to uniform. In table
the computation time is given for different parts of Poisson equation solver. The
part of the solver that is parallelized is the evaluation of harmonics assigned
to a processor. But as it is seen from table [2] that the most time-consuming
parts are the FFTs for density and potential and also the gathering of evaluated
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Table 2. Computation time (in seconds) for different parts of Poisson equation solver
at a timestep for one processor

Number of FFT for Evaluation of Gathering FFT for Total
processors density harmonics of harmonics potential time
10 0.3 0.7 0.65 0.4 2.05

harmonics (data transmission between processors) since they work with 3D data
arrays.

It should be noticed that the difficulty with long computation of the FFTs
arises only in 3D case because Fourier Transform has to be applied to the whole
3D arrays of density and potential. It means that further improvement of the
parallel program implementing 3D model of protoplanetary disc is only possible
by means of decomposition of computation domain.

7 3D Parallel Program Based on Decomposition of the
Computation Domain

Domain decomposition is applied to fulfil the requirements to the parallel imple-
mentation of the protoplanetary disc model given in [3.21 Moreover, the particles
belonging to one subdomain are distributed between the processors each holding
grid arrays for the subdomain.

The decomposition is done in the straightforward way - by dividing the com-
putation domain into equal parts along one of the coordinate planes as shown
in figure 2l In this case each layer has only two adjacent layers. As a result, the
exchanging of particles with adjacent layers is very simple.

Due to the features of protoplanetary disc simulation most particles are sit-
uated near the disc plane. The disc is rotating around the axis parallel to Z
and passing through the centre of the disc. This is why the planes dividing the
computation domain go along YZ plane. Thus we avoid the initially non-uniform
distribution of particles between processors, which may happen if the domain
was divided along XY plane. In the present implementation the computation
domain is divided into layers of nearly equal thickness with partial overlay of
boundaries.

Poisson equation is solved in Cartesian coordinate system on a uniform grid.
Such a simple grid enables us to employ a sufficiently fast solver - 3D Fast Fourier
Transform. To discretize the second derivatives in Poisson equation a 27-point
stencil is used. The FFT on a multiprocessor system is performed by the free
FFTW library.

To provide the uniform distribution of particles between processors every layer
is assigned to a group of processors as shown in figure Bl The grid values in the
whole layer (potential, density etc.) are stored in all the processors of the group
and the particles of the layer are uniformly distributed between the processors
of the group. Each group has a head processor. The division of processors into
groups is static and takes into account the distribution of particles in the whole
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Fig. 3. Assignment of subdomains to groups of processors

computation domain. In the course of computation the particles fly from one
layer to another, and they should be transmitted from one group of processors
to another. The algorithm of selection of sender and receiver processors keeps
the uniform distribution of particles between processors of a group.

Figure[d] shows that when a subdomain is worked up by a group of processors
(line ”¢”) worktime is a bit longer than when each subdomain is worked up
by one processor (line ”b”). But in the first case it is possible to compute the
model of a larger size and this is the main goal of parallel implementation of

protoplanetary disc model, as it was stated in section
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Fig. 4. Worktime for the program with domain decomposition. ”a” - no domain de-
composition, ”b” - one processor for each subdomain, ”¢” - a group of processors for

each subdomain.

The 2D distribution of density, potential etc., obtained by either quasi-3D
or fully 3D programs are nearly identical in the cases when quasi-3D model is
correct. So the fully 3D model in necessary to trace the vertical movement.

8 Summary

The program for the quasi-3D model may be thought to be a prototype for a full
parallel implementation of the protoplanetary disc model. The program based on
fundamental solution achieves good results as a parallel implementation of the
disc model (good speedup) due to the ultimate simplification of the model. The
3D model in cylindrical coordinate system definitely shows all the difficulties
of the full 3D implementation of the protoplanetary disc model. The domain
decomposition program satisfies the requirements for the protoplanetary disc
model the best: it is full 3D, it has virtually no limits for grid size and number
of particles and it can reasonably reduce the computation time by increasing the
number of processors.
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Abstract. Web Search Engine uses forward indexing and inverted in-
dexing as a part of its functional design. This indexing mechanism helps
retrieving data from the database based on user query. In this paper,
an efficient solution to handle the indexing problem is proposed with
the introduction of Nonlinear Single Cycle Multiple Attractor Cellu-
lar Automata (SMACA). This work simultaneously shows generation
of SMACA by using specific rule sequence. Searching mechanism is done
with linear time complexity.

1 Introduction

Most people today can hardly imagine life without the Internet [3/4]. It provides
access to information, news, email, shopping, and entertainment. World Wide
Web (WWW) has brought a huge information at door-step of every user. The
World Wide Web Worm (WWWW) was one of the first Web Search Engines
which was basically a storage of huge volume of information. To handle these
informations, proper indexing has been done in several ways [II2]. This work
reports an efficient scheme for designing an n-bit Single Cycle Multiple Attrac-
tor Cellular Automata (SMACA) [8I11] for handling the forward indexing and
inverted indexing in a fast and inexpensive way. It is built around nonlinear
scheme. Generated SMACAs have been used for information storage which re-
quires special attention considering the huge volume of data in Web to be dealt
with by the Search Engines [5l6]. The major contributions of this paper can be
summarized as follows: (1) Design of an n-bit SMACA; (2) Usage of SMACA
in forward indexing; (3) Usage of SMACA for replacing inverted indexing; (4)
Searching mechanism using SMACA.

2 Cellular Automata (CA) Preliminaries

An n cell CA consists of n cells (Figure 1(a)) with local interactions [7]. It evolves
in discrete time and space. The next state function of three neighbourhood CA
cell (Figure 1(b)) can be represented as a rule as defined in Table [I] [9]. First
row of Table 1 represents 23 = 8 possible present states of 3 neighbours of "

V. Malyshkin (Ed.): PaCT 2007, LNCS 4671, pp. 140 007.
© Springer-Verlag Berlin Heidelberg 2007
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(a) An n cell CA with null boundary

Next State
Logic for
Rule R;

L]

(b) The i th cell configured with rule R ;

Fig. 1. Local Interaction between Cellular Automata Cells

Table 1. Truth Table of sample rules of a CA cell showing the next state logic for
the Minterms of a 3 variable boolean function -The 8 minterms having decimal values
0,1,2,3,4,5,6,7 are referred to as Rule Minterms (RMTs)

Note : Set of Minterms T = {7,6,5,4,3,2,1,0} represented as {T(7), T(6), T(5), T(4),
T(3), T(2), T(1), T(0)} (T(m) = m, m = 0 to 7) in the text, are noted simply as q.

Present states of 3-neighbours 111 110 101 100 011 010 001 000 Rule
(i —1),i, and (i 4+ 1) of i'" cells (7) (6) (5) (4) (3) (2) (1) (0) Number
(Minterms of a 3 variable  T(7) T(6) T(5) T(4) T(3) T(2) T(1) T(0)
boolean function)

0 1 0 1 1 0 1 0 90
1 0 0 1 0 1 1 0 150
Next state of it cell 0 1 1 1 1 0 0 0 120
0 0 0 0 1 1 0 0 12
1 1 0 1 0 0 1 0 210

cell - (i-1), i, (i+1) cells. Each of the 8 entries (3 bit binary string) represents
a minterm of a 3 variable boolean function for a 3 neighbourhood CA cell. In
subsequent discussions, each of the 8 entries in Table 1 is referred to as a Rule
Min Term (RMT). The decimal equivalent of 8 minterms are 0, 1, 2, 3, 4, 5, 6,
7 noted within () below the three bit string. Each of the next five rows of Table
1 shows the next state (0 or 1) of i*" cell. Hence there can be 28 = 256 possible
bit strings. The decimal counterpart of such an 8 bit combination is referred to
as a CA rule [9/T0]. The rule of a CA cell can be derived from Table 1 of the 4"
cell.

2.1 Definitions

Definition 1: Reachable state - A state having 1 or more predecessors is a reach-
able state.

Definition 2: Non-reachable state - A state having no predecessor (that is, r=0)
is termed as non-reachable.
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Definition 3: Transient state - A non-cyclic state of a non-group CA is referred
to as a transient state. Definition 4: Attractor Cycle - The set of states in a cycle
is referred to as an attractor cycle.

Definition 5: Self-Loop Attractor(SLA) - A single cycle attractor state with self-
loop is referred to as SLA.

Definition 6: Rule Vector(RV) - The sequence of rules < RgRy -+ - R; -+ Ry41 >,
where i'" cell is configured with rule R;.

3 Generation of SMACA and Its Application in Indexing

Synthesis of SMACA demands formation of a rule vector with group and non-
group rules in specific sequence. The method to identify such a sequence is
described in the following discussions. A scheme is outlined here to identify
the sequence of rules in the rule vector that makes the CA a SMACA. The
rule vector of an n-cell CA is denoted as <Ry, Ry, -+, Ri, Riy1, -+, Rp_1>,
where " cell is configured with R;. A non-linear [T2/T3] SMACA consists of
2™ number of states where n is the size of SMACA. The structure of a non-
linear SMACA has attractors (self-loop or single length cycle), non-reachable
states, and transient states. The attractors form unique classes (basins). All
other states reach the attractor basins after certain time steps. To classify a set
of k classes, (k-1) number of attaractors are used, each identifying a single class.
Consider, k=4 for a particular situation, i.e., four attractors are required. To
manage this situation, ‘00’, ‘01°, ‘10’ & ‘11’ may be considered as attractors for
classification of distinct states into 4 categories. Instead of using four attractors,
three attractors may be used. So, we may consider ‘00’, ‘01°, ‘10’ as attractors
and the 4*" attractor need not be specified. If we put concerned states over these
three attractors, remaining states can be considered under the unspecified (4")
attractor. To get an illustrative idea, follow [T0/TT]. Figure 2 shows an arbitrary
example of Non-linear SMACA with its irregular structure. States 1 & 9 are
attractors. States 3, 5, 7, 11, 13 & 15 are transient states. All other states are
Non-reachable states.

It is found through exhaustive experimentation that there are fifteen such
classes for all the rules which can be used to form SMACA in a specific sequence.
These classes are denoted as {I, IT, III, IV, V, VI, VII, VIII, IX, X, XI, XII, XIII,
XIV and XV} in Table 2. Table 3 dictates the rule of (i +1)*" cell from the class
of i*" cell. The table is formed in such a way that SMACA is formed if and
only if the relationship between R; and R;y; is maintained. Since the design
is concerned with null boundary CA, there are 922? = 16 effective rules for the
left most (Rg) as well as the right most (R,—1) cells. The RMTs 4, 5, 6 &
7 can be treated as don’t care for Ry as the present state of left neighbor of
cell 1 is always 0. So, there are only 4 effective RMTs (0, 1, 2, & 3) for Ry.
Similarly, the RMTs 1, 3, 5 & 7 are don’t care RMTs for R,,_1. The effective
RMTs for R,,_1 are 0, 2, 4 & 6. Ry and R,,_1 are listed in Table 4 & Table 5
respectively.
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Fig. 2. Structure of a SMACA with Rule Vector (RV) <4 102 53 85>

Table 2. SMACA Class Table

Class Rules
I 0,16, 32, 48, 64, 80, 96, 112, 128, 144, 160, 176, 192, 208, 224, 240
II 1,17, 33, 49, 65, 81, 97, 113, 129, 145, 161, 177, 193, 209, 225, 241
I 2, 18, 34, 50, 66, 82, 98, 114, 130, 146, 162, 178, 194, 210, 226, 242
IV 4,20, 36, 52, 68, 84, 100, 116, 132, 148, 164, 180, 196, 212, 228, 244
V 5,21, 37, 53, 69, 85, 101, 117, 133, 149, 165, 181, 197, 213, 229, 245
VI 6, 22, 38, 54, 70, 86, 102, 118, 134, 150, 166, 182, 198, 214, 230, 246
VII 7, 23,39, 55, 71, 87, 103, 119, 135, 151, 167, 183, 199, 215, 231, 247
VIII 8, 24, 40, 56, 72, 83, 104, 120, 136, 152, 168, 184, 200, 216, 232, 248
IX 9, 25,41, 57, 73, 89, 105, 121, 137, 153, 169, 185, 201, 217, 233, 249
X 10, 26, 42, 58, 74, 90, 106, 122, 138, 154, 170, 186, 202, 218, 234, 250
XI 11, 27, 43, 59, 75, 91, 107, 123, 139, 155, 171, 187, 203, 219, 235, 251
XII 12, 28, 44, 60, 76, 92, 108, 124, 140, 156, 172, 188, 204, 220, 236, 252
XIII 13, 29, 45, 61, 77, 93, 109, 125, 141, 157, 173, 189, 205, 221, 237, 253
XIV 14, 30, 46, 62, 78, 94, 110, 126, 142, 158, 174, 190, 206, 222, 238, 254
XV 15, 31, 47, 63, 79, 95, 111, 127, 143, 159, 175, 191, 207, 223, 239, 255

3.1 Synthesis of SMACA

The synthesis algorithm generates the rule vector R = < Ry, R1,---, Rp—1 >
for an n-cell SMACA, where R; is the rule with which the i*» CA cell is to be
configured. The characterization of SMACA points to the fact that the design
of SMACA for any arbitrary n boils down to:

I. Form the classes of rules - that is, formation of Table 2 to Table 5, and
II. Find the class of (i + 1)*" cell rule depending on the rule of i** cell and its
class.

Task I : Construction of Table 2 to Table 5 involves one time cost.

Task IT : The class of (i + 1)" cell rule is determined from the rule R; and its
class. Based on the rule class table (Table 2 to Table 5), we sequentially assign
arule R;y1 to the (i + 1) CA cell (i =1, 2, -+, (n-1)) to form the rule vector
R =< Ryp,Ry1,---,R;, -, Rp_1 >. The Ry is selected randomly from Table 4
and R, _1 from Table 5. Based on Task II, Algorithm 1 is further designed.
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Class of R;
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Table 3. Relationship of R; and R;4+1

Riy1
0-2, 4-18, 20-34, 36-50, 52-66, 68-82, 84-98, 100-114, 116-130,
132-146, 148-162, 164-178, 180-194, 196-210, 212-226, 228-242, 244-255
20, 22, 25, 28, 29, 30, 38, 40-41, 44-46, 52, 54, 56-57, 60-62, 69, 71,

75, 77, 79, 84-87, 89, 91-95, 101-111, 116-127, 135, 138-139, 142-143,
148-151, 153-159, 166-175, 180-191, 197, 199, 202-203, 205-207, 212-215,
217-223, 229-239, 244-255
0-2, 4-6, 8-10, 12-14, 16-18, 20-22, 24-26, 28-30, 32-34, 36-38, 40-42,

44-46, 52, 54, 56-57, 60-62, 64-66, 68-70, 72-74, 76-77, 80-82, 84-86,

88-89, 92-93, 96-98, 100-102, 104-106, 108-109, 116, 118, 120-121, 124-125,
128-130, 132-134, 136-138, 140, 142, 144-146, 148-150, 152-154, 156, 158,
160-162, 164, 166, 168-170, 172, 174, 180, 182, 184-185, 188, 190, 192-194,
196-197, 200, 202, 208-210, 212-213, 224-226, 232, 234
0-2, 4-18, 20-34, 36-50, 52-66, 68-82, 84-98, 100-114, 116-130, 132-146,
148-162, 164-178, 180-194, 196-210, 212-226, 228-242, 244-255
0-2, 4-6, 8-10, 12-14, 16-18, 20-22, 24-26, 28-29, 32-34, 36-38, 40-42,

44, 46, 64-66, 68-T4, T6-82, 84-06, 98, 100-111, 116-119, 122-130, 132-134,
136-145, 148-162, 164-175, 181, 183-194, 196-209, 212-224, 226, 228-239, 244-255
0-14, 16-26, 28-30, 32-38, 40-46, 48-50, 52-54, 56-58, 60-62, 64-77, 80-89,
92-93, 96-102, 104-109, 112-113, 116-117, 120-121, 124-125, 128-140, 142, 144-154,
156, 158, 160-164, 166, 168-172, 174, 176, 178, 180, 182, 184, 186, 188, 190,
192-203, 208-215, 224-227, 232-235
0-2, 4-6, 8-10, 12-14, 16-18, 20-22, 24-26, 28-30, 32-34, 36-38, 40-42, 44-46,
64-77, 80-82, 84-86, 88-89, 92-93, 96-107, 128-140, 142, 144-155, 160-162, 164,
166, 168-170, 174, 192-203, 208-215, 224-227, 232-235
0-2, 4-18, 20-34, 36-50, 52-66, 68-82, 84-98, 100-114, 116-130, 132-146, 148-162,
164-178, 180-194, 196-210, 212-226, 228-242, 244-255
20-23, 28-31, 40-47, 52-63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83-87, 89, 91-95,
97, 99, 101-111, 113, 115-127, 130-131, 134-135, 138-139, 142-143, 146-151, 153-159,
162-163, 166-175, 178-191, 193-195, 197-199, 201-203, 205-207, 209-215, 217-223,
225-227, 229-239, 241-255
0-2, 4-6, 8-10, 12-14, 16-18, 20-21, 24-26, 28-29, 32-34, 36-38, 40, 42, 44, 46, 64-66,
68-74, 76-82, 84-98, 100-106, 108-111, 116-119, 121-134, 136-146, 148-150, 152-162,
164-175, 181-194, 196-209, 212-224, 226, 228-239, 244-255
65, 67, 69, 71, 73, 75, T7, 79, 84-87, 89, 91-95, 97-99, 101-103, 105-107, 109-111,
116-127, 130-131, 134-135, 138-139, 142-143, 145-147, 149-151, 153-155, 157-159, 166-175,
180-191, 193-195, 197-199, 201-203, 205-207, 209-215, 217-223, 225-227, 229-239, 244-255
0-2, 4-17, 20-21, 24-32, 34, 36-40, 42, 44-47, 64-66, 68-82, 84-96, 98, 100-104, 106,
108-112, 114, 116-120, 122, 124-130, 132-145, 148-149, 152-162, 164-177, 180-181, 184-194,
196-210, 212-226, 228-242, 244-255
0-47, 64-255
0-47, 64-255
0-47, 64-255

For the formation of SMACA, the synthesis scheme is achieved through Al-
gorithm 1.

Algorithm 1. SMACA Synthesis

Input : n (CA size), Tables (2, 3, 4 € 5)

Output : A SMACA - that is, rule vector R = < Ry, Ry, ,Rp_1 >

Step 1 : Pick up the first rule Rg randomly from Table 4, and set the class of Ry
C:=Class of Ry (Ce {I II, III, IV, VII, VIII, XI, XIIT, XIV, XV} of Table 4)
Step 2 : For i := 1 to n-2; repeat Step 3 and Step 4
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Table 4. First Rule Table (Ro)

Rules for Ry Class of Ry

0 1

1 II

2 11T
4 v
7 VII
8 VIII
11 XI
13 XIII
14 X1V
15 XV

Table 5. Last Rule Table (R,—1)

Rule Class for R, —1 Rules for R,,—1
1 0, 4, 16, 21, 64, 69, 84, 85
1I 69, 84, 85
111 0, 4, 64
v 0, 4, 16, 21, 64, 69, 84, 85
A% 0, 4, 64, 69, 84, 85
VI 0,1, 4, 16, 64
VI 0, 4, 64
VIII 0, 4, 16, 21, 64, 69, 84, 85
X 21, 69, 81, 84, 85
X 0, 4, 64, 69, 84, 85
XI 69, 84, 85
XIT 0, 4, 64, 69, 84, 85
XII1 0,1, 4, 64, 69, 81, 84, 85
X1V 0, 1, 4, 64, 69, 81, 84, 85
XV 0,1, 4, 64, 69, 81, 84, 85

I

Step 8 : From Table 2 pick up a rule as R; arbitrarily for Class C
Step 4 : Find Class C for the next cell rule using Table 3

Step 5 : From Table 5 pick up a rule as R, 1

Step 6 : Form the rule vector R = < Ry, Ry, -+, Rp—1 >

Step 7 : Stop

The complexity of Algorithm 1 is O(n).

Example 1 : Synthesis of 4-cell SMACA:

Consider, rule 2 is selected as Ry. Therefore, the class (obtained from Table 4)
of next cell rule is III. From class III of Table 2, rule 178 is selected randomly
as Ry. Since, rule 178 is of class III; so, from Table 3, the next state value can
be easily found by selecting a random value as rfff_l rule. Say, rule 44 is selected
as Ry. From Table 2, rule 44 is of class XII. The class of last cell is, therefore,
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XII. Rule 64 is selected randomly for R3 from Table 5. Therefore, the SMACA
isR=<2,178,44,64 >.

Collection of Tokens

X SMACA for each website
Inverted Index File (instead of Forward Index File)

SMACA
(for Ist three characters of each Token)

Fig. 3. Pictorial Represention of Our Approach

Definition 7: Token - Minimum term by which one or more dictionary words can
be managed while creating/modifying database of Search Engine. For example,
“traverse” is a token managing “traversal”, “traverses”, “traversed”, etc..
Definition 8: Key/State value - A unique number is assigned to every Web-page
for representing the Web-pages as states of SMACA. This is known as Key/State
value.

Definition 9: Conflict - Traversal from one state to another within a SMACA
depends on its RMT (as shown in Table 1 for Rule 90, 150, etc.). While gener-
ating a state of SMACA, if any mismatch happens, one or many bit position of
the current state will not reach the next predefined state(0/1) as per the RMT
table of concerned rule vector. This situation is known as Conflict.

Non-linear SMACA is used (generated by Algorithm 1) for replacing forward
indexing, and inverted indexing. Tokens are generated in conventional manner
like other Web Search Engines.
Mainly four algorithms are used to accomplish our objective in four steps.
These steps are as follows:

(a) generation of SMACA for each Website;
(b) generation of inverted indexed file;

(c) replacing inverted indexed file by SMACA;
(d) searching mechanism.

Figure 3 depicts pictorial represention of our current research work. It is
clearly shown in the figure that step (a) and step (b) are done concurrently
to reduce the generation time of Search Engine.

The next four algorithms will describe our new approach step by step:

Algorithm 2. SMACA Generation for Forward Indexing
Input : A set of tokens of Web-pages of a Website

Output : Set of SMACAs

Step 1 : Generate key values of Web-pages
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Step 2 : Assign key values of Web-pages as self-loop attractors of the SMACA
Step 8 : Generate key values of tokens

Step 4 : Assign key values of tokens as non-reachable state, or, transient state
of the SMACA

Step 5 : If conflict occurs goto Step 3

Step 6 : Generated SMACA

Step 7 : Stop

Definition 10: Website Identification Number (WSID) - Unique identification
number has been alloted to each Website. This is known as WSID.

Algorithm 3. Inverted Indezed File Generation

Input : Token

Output : Inverted indexed file

Step 1 : Generate WSID

Step 2 : Search for token whether it already exists in inverted indexed file

Step 3 : If successful, link the WSID with the token

Step 4 : Else, make a new entry in inverted indexed file and link the WSID with
the token

Step 5 : Stop

Definition 11: SMACA-ID - Unique identification number has been alloted to
each generated SMACA. This is known as SMACA-ID.

Question: Why do first three characters of token take into consideration while
generating SMACA-ID?

Answer: After vigorous searching through WWW_ it has been found that
a token of any Web-page consists of a minimum of three characters. Less than
three character words are generally the “stop-words”. That’s why, we have taken
first three characters of token into consideration for generating SMACA-ID. For
example, “sachin” and “sacrifice” both tokens have same first three characters
“sac”. So, Algorithm 4 generates a SMACA-ID for a specific SMACA within
which both the tokens reside as the states. WSIDs of the Websites, within
which the related tokens appear, will be assigned as attractors of that particular

SMACA.

Algorithm 4. SMACA Generation from Inverted Indexed File

Input : Inverted Indexed File

Output : Set of SMACAs equivalent to inverted indexed file

Step 1 : For each combination of first three characters of token, generate SMACA-
ID from the input file

Step 2 : Assign WSIDs for which first three characters of related token appear,
as attractors of SMACA

Step 8 : For each token matching first three characters, generate key value
Step 4 : For each token, concatenate WSIDs and generated key value of token as
a state value

Step 5 : Assign each state value as a non-reachable or transient state of SMACA
Step 6 : If conflict occurs goto Step 2
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Step 7 : Store generated SMACAs with corresponding SMACA-ID
Step 8 : Stop

Algorithm 5. Users Search

Input : Users’ query

Output : Desired Web-pages

Step 1 : When query is submitted tokens are generated for the words in query
Step 2 : First three characters of each token are extracted

Step 3 : These three characters are encoded and SMACA-IDs are generated
Step 4 : With these generated SMACA-IDs, the Searcher searches the corre-
sponding SMACA (replacing inverted indexed file) from the storage

Step 5 : State values are generated from the tokens

Step 6 : Applying these SMACAs with the state values, the corresponding WSIDs
are found

Step 7 : The Searcher searches for the SMACAs (replacing forward indexing) for
these WSIDs

Step 8 : Applying these SMACAs with the state values previously generated by
tokens, the corresponding Web-page for each Website (attractor) is found

Step 9 : These Web-pages are extracted from the repository and displayed to the
user

Step 10 : Stop

4 Experimental Results

This section reports a detailed study on nonlinear Cellular Automata based
designing on Storage of Hypertext data while building a Web Search Engine.
Our experiment shows that it will take less storage space and less time while
searching through Internet / Intranet.

For experimental purpose, we have considered a huge number of Websites
within which we have shown the details of four Websites and only four Web-
pages of each Website as a sample study.
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Fig. 4. Space required for Forward Indexing
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Fig. 5. Space required for Inverted Indexing

List of Websites & corresponding Web-pages with details are given below:

(1) AceWebTech

http://www.acewebtech.com/index.htm (35 bytes) (No. of tokens = 129)
http://www.acewebtech.com/webservices/website maintenance .htm (62 bytes)
(No. of tokens = 222)

http://www.acewebtech.com/pofile.htm (36 bytes) (No. of tokens = 279)
http://www.acewebtech.com/webservices/services.htm (50 bytes) (No. of tokens
— 260)

To store all these 4 Web-pages we need a CA of size = 13 with four(4) number
of attractors.

In Forward Indexing:
Total space required in conventional way = (35+62+36+50) bytes = 183 bytes.
Maximum space required in our approach = (13x3) bytes = 39 bytes.

(2) AnimalSafari

http://www.animalsafari.com/index.htm (37 bytes) (No. of tokens = 183)
http://www.animalsafari.com/html/Admissions.htm (47 bytes) (No. of tokens
= 241)

http://www.animalsafari.com/html/Attractions.htm (48 bytes) (No. of tokens
http://www.animalsafari.com/html/Park Lore.htm (46 bytes) (No. of tokens =
277)

To store all these 4 Web-pages we need a CA of size = 13 with four(4) number
of attractors.

In Forward Indexing:
Total space required in conventional way = (37+47+48+46) bytes = 178 bytes.
Maximum space required in our approach = (13x3) bytes = 39 bytes.

(3) Maps of India

http://www.mapsofindia.com/outsourcing-to-india/history-of-outsourcing.html
(75 bytes) (No. of tokens = 498)
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Table 6. Experimental Results on Time required for Searching

No. Of Website

Search Samples (Time in Seconds)
1 2 6 8
Ace 0.016 0.016 0.016 0.019
Ace + reliable 0.016 0.016 0.018 0.019
Ace + reliable 4+forum 0.016 0.016 0.018 0.018
Ace + reliable + forum + Flash 0.016 0.016 0.018 0.018
Hyena 0.023 0.025 0.037
Hyena + Encyclopedia 0.024 0.024 0.035
Hyena 4+ Encyclopedia + Unfortunately 0.023 0.024 0.038
Hyena + Encyclopedia + Unfortunately + mancaus 0.023 0.024 0.038
Hyena + Encyclopedia + Unfortunately + mancaus + Ace 0.025 0.024 0.040
Kanniyakumari 0.036 0.053
Peninsular 0.030 0.032
choice 0.018
Encyclopedia + Kanniyakumari 0.039
Encyclopedia + Kanniyakumari + Wolfram 0.039

http:/ /www.mapsofindia.com /reference-maps/geography.html (56 bytes) (No. of
tokens = 302)

http://www.mapsofindia.com/maps/india/india.html (48 bytes) (No. of tokens
= 2388)

http://www.mapsofindia.com/stateprofiles /index.html (51 bytes) (No. of tokens
= 250)

To store all these 4 Web-pages we need a CA of size = 15 with four(4) number
of attractors.

In Forward Indexing:
Total space required in conventional way = (75+56+48+51) bytes = 230 bytes.
Maximum space required in our approach = (15x3) bytes = 45 bytes.

(4) Tourism of India
http://www.tourism-of-india.com/adventure-tours-to-india.html (61 bytes) (No.
of tokens = 133)

http://www.tourism-of-india.com/festival-tours-of-india.html (60 bytes) (No. of
tokens = 158)

http://www.tourism-of-india.com/historical-places-in-india.html (63 bytes) (No.
of tokens = 525)

http://www.tourism-of-india.com/kolkata.html (44 bytes) (No. of tokens = 585)
To store all these 4 Web-pages we need a CA of size = 14 with four(4) number
of attractors.

In Forward Indexing:
Total space required in conventional way = (614+60+63+44) bytes = 228 bytes.
Maximum space required in our approach = (14x3) bytes = 42 bytes.
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In Inverted Indexing:
Total space required for all the four Websites in conventional way = 35797 bytes.
Maximum space required for all the four Websites in our approach = 23765
bytes.
The space required for Forward Indexing and Inverted Indexing are shown in
Figure 4 & Figure 5 respectively.
The time required for Searching is shown in Table 6 with some examples.

5 Conclusion

In a general Search Engine, forward indexing and inverted indexing files are
used for searching. A new methodology is discussed here to minimize storage re-
quirement by using non-linear SMACA while building forward and / or inverted
indexed file. This approach processes users’ query in linear time complexity while
searching the Web through a Search Engine. Using Cellular Automata in stor-
ing Search Engine indexing data is a tricky approach that has been successfully
implemented in this work offering better results in form of space efficiency.
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Abstract. The running times of large-scale computational science and
engineering parallel applications, executed on clusters or Grid platforms,
are usually longer than the mean-time-between-failures (MTBF). There-
fore, hardware failures must be tolerated to ensure that not all computa-
tion done is lost on machine failures. Checkpointing and rollback recovery
are very useful techniques to implement fault-tolerant applications. Al-
though extensive research has been carried out in this field, there are few
available tools to help parallel programmers to enhance their applications
with fault tolerance support. This work presents an experience to endow
with fault tolerance two large MPI scientific applications: an air quality
simulation model and a crack growth analysis. A fault tolerant solution
has been implemented by means of a checkpointing and recovery tool, the
CPPC framework. Detailed experimental results are presented to show
the practical usefulness and low overhead of this checkpointing approach.

Keywords: Fault tolerance, checkpointing, parallel applications, MPI.

1 Introduction

Checkpointing has become a widely used technique to provide fault tolerance by
periodically saving the computation state to stable storage, so that this state
can be restored in case of execution failure.

One of the most remarkable properties of general checkpointing techniques
is granularity. Checkpointing can be performed from two different granularity
levels: data segment level and wvariable level. On data segment level the entire
application state is saved (data segment, stack segment and execution context),
recovering it when necessary. Most of fault-tolerance tools present in the bib-
liography [TJ2I3/4l5] perform data segment level checkpointing. This approach
presents a general advantage: its transparency from the user’s point of view,
since the application is seen as a black box. However, saving the application
state entirely leads to lack of portability, as a number of non-portable structures
will be saved along with application data (as application stack or heap).

A variable level approach saves only restart-relevant state to stable storage.
Many fault tolerant solutions implement variable level checkpointing by manu-
ally determining the data to be saved, and inserting code to save that data on
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disk and to restart the computation after failure. The code becomes as portable
as the original application and, provided that checkpoints are saved in a portable
format, the application can be restarted on different platforms. Unfortunately,
this method requires a data-flow analysis, which can be a tedious and error-prone
task to be performed by the user. Thus, a recent approach [6], developed by the
authors, tries to automatize a variable level checkpointing of message-passing
parallel applications by means of a checkpointing library and a compiler that
instruments MPI code.

The purpose of this work is to develop fault tolerant solutions for two different
computationally intensive MPI codes, an air quality model [7] and a crack growth
analysis [§]. A variable level checkpointing approach is followed, implemented
through the use of our checkpointing and recovery tool, CPPC.

The structure of this paper is as follows. Section 2 introduces the problem
of endowing parallel applications with fault tolerance, and gives an overview
of the CPPC tool and how it solves the major issues. Section 3 describes the
applications used for the tests. Experimental results about the use of the CPPC
tool are presented in Section 4. Finally, Section 5 concludes the paper.

2 Checkpointing and Recovery of Parallel Applications:
The CPPC Tool

There are several issues to be solved in implementing checkpointing solutions for
parallel applications, such as consistency, portability, memory requirements, or
transparency. CPPC is a checkpointing infrastructure that implements scalable,
efficient and portable checkpointing mechanisms. This section details various
aspects of CPPC’s design associated with major issues.

2.1 Global Consistency

Consistency is a key issue when dealing with the checkpoint of a parallel program
using the message-passing paradigm. The state of a parallel application is defined
as the set of all its processes states. There are two situations that require actions
to be performed in order to achieve a correct restart: existence of in-transit
messages (sent but not received), and existence of ghost messages (received but
not sent) in the set of processes states stored.

Checkpoint consistency has been well-studied in the last decade [J]. Ap-
proaches to the consistent recovery can be categorized into different protocols:
uncoordinated, coordinated and communication-induced checkpointing; and
message logging.

In uncoordinated checkpoint protocols the checkpoint of each process is exe-
cuted independently of the other processes, leading to the so called domino effect
(process may be forced to rollback up to the beginning of the execution). Thus,
these protocols are not used in practice. In coordinated checkpoint protocols,
all processes coordinate their checkpoints so that the global system state com-
posed of the set of all process checkpoints is coherent. Communication-induced
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checkpoint tries to take advantage of uncoordinated and coordinated checkpoint
techniques. Based on the uncoordinated approach, it detects risk of inconsistent
state, and forces processes to checkpoint. While this approach seems to be very
interesting theoretically, in practice it turns out to be quite inefficient.

Message logging saves messages with checkpoint files in order to replay them
for the recovery. The main disadvantage of log-based recovery is its high storage
overhead.

CPPC achieves global consistency by using spatial coordination, rather than
temporal coordination. Checkpoints are thus taken at the same relative code
points by all the processes (assuming SPMD codes). To avoid problems caused
by messages between processes, checkpoint directives must be inserted at points
where it is guaranteed that there are no in-transit, nor ghost messages. These
points are called safe points. For an automatic identification of safe points, a
static analysis of interprocess message flow is needed. This automatization is
currently under development.

2.2 Portability

The availability of the application to be executed across multiple platforms plays
an important role in current trends towards new computing infrastructures, such
as heterogeneous clusters and Grid systems.

A state file is said to be portable if it can be used to restart the computation
on an architecture (or OS) different from that where the file was generated on.
This means that state files should not contain hard machine-dependent state,
which should be recovered at restart time using special protocols.

The solution used in CPPC is to recover non-portable state by means of the
re-execution of the code responsible for creating such opaque state in the original
execution. Hence, the new code will be just as portable as the original code was.
Moreover, in CPPC the effective data writing will be performed by a selected
writing plugin implementation, using its own format. This enables the restart on
different architectures, as long as a portable dumping format is used for program
variables. Currently, a writing plugin based on HDF5 is provided. HDF5 [I0] is
a general purpose library and file format for storing scientific data in a portable
way. The CPPC HDF5 plugin allows the generated checkpoint files to be used
across multiple platforms. CPPC-generated HDF'5 files are much like binary files,
except that all data are tagged to make conversions possible when restarting on
different platforms.

2.3 Memory Requirements

The solution of large large scientific problems may need the use of massive com-
putational resources, both in terms of CPU effort and memory requirements.
Thus, many scientific applications are developed to be run on a large number of
processors. The checkpointing of this kind of applications would lead to a great
amount of stored state, the cost being so high as to become impractical.
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CPPC reduces the amount of data to be saved by including in its compiler
a live variable analysis in order to identify those variable values that are only
needed upon restart. Besides, the HDF5 library can accommodate data in a
variety of ways, including a compressed format based on the ZLib library [I1].
This, or other compression algorithms, can be included in a writing plugin with-
out recompiling the CPPC library. A multithreaded dumping option [12] is also
provided by the CPPC tool to improve performance when working with large
datasets. A new thread handles checkpoint file creation while the application
continues normal execution.

2.4 Transparency

This property is measured in terms of user effort to insert checkpoint support into
the application. On the one hand, data segment level approaches are completely
transparent to programmers, as they do not need much information about the
applications being treated. On the other hand, variable level strategies have to
get some metadata about the application in order to operate correctly, and they
usually get it from the programmer.

The CPPC tool appears to the user as a compiler tool and a runtime library
which help achieve the goal of inserting fault tolerance into a parallel appli-
cation in an almost transparent way. The library provides checkpoint-support
routines, and the compiler tool seeks to automatize the use of the library. The
user must insert only one compiler directive into the original application (the
cppc checkpoint pragma) to mark points in the code where the relevant state
will be dumped to stable storage in a checkpoint file. The compiler performs a
source-to-source transformation, automatically identifying both the variables to
be dumped to the checkpoint file and the non-portable code to be re-executed
upon restart; and it also inserts the necessary calls to functions of the CPPC
library, as well as flow control code needed to recover the non-portable state.

3 The Applications

In this section, two large-scale scientific applications are described: an air quality
model and a crack growth simulation. Both applications were found to be good
candidates for using the CPPC tool. Originally, none of them provided fault-
tolerance. However, being long running critical applications, both would benefit
from this feature.

The STEM-II Model. Due to the increasing sources of air pollutants, the
development of tools to control and prevent the pollutants’ accumulation has
become a high priority. Coal-fired electrical power plants constitute one of the
most significant sources of air pollutants, thus its study is a key issue in pollution
control specifications. The STEM-II model [I3] is used to know in advance how
the meteorological conditions, obtained from a meteorological prediction model,
would affect the emissions of pollutants by the power plant of As Pontes (A
Coruna, Spain) in order to fulfill EU regulations.
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Air quality models can be mathematically described as time-dependent, 3D
partial differential equations. The underlying equation used is the atmospheric-
diffusion equation. The numerical solution of this equation consists of the integra-
tion of a system of coupled non-linear ordinary differential equations. STEM-II
solves this system using a finite element method (FEM).

The sequential program consists mainly of four nested loops, a temporal loop
(loop t) and a loop for each dimension of the simulated space (1oop x, loop y
and loop z). The main modules of the code are: horizontal transport, vertical
transport and chemical reactions, and I/O module. The model requires as input
data the initial pollutant concentrations, topological data, emissions from the
power plant and meteorological data. The initial pollutant concentrations and
topological data are read only once, at the beginning of the simulation. The
meteorological data and the emissions from the power plant are time-dependent
and must be read each 60 iterations, that is, each new hour of simulation. The
output consists of spatially and temporally gaseous and aqueous concentrations
of each modeled specie, reaction rates, in and out fluxes, amount deposited and
ionic concentrations of hydrometeor particles. As this model is computationally
intensive, it has been parallelized using MPI [7].

Crack Growth Analysis Using Dual BEM (DBEM). Cracks are present
in all structures, usually as a result of localised damage in service, and may grow
by processes such as fatigue, stress-corrosion or creep. The growth of the crack
leads to a decrease in the structural strength. Thus, fracture occurs, leading to
the failure of the structure.

The Boundary Element Method (BEM) has been acknowledged as an alterna-
tive to FEM in fracture mechanic analysis. BEM reduces the dimensionality of
the problem under analysis through the discretization of the boundary domain
only.

Despite the reduction of dimensionality using BEMs instead of FEMs, the
crack growth analysis leads to a large number of discretized equations that grow
at every step when the crack growth is evaluated. Analysis of real structural
integrity problems may need the use of large computational resources, both in
terms of CPU and memory requirements.

The boundary element code to assemble the linear equations is essentially a
triple-nested DO loop. The external loop is over the collocation nodes, the middle
loop is over the boundary elements, and the internal loop is over the Gauss
points. Coarse grain parallelization can be achieved by distributing collocation
nodes among processors [g].

Although assembling the linear equations is a key task in the simulation pro-
cess, the bottleneck of the crack growth analysis is the solution of the resultant
dense linear system. The traditional method for the solution of a dense linear
system would be the application of the Gauss elimination method. However, as
the problem size increases the use of iterative methods is demanded. This ap-
plication uses the GMRES iterative method, regarded as the most robust of the
Krylov subspace iterative methods.
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Table 1. Applications’ summary

running on 4 nodes

Tested Programming Number of Lines of Memory Disk
application Language files Code requirements quota

STEM F77 149 9609 180MB 560MB

DBEM F77 45 13164 370MB 170MB

4 Experimental Results

In this section, the results of applying the CPPC tool to the large-scale appli-
cations described in the previous section are presented. Results include check-
pointing overhead, restart overhead, portability and checkpoint file size. Tests
were performed on a cluster of Intel Xeon 1.8 Ghz nodes, 1GB RAM, connected
through an SCI network.

Table [Il summarizes the two tested applications: the air quality simulation
model (from now on referred to as STEM) and the crack growth simulation
(DBEM).

CPPC treats the applications as black boxes, and automates the insertion of
checkpoint-support routines provided by the CPPC library, identifying the vari-
ables to be dumped and the non-portable code to be re-executed upon restart,
and inserting flow control code. The cppc checkpoint is the only directive not
yet automated, and thus the programmer must find a safe point in the origi-
nal code for the checkpointing file dumping. Safe points can be easily found in
both codes, since they follow the SPMD paradigm. This point has been found
at the end of the outer loop (Loop t) in the STEM code. In these experiments it
executes 1440 iterations of the outer loop, which corresponds to 24 hours of real-
time simulation. In the DBEM code, the checkpoint directive has been placed
at the beginning of the main loop in the GMRES solver. In these experiments
DBEM performs a crack growth simulation on a mesh of 496 collocation nodes,
which involves the solution of a dense linear system of 1494 equations.

Figure [l shows the execution times for both applications. Results are shown
for the original execution, execution with CPPC checkpointing instrumentation,
and two executions including different checkpoint frequencies. CPPC instrumen-
tation includes calls to CPPC library routines, such as CPPC initialization or
variable registration routines, and flow control code. As can be seen in the figure,
the overhead introduced by the CPPC instrumentation remains under 5% for
both applications.

The overhead of a single checkpoint file dumping depends on the amount
of data to be stored and the format used for the data storage. Results shown
in Figure [[l were obtained using HDF5 format. Early tests were carried out
with one checkpoint file dumping each 60 iterations (labeled as “1/60” in the
figure). Then, more tests were performed increasing the checkpoint frequency
up to one checkpoint each ten iterations (labeled as “1/10”). Increasing the
checkpoint frequency did not noticeably vary the total execution time, since
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Fig. 1. Execution times in failure-free tests

once the instrumentation overhead is introduced, the multithreaded technique
hides the overhead of the data dumping step.

These results have been obtained assuming no failures during the execution.
In other case, the restart time should be also considered in the total execution
time. Restart overhead is less important than checkpointing overhead. The ap-
plication is expected to be restarted only in case of failure and, in long running
applications, it will be always better than to re-execute the application from the
beginning. Results for restart execution times can be seen in Figure[2l The total
restart time is divided in two sections: overhead due to the checkpoint file read
and overhead due to state recovery. Results labeled as “native” correspond to
those obtained when restarting an application from checkpoint files generated in
the same platform. In order to perform also a portability test, these applications
were executed on an HP Superdome located at the Galician Supercomputing
Center (Intel Itanium 2 nodes at 1.5Ghz, 3GB RAM, connected through Infini-
band) with its proprietary Fortran compiler and MPI implementation. Check-
point files created in this platform were used to restart the applications on the
SCI cluster, thus allowing the comparison of restart times using both native
and imported files (native and cross-platform results, respectively, in Figure ().
Reading time increases if data transformations are needed, since they will take
place at application restart. Results have shown that the overhead introduced is
low enough to be negligible, even in the cross-platform case.

As pointed out in Section 2, when dealing with large-scale applications, check-
pointing could lead to a great amount of state stored. Hence, techniques to reduce
the checkpoint file size are of capital importance. Table 2l compares CPPC gener-
ated file sizes to those obtained using a segment level approach. As can be seen,
CPPC achieves very important size reductions by performing a live variable anal-
ysis (the number of live variables registered by CPPC are shown in the table).
Table [ also shows chekpoint file generation time (dumping time) when using
the CPPC tool. Results of dumping time with and without the multithreading
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Table 2. Checkpoint file generation results
Segment level CPPC
Tested ckpt-file ckpt-file registered dumping time (s)
application size size variables absolute multithread

STEM 187 MB 121 MB 156 0.42 0.18
DBEM 290 MB 145 MB 178 0.91 0.52

option demonstrate that the checkpoint file generation has a minimal influence
on the performance of long running applications.

5 Conclusions

Currently, there are several solutions available that deal with checkpointing of
parallel applications. However, most of them implement data segment level ap-
proaches, which present serious drawbacks for real scientific applications, such as
memory requirements or portability. Thus, development of new tools to provide
variable level solutions with a high level of transparency from the user’s point
of view becomes a great challenge.

In this paper a variable level checkpointing tool, CPPC, has been tested with
two large-scale scientific applications. CPPC resolves major issues in implement-
ing scalable, efficient and portable checkpointing by using a variable level, non-
coordinated, non-logging, portable approach. Experimental results have demon-
strated the efficacy of this approach, in terms of execution times, checkpointing
overhead, memory requirements, portability and usability.

CPPC version 0.5 can be downloaded at http://cppc.des.udc.es.
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Abstract. We describe parallel numerical code for solving problems of
stellar dynamics. The code is based on numerical solving of Poisson
and Vlasov equations in cylindrical coordinates using particle-in-cells
method. The code is designed for use on supercomputers with distributed
memory. We consider different possible strategies of parallelization ac-
cording to initial technical parameters of numerical methods and physical
conditions of the model. We present results of numerical simulations for
the following problems of stellar dynamics: investigation of influence of
central potential on the vertical motions of thin gravitating disk; stabil-
ity of uniform sphere with anisotropic distribution of velocity; numerical
approximation of equilibrium states of gravitating systems.

1 Introduction

Problems of stellar dynamics — investigation of stellar systems formation, their
equilibrium and stability, appearance of spirals and bars — require to solve N-
body problem in self-consistent gravitational field [I]. Its mathematical model
consists of collisionless Vlasov equation for distribution function of matter (here-
inafter, DF) and Poisson equation for gravitational potential. Numerical solving
is based on particle-in-cells method [2] (also called particle-mesh).

Complexity of this numerical model is conditioned by three-dimensions and
non-stationarity of the problem. It’s required to compute individual motions of
huge number of particles, to solve 3D Poisson equation and to store 3D mesh
functions of potential, gravitational forces and density of matter as 3D arrays
in computer’s RAM. At the same time the number of particles and nodes of
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the mesh should be sufficient to provide reliability of the simulation resultd].
That’s why numerical simulations for considered class of problems are close to
computer’s capabilities. Hence there is a strong requirement to develop effective
parallel algorithms and to employ supercomputers.

Mentioned difficulties can be partially overcome with the help of quasi-3D
model [3], special approximation of 3D model, which neglects vertical motions
of the matter (however it’s still needed to solve 3D Poisson equation). This
approximation is especially useful to overcome problem with storing 3D data,
because on each time step only values of mesh functions in plane z = 0 (where
matter has non-zero density) are needed. It seems, that quasi-3D approximation
is suitable in the presence of massive central gravitational field and initial DF
in the form of thin disk, that is the case of circumstellar disk model. However
for the large class of problems, such as investigation of globular clusters and sys-
tems with distinct vertical motions of matter or non-uniform vertical structure,
completely 3D model msut be studied.

In the present paper we describe parallel numerical algorithms for investiga-
tion of 3D dynamics of gravitating systems. We consider possible approaches to
the parallelization of numerical methods according to their technical parame-
ters (number of mesh nodes and particles) and initial physical conditions of the
problem. With the help of implemented parallel code we are able to perform
numerical simulations for important problems of stellar dynamics. We present
some applications:

— investigation of influence of central potential on the vertical motions of thin
gravitating disk,

— stability of uniform sphere with anisotropic distribution of velocity,

— approach to study equilibrium states of gravitating systems.

2 Mathematical Model of 3D Dynamics of Gravitating
Systems

The foundation of numerical model of 3D dynamics of gravitating systems is
collisionless Vlasov equation for DF and Poisson equation for self-consistent
gravitational potential [I].
Collisionless Vlasov equation has the following form:
0 0 0
/ +u - Vo /
ot Or Ou
where f(t,r,u) is time-dependent DF of coordinates r and velocities u. Grav-
itational potential satisfies Poisson equation, which has the following form in
chosen cylindrical coordinates:
10 < 6@) 1 0% 0%

ror \"or + 72 02 * 922 AnGip. (2)

=0, (1)

1 E.g. there are very few supercomputers in the world allowing to carry out experi-
ments with the number of particles equal to number of stars in Galaxy ~ 10'*.
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System is completed with equation for density of matter:

pltr) = [ fit.r (3)

u

To obtain non-dimensional parameters there are chosen distance Ry, mass M
and gravitational constant G. Ry and My could be either radius of galaxy and
its mass or typical dimension of circumstellar disk and mass of protostar. Cor-
responding values of velocity Vj, time ¢y and potential @y could be noted in the

following way:
G M, Ry
Vo = to=_, Py=VZ2.
0 \/ Ry’ 0 Vo 0 0
Important criterion of accuracy of obtained solution is verification of conserva-
tion laws: mass, momentum, angular momentum, energy.

3 Numerical Methods

In this section we briefly describe used numerical methods for solving sys-
tem () — @)). More detailed description can be found in [4].

3.1 Vlasov Equation

Vlasov equation ([l for DF f(¢,r,u) is solved with the help of particle-in-cells
method [2]. Space cylindrical domain is divided by mesh into cells. The mesh
then is used during solving Poisson equation (2). In the initial moment particles
are put in cells in such way, that their number in cell corresponds to the density
of matter in cell. Equations of motion for separate particle are:

i @ i
dv :_V dr — @)

dt m; dt
where v;,r; — velocity and coordinates of particle with number i. Particles,
which have coordinate r and located in volume V(r), determine DF f(¢,r,u)
and density p(r) = V%r) S omj.
Then density function p(t,r) is restored using multilinear interpolation of
particles’ masses into the nodes of the mesh.

3.2 Poisson Equation

Potential function, solution of Poisson equation, is approximated on an intro-
duced mesh with the help of finite-difference methods using seven-spot pattern.
Boundary conditions for gravitational potential are defined as:

Mg;si

By = — .
Ir V2 4 22

®)
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It corresponds to the case when total mass of the matter is located at the center
of the system. Such an approximation of boundary conditions helps to avoid
direct summation of potential produced by particles for each boundary node of
the mesh.

Obtained system of linear equations (SLE) is solved with FFT applied to the
azimuthal coordinate. As a result we obtain K., independent SLE for complex
functions of wave harmonics of potential, where K,,,; is number of azimuthal
nodes of the mesh. Then each system is solved using relaxation method applied
to radial coordinate and sweeping procedure applied to vertical axis. After that
mesh function of potential is restored using FFT applied to known values of
potential harmonics.

The solving method was chosen for the two reasons. First, it’s known to
be effective for the Laplace equation [3] (which, in fact, is used in quasi-3D
model instead of Poisson equation). The second reason is the possibility of par-
allelization, since SLE for complex functions of wave harmonics can be treated
completely separate. However, there are some difficulties, which are related to
ill-conditioning of the system [4]. The most ill-conditioned system is the one cor-
responding to the harmonics with wave number 0. The use of simple relaxation
method is related to the fact that initial approximation for the next time step
can be taken from previous one.

Finally restoring of mesh functions for forces is done using leap-frog finite-
difference method.

4 Parallelization Techniques

For numerical experiments and study non-stationary 3D dynamics of gravitating
matter it’s required to integrate system () — (B on a large time scales. At the
same time sufficiently small spatial step must be provided in order to investigate
non-linear structures such as spirals, rings, bending instabilities, which are much
smaller than computational domain; hence, fine meshes must be applied.

In spite of its reliability described numerical model is rather time- and memory-
consuming. Modern PC can process numerical simulations with the following tech-
nical parameters: number of mesh nodes is 1282, and number of particles not more
than 107. It’s needed from 2 up to 7 days to complete one numerical experimemﬁ
The only way to employ meshes with greater number of particles is to develop
and implement effective parallel algorithms for solving both Poisson and Vlasov
equations.

The main challenge for parallelization is concerned with some restrictions
from physical point of view: density modification in one point of space implies an

2 Maximum numbers of mesh nodes and particles can be estimated in the following way.
5 3D arrays are used for 3 forces, density and potential, 3 3D arrays are needed for
harmonics storing and temporary data. So it’s needed about 400 Mb of RAM to store
128% double-precision 3D arrays. Since each particle has 3 space coordinates and 3
velocities it’s needed about 500 Mb to store arrays for 107 particles. Amount of RAM
in modern PC rarely exceeds 1 Gb.
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instant response in modification of gravitational potential in other space points.
In other words, it does not matter, how to decompose the computational domain,
or what procedures are parallelized; at each time step it’s needed to exchange
3D data with values of density and potential between processors. It can be op-
timized, for example, with some techniques of apriori estimations what compu-
tational subdomains have density equal to zero and so on. But such techniques
are heuristics and can not be applied for general problem.

In the following sections we describe implemented parallel algorithms which
are suitable for a large class of initial physical conditions. Possible directions of
further development are also discussed.

4.1 Poisson Equation

Parallelization of solving Poisson equation is based on an independence of solving
systems of linear equations (SLE) for complex functions of wave harmonics of
potential. SLEs are divided into groups and assigned to corresponding processors.

It’s known [3] that implementation of similar parallel algorithm for solving
Laplace equation has a difficulty: different time is needed for solving different
SLE due to ill-conditioning of SLE for wave harmonics with small numbers; it
may leads to non-uniform loading of processors. The same problem was observed
during development of solving methods for Poisson equation. Fig. [l shows distri-
butions for logarithm of time needed for solving SLE for the first time step (a),
and for mean time of thousand time steps (b). Almost all time is taken by SLE
for harmonics with wave number 0, which is the most ill-conditioned. Then com-
putation time is distributed with the obvious rule — the most time is needed for
solving SLE for harmonics with wave numbers close to zero (Fig. [, (b)). Based
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Fig. 1. Logarithm of solving time for SLE (vertical axis) depending on wave number
of harmonics (horizontal axes) is represented: (a) on the first time step, (b) average
for thousand time steps

on this experimental data, we have implemented the algorithm of distribution
harmonics between processors in the following way:

— SLE for harmonics with wave number 0 is assigned to the separate processor
with number procRank = 0,
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— Processor with number procRank > 0 solves group of SLEs with numbers
m = procRank+ix(procNb—1), where procNb is total number of processors
(less than total number of harmonics), ¢ —integer.

Tabl. [l shows timing distribution for separate procedures of Poisson equation
solving algorithm. This algorithm takes 3D array for mesh function of density as
input and returns 3D array for potential as output (storing harmonics values for
using them on the next time step). Solving harmonics’ SLE is parallelized proce-
dure and its speed-up factor is about 34 with 40 employed processors. So there
is no need to apply more complex technique such as algorithm of dynamic load-
balancing as in [3]. At the same time total speed-up factor of Poisson equation

Table 1. Typical distribution of computation time for separate procedures of solving
algorithm of Poisson equation for one of the processors on 10-th time step. Number of
SLE is 256, dimension of SLE is 212 x 146.

Number of FFT for Harmonics’ SLE Gathering of FFT for Total
processors density, sec  solving, sec  harmonics, sec potential, sec time, sec

1 0.3 6.8 — 0.4 7.5
10 0.3 0.7 0.65 0.4 2.05
40 0.3 0.2 0.42 0.4 1.32

solving is about 3.7 with employed 10 processors and 5.7 with 40. The reason
of such a weak speed-up factor is that bottlenecks are non-parallelized parts:
FFT applied to 3D mesh functions, and gathering of harmonics. These parts
can not be parallelized with the help of standard tools, because of increasing of
interprocessor communications.

The possible optimization of FFT is domain decomposition technique. It’s
needed to apply FFT for 3D mesh functions defined only on subdomain nodes.
However optimization possibilities of harmonics’ gathering procedure have fun-
damental restriction imposed by physical statement of problem which was men-
tioned at the beginning of the section [l

4.2 Vlasov Equation

Since computation of DF (coordinates and velocities for each particle) on the
next time step requires only computed mesh function of gravitational potential
and does not depend on coordinates of other particles, it is a source of natural
parallelism. There could be applied two different strategies of parallelization.
First strategy is based on domain decomposition technique: each processor is
treated its own space subdomain; computation of particles’ coordinates, which
are located in a subdomain, is assigned to corresponding processor. The obvious
advantage of this algorithm is the theoretical opportunity of arbitrary number
of mesh nodes, because it’s needed to store 3D arrays only for mesh functions
defined in its subdomain. On the other hand it requires to transfer some particles
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between processors at each timestep, because particles change coordinates and
subdomains during evolution. Also it’s needed to take into account possible lo-
calization of density (and, hence, huge number of particles) in small subdomains,
re-dividing domain and reassigning new subdomains to processors.

Second strategy, implemented for the present moment, consists of the follow-
ing: particles are distributed on processors in correspondance to their numbers
without taking into account their coordinates. Then each processor computes
coordinates of its particles on the next time step. The advantage of this algo-
rithm is that it does not require redistribution of particles during solving. At the
same time there is a restriction for the number of nodes of the mesh (not more
than 256 x 512 x 256) due to the storing 3D arrays for the whole domain. But for
meshes of average size (the most typical one is 256 x 256 x 256) this algorithm
is the most efficient. This strategy is limited only to collisionless models, since
taking into account possible collisions of particles implies interactions between
processors and exchanging data with each other.

4.3 Performance Measuring

Testing of implemented parallel algorithm was done on MVS-1000 in Siberian
Supercomputer Center and on MVS-1500 in Moscow Joint Supercomputer Cen-
ter. The greatest number of mesh nodes was 256 x 512 x 256 and number of
particles 109 with 200 processors. Fig. [ shows speed-up factor for typical simu-
lations with mesh nodes 212 x 256 x 146 and number of particles 108. It’s shown
an estimation of computation time for sequential simulation (number of proces-
sors equal to 1), since simulation requirs more than 5 Gb of RAM. The ratio of
solving Poisson equation and Vlasov equation was 30% and 70% correspondingly
for the simulation with 40 processors.

The greatest speed-up factor was obtained on 20 processors and decreased
with increasing of number of processors because of the discussed problems with
the parallelization of Poisson equation.

It’s necessary to mention that with increasing number of particles it’s recom-
mended to increase number of processors. E.g., for simulations involving 4 x 10%
it’s natural to use from 40 up to 80 processors.

5 Applications

In this section we describe results of numerical simulations on supercomputers.

First of all it is interesting to investigate the reliability of quasi-3D model,
which is widely used for simulations of circumstellar disk [3]. A typical feature
of circumstellar disk is a massive central body. In the subsection 5.1l we describe
results of study of influence of central body on the vertical motions of thin disk.

Second series of numerical experiments (presented in subsection B.2]) are de-
voted to the investigation of equilibrium and stability of gravitating systems, the
one of the fundamental problems of stellar dynamics [1J5]. Analytical solving of
given class of problem has obvious restriction: it’s needed to simplify a problem
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Fig. 2. Speed-up factor depending on number of processors. Technical parameters:
212 x 256 x 146 mesh nodes, 10® particles.

and to consider only special class of systems, e.g., which have spherical or axis
symmetry, constant density and so on. The real DF of stellar systems are more
complex, and it seems that they can be restored only with numerical simulations.
Besides, it’s needed to restore DF with good accuracy, that implies employing
huge number of particles.

With the help of implemented parallel code it’s possible to numerically in-
vestigate equilibrium DF in the most general way without restrictions for the
form of distribution functions, which were typical for earlier attempts [6]. We
propose an approach for investigation of different kinds of equilibrium distribu-
tions with the help of solving non-stationary problem, that requires to observe
the evolution of the gravitating system during a lot of rotations. Starting from
given distribution, orbits of particles are intermixed during their evolution, so
the whole system moves to stationary state. Obtained function is considered as
equilibrium.

5.1 Influence of Central Body on the Vertical Motions of Thin Disk

The following axisymmetric function of surface density is used for initial state:

z2=0,0(r) = (7()\/1_(1;(’)2’7“SR07 (6)

0,r > Ry;
2#07 f(t7r7u) :O'

where o¢ is derived from the condition that the total mass of disk is equal to
M.

Initial velocities of particles correspond to the circular rotation around origin.
Dispersions of radial and vertical velocities ¢, and ¢, are set in accordance with
Gauss distribution.

The following parameters are constants: sum of masses of the disk and central
body Mgy;sk + Mep = 7.0, value of initial dispersion of radial velocity ¢, = 0.12.
As variable parameters we take initial value of vertical dispersion c, in the range

0.0001 =+ 1.0 and ratio ks in the range ks = ]\%Cbk =0.0-+6.0.
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In the case of kps < 1.5 at earlier stage of evolution there are observed clus-
terization accompanied by bending of the disk (non-symmetric distribution of
matter w.r.t. the plane z = 0). At later stages a lot of matter are thrown from
the plane of the disk.

In the case of massive central body kj; > 2.0, and small vertical dispersion
0.0001 < ¢, < 0.2, at the first stage there are observed spirals (Figl3l a,b). Then
disk evolves to the quasi-stationary state (Figl3 b). Strong non-symmetries of
DF is not observed. More of that, at later stages of evolution disk has almost
constant height. Further increasing of ks leads to increasing of stability of the
disk both in vertical and radial directions.

So, employing quasi-3D model is suitable for simulations with initial distribu-
tions of matter in the form of thin disk and in presence of massive central body,
that is the case of circumstellar disk.

O

_ S . | —s
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Fig. 3. Logarithm of surface density for the points of time ¢t = 1.0 (a), ¢ = 4.0 (b)
t = 15.0 (c) in the planes z = 0 (upper) and y = 0 (lower). Computation parameters:
kar = 4.0, ¢, = 0.01.

5.2 Approach to the Investigation of the Equilibrium States of
Gravitating System

Stability of uniform sphere with anisotropic distribution of velocities.
Good demonstration of reliability of the implemented numerical model for inves-
tigation of equilibrium states is Einstein’s model. In the initial step matter has
the form of sphere with the uniform density. Each particle has a circular rotation
around origin with arbitrary direction. Total angular momentum of the system
is equal to zero. It’s one of the models with analytically proved properties of
equilibrium and stability [1].

Numerical simulations with this initial distribution showed the same result.
The evolution of the system was observing during the several rotations of parti-
cles around the origin and no fluctuations of density were noticed.
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Fig. 4. Diagrams of rotation curve (a) and surface density for the points of time ¢t = 0.0,
t = 2.0 and t = 24.0. Initial parameters: Mo = 1.0, ¢, = 0.5, c. = 0.09, ¢y = 0.

Evolution of thin disk with exponential surface of density. Let us con-
sider approach proposed in the section Bl in the case of evolving thin disk with
exponential density surface, which is usually used for approximation of surface
density of real galaxies [7]:

_ Jooe i, < Ry,

where o is derived from the condition that total mass is equal to My, L is a
parameter of density scale. Initial velocities of matter are chosen in accordance
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Fig. 5. Diagrams of rotation curve (a) and surface density for the points of time ¢ =
0.0, t = 12.0 and t = 18.4. Initial distribution — approximation of the equilibrium
distribution function, My = 0.83.
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with Gauss distribution with given dispersions ¢, c., cs and mean values corre-
sponding to the rotation around origin.

Numerical simulations showed that the distribution function defined in such a
way is not an equilibrium one. At the same time after sufficiently great number of
rotations the system evolves to the equilibrium state (Fig. d), with the ellipsoid
in central region, which rotates with constant angular velocity. On the Fig. @l
there are shown diagrams of rotation curve and surface density.

Then, obtained distribution function is approximated with the help of axisym-
metric mesh functions of surface density, azimuthal velocity, and dispersions of
velocities. At that we take into account matter only in central region of the do-
main (r < 3Rp). This approximation is suitable because total mass of excluded
matter is less than 20% and it has a weak impact on the dynamics of matter in
central region. As it is shown on the Fig. [ the obtained approximation is close
to equilibrium state.

6 Conclusion

We have implemented parallel numerical code, based on particle-in-cells method
and designed to study 3D dynamics of gravitating systems. Parallel imple-
mentation is effective for simulations with number of mesh nodes less than
212 x 256 x 146 and number of particles ~ 10%. To use finer mesh we discussed
possible strategy based on domain decomposition technique.

Using parallel code we are able to study a large class of gravitational physics
problems, that is demonstrated with apllications: investigation of central body
influence to the vertical dynamics of thin disk and study equilibrium and sta-
bility of gravitating system. To provide fine accuracy and large time scales for
numerical simulations, there is a fundamental requirement to use supercomput-
ers.
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Abstract. In this paper, the authors propose a numerical investigation
in the time domain of the mechanical wave propagation due to an im-
pulsional load on a semi-infinite soil. The ground is modelled as a porous
saturated viscoelastic medium involving the complete Biot theory. An
accurate and efficient Finite Element Method using a matrix-free tech-
nique is used. Two parallel algorithms are used: Geometrical Domain
Decomposition (GDD) and Algebraic Decomposition (AD). Numerical
results show that GDD algorithm has the best time. Physical numerical
results present the displacements of the fluid and solid particles over the
surface and in depth.

1 Introduction

The study of the mechanical wave propagation in porous media is a subject of
great interest in diverse scientific fields ranging from environmental engineering
or vibration isolation to geomechanics. At the macroscopic scale, the medium is
considered as a two-phase continuum. The Biot theory is known as the reference
theory to deal with the macroscopic mechanical wave propagation phenomenon,
see Biot [I] or Coussy [2] for instance.

Theoretical works are restricted to simple geometries. Consequently, they have
to be completed by numerical approaches such as Finite Element or Boundary El-
ement Methods, allowing the study of more complex problems to better represent
the ground. The difficult study of transient regimes in geomechanics has been
treated numerically by several authors but only for specific cases, Zienkiewicz
and Shiomi [3], Simon et al. [4] and Gajo et al. [5] for example. In particular, in
many cases, the tortuosity and the physical damping parameters are not taken
into account.

Moreover, even with an efficient and optimized finite element code, only a
restricted range of problems can be treated. As a matter of fact, solution of
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practical problems (for instance, realistic 3D geometries, and problems with
short pulse load needing fine meshes for representing well the high frequencies)
usually requires millions of degrees of freedom. This is often virtually out of capa-
bilities of contemporary sequential computers either because of lack of memory
or abundantly long computation time. In all these cases, parallel programming
techniques may be a good solution to overcome the computational complexity.

In this paper, the authors propose a parallelized version of a finite element
C++ code specifically developed at the Climate Soil and Environment Labo-
ratory to study transient wave propagation. This approach includes the whole
Biot theory with all the couplings which represent the interactions between the
solid and fluid phases. The sequential version has previously been presented at
ICCS 2005, Mesgouez et al. [6].

Two parallelization techniques have been achieved: the first one uses an alge-
braic grid partitioning and the second one a Geometrical Domain Decomposition.
MPI standard library is used to exchange data between processors. Numerical
results, obtained for a two-dimensional problem, include the analysis of speed-up
and efficiency on several super computers.

2 Mechanical and Numerical Works

2.1 Spatial Scales and Macroscopic Approach

When we focus our attention on the description of a porous medium, the first
question to be put is that of the spatial scale of analysis: indeed, two approaches
are conceivable. The first one is situated at the microscopic scale. The charac-
teristic length size is the dimension of the pore. In this configuration, the solid
matrix is partially or completely filled with one or several viscous fluids. One
geometric point is thus located in one of the different identifiable solid or fluid
phases. Mechanical equations of each phase and mixture with compatible inter-
face conditions are written. They correspond to those of linear elasticity in the
solid and to the equations of Stokes in the fluid. This approach deals with prob-
lems like interface modelling or description of microscopic geological structures.
Homogenization is then obtained through asymptotic developments or averag-
ing procedures and leads to a macroscopic description of the porous medium,
see Terada and al. [8] or Coussy et al. [9] for instance. We obtain thus the fa-
mous set of macroscopic mechanical equations for a representative elementary
volume. In this macroscopic spatial description, the porous medium is seen as
a two-phase continuum. This scale, we study here, is well adapted to most of
practical geomechanical problems.

Writing u; and U; respectively the macroscopic solid and fluid displacements
components, Biot’s equations can be written with usual notations as follows:

0ij.5 = (1= @)psiii + op;U;
pi=— (Ui =)+ psla—1)ii; — aps U
0ij = AowEkkOij + 2ppEsj — Bpdij
¢ Uk i — ki) = Bukp + 5y

—~ o~~~
[\
—_ — — ~—
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o0;; are the total Cauchy stress tensor components and p is the pore pressure.
The soil’s characteristics are: Ag, and u, (drained viscoelastic equivalent Lamé
constants), ps and py (solid grains and fluid densities), ¢ (porosity), K (hydraulic
permeability representing the viscous coupling), a (tortuosity standing for the
mass coupling), M and g (Biot coeflicients including the elastic coupling). In this
problem, the unknowns to be determined are the solid and fluid components of
displacements.

2.2 Finite Element Formulation and Numerical Resolution

To determine the solid and fluid displacements in the ground, we develop a
numerical code based on the finite element method for the space integration,
coupled to a finite difference method for the time integration. The main steps
are:

— some boundary and initial conditions are associated to the previous partial
differential system. Some modifications on the field equations are done in
order to lead to a Cauchy’s problem.

— integral forms are obtained using the weighted residual method. They are
then spatially and analytically discretized and lead to a time differential
system. The global differential system to be solved can be written as

(M) WO} + KW ) = (RO, )

[M] and [K] are respectively the global mass and stiffness matrices. {W (%)}
and {F(%)} are the global vectors of unknowns and solicitation. With the
developed technique, the mass matrix is diagonal and can be easily inverted.

— the backward finite difference method modified with an upward time param-
eter is used to obtain an approximate solution of the problem.

2.3 Structure of the Code and Parallelization

The sequential code called FAFEMO (Fast Adaptive Finite Element Modular
Object), developed to solve the previous problem, constitutes an efficient code
to deal with transient 2D problems and small 3D ones. The use of a matrix
free technique, not necessary for small cases, becomes interesting for huge 3D
configurations. An expert multigrid system is also used to optimize the problem
size and yields a modification of the global matrices at each time step. The two
previous techniques lead to a high performance level both for the storage and
the CPU costs. The C++ code is organized in three classes connected by a single
heritage: element, elementary matrices and building-resolution classes.

More informations on the finite element formulation and the sequential version
of FAFEMO can be found in reference [10].

For huge problems, the elementary vectors have to be calculated and assem-
bled for each time step since they are too expensive in terms of Input/Output
cost to be stored. In order to treat 3D problems and to perform intensive 2D
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parametric studies, we propose and compare two parallel algorithms to reduce
the time calculation.

The Unix/Linux gprof tool draws a time profile of the sequential code. For a
two-dimensional application, the elapsed time is divided as presented in Table
[ for each of the three classes.

Table 1. Time profile of the 2D sequential code

reading of the data files elementary matrices building-resolution
and element class class class
7.45% 90.60% 1.95%

The part which is the largest consumer of elapsed time clearly appears to
be the elementary matrices class. This can be explained as the elementary ma-
trices have to be calculated for each time step. Besides, as we use a matrix
free technique with a diagonal mass matrix, the resolution part is more efficient
and needs little computational time. Moreover, the process of construction of
the elementary matrices and vectors [K.|, [M.] and {f.} is iterative and inde-
pendent element by element. This independent and time-consuming loop can
thus be divided into several processors by distributing the n elements between
p quasi-equitable parts. A good load balancing is thus obtained.

2.4 Algebraic Decomposition (Grid Partitioning)

Firstly we propose grid partitioning based on algebraic decomposition which is
performed randomly without any geometric factors. Several advantages are:

— unlike the domain decomposition method, this technique does not need any
particular interface management. This is particularly important when an
expert multigrid system is activated, or when the geometry is changed.

— moreover, when the size of the grid is modified, the algebraic distribution
of the elements leads to an equitable load balancing between processors at
each time step.

— another advantage of this approach is that the implementation is as close to
the original sequential solver as possible.

The main disadvantage of Algebraic Decomposition is that this algorithm does
not take into account information concerning geometrical properties of the do-
main and all the information has to be communicated to a master processor.

The parallelization of the FAFEMO code corresponds to a SPMD program-
ming model with in this configuration an algebraic distribution of the differ-
ent finite elements of the grid. MPI standard library is used to exchange data
concerning the elementary matrices between master and slave processors. The
architecture of the parallelized version of the code is summarized on figure [l

You can find more information and some numerical results obtained by the
authors on Algebraic Decomposition in [7] .
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Master processor | Building resolution class

|

Fig. 1. Structure of the parallelized version of the C++ finite element code

2.5 Domain Decomposition

One of the most widespread parallel algorithms for solving problems with finite
elements method is the method of Domain Decomposition, which main advan-
tage is the use of information about geometrical form of area. Communication
operations are used only between neighboring domains. Therefore, the number
of communications is smaller than when we use algebraic decomposition. More-
over, global memory can be distributed between processors because we know
precisely how much memory each processor needs. Thus, in this case, we can
store the elementary matrices and vectors.

In the following, we propose to use DD technique. The main idea is to divide
area into several nonintersecting domains.

First, we convert the mesh into graph-format (see Metis documentation [11]).
Then, we use freeware soft for graph partitioning (Chaco [12], Metis [11]). These
programs realize graph partitioning algorithms, for instance: linear, internal-
KL, multilevel-KL, spectral. They associate each vertex of the graph with the
number of the domain it belongs to. In our problem, each vertex of the graph
corresponds to a node of an element. Before executing the FAFEMO program,
we create the communication map, which describes communication messages
between domains. For instance, figure 2] presents a simple part of the mesh. Two
numbers are associated to each node of the mesh: the first number is the global
number of the node, the second number is the number of the domain. Let’s
consider some cases with various numbering elements:

1. If the nodes of one element belongs to the same domain, we do not need to
exchange information between domains.

2. For an element presenting two identical domain numbers, for example (10,
a), (11, b), (12, b), processor ”a” needs to transfer data to processor "b”

M

and processor ”b” needs to transfer data to processor "a”.
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3. For an element with nodes belonging to three different domains, for instance
(11, a), (12, b), (13, ¢), processor ”a” needs to transfer data to processors
”b” and ”c”, etc.

"'-.I‘ -\\
\\
\ N (101)
""'. _ftl'-._
(2,2) ¥
O )
(82) )

Fig. 2. Example of grid with marked nodes

Thus, in figure @ the dark grey part represents data to be exchanged be-
tween the neighboring domains. High efficiency of the given algorithm is reached
because exchanges only occur between neighboring domains.

3 Results

In this section, numerical results are presented for 2D problems involving 25,617
(Test 1) and 100,620 (Test 2) nodes to estimate the performance of the paral-
lelized version of the FAFEMO-+DD code. Two supercomputers were used:

1. Supercomputer Zeus (IBM sp4) is installed at the National Computer Cen-
ter of Higher Education (CINES, Montpellier, France). This cluster is based
on IBM Power4 1.3 GHz. Each node has 32 processors. The total num-
ber of nodes is 9. These nodes are connected by Switch Hight Performance

HPS).

2. éuper)computer MBC15000-MB is installed at the Joint Supercomputer Cen-
ter (Moscow, Russia). It is a cluster based on PowerPC 970+ 2.2 GHz with
4 GB Shared RAM. Nodes are connected by high speed Myrinet 2000 net-
work (2Gb/S) and two GigabitEthernet. The peak performance of this su-
percomputer equals 8.13 Teraflops. Total amount of the RAM equals 1848
GBytes.
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3.1 Test 1

In this paragraph, we consider the solution of equations (IH) for the dimen-
sionless 2D geometry presented in figure Bl The applied solicitation is a vertical
impulse of very short duration which dimensionless value is 0.2 (corresponding
to 2 ms). The grid is selected according to the studied points and the duration
of the study. The boundary is then modelled with Dirichlet conditions, imposing
a zero displacement for each of the two phases.

The space (£2) is of dimensionless radial size r = 3.5 (corresponding to 70 m).
It is built in a grid with 50,626 triangular elements and 25,617 nodes with 8
degrees of freedom, which is on the whole 204,936 degrees of freedom. One side
of the space grid triangle has a step de = 0.03. In the following, we give only
dimensionless values; the three mechanical quantities chosen for this problem
are: u = 10'° Pa, ps = 2,600 kg m~2 and 7 =0.01 s, from which we deduce
reference length and time: I,y =19.5 m and ¢,y = 0.01 s.

The characteristics of the ground have been chosen from a bibliographical
study. The papers used are in particular those of Gajo et al. [5], Akbar et al. [13]
and Dvorkin and Nur [I4]. The dimensionless mechanical values are as follows:
drained viscoelastic equivalent Lamé constants A§, = 0.556 and p;, = 0.833; first
Biot coefficient M* = 0.5267; second Biot coefficient 5 =0.72; density of solid
grains pi =1; density of fluid component p = 0.3846; hydraulic permeability
coefficient K* = 0.65; porosity ¢ = 0.4; tortuosity coefficient a = 1.2; damping
coefficient n* = 0.1.

The equations ([ are solved using Backward Step Method for Cauchy’s
problem and Finite Element Method for spatial approximation. The time step
is 0.002 and the study duration is 3.

Figures present speed-up, efficiency, elapsed time obtained on the two
supercomputers. For the MBC-15000MB, speed-up is a linear function whereas
for IBM supercomputer Zeus the non linear part can be explained by architec-
ture of processors. We assume that all frequently used data are put in cache
memory which leads to a non linear increasing speed-up and an increasing effi-
ciency. Moreover, the chosen scale magnifies the irregularities of the curve. This

® TUnit vertical stress at (x=0,y=0)
e TImpulse duration 0.2

Fig. 3. Example of geometry
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picture shows better results for Geometrical Domain Decomposition than the
ones obtained by Algebraic Decomposition method, see figure EH5l

3.2 Test 2

For this test, we use the same physical and numerical parameters as in Test 1,
but we change the numbers of nodes and elements: number of elements equals
100, 620 and number of nodes 199, 142. Figures present the speed-up, effi-
ciency and elapsed time for large numbers of processors. We can say that results
are not good because the grid is too small for the use of many processors. If
we calculate the number of nodes per processor, we obtain about 5000 — 1000
nodes. We use GID generator which does not allow to create very large grids
for supercomputers. In further work, we will introduce huger grids using parallel
mesh generator. Some physical parameters studies using FAFEMO code can be
found in [I0].

4 Conclusion

A parallelized finite element code has been presented to study wave propagation
phenomena in poroviscoelastic grounds. In fact, the applications are wider and
can concern for instance porous bones or foams. Besides, the code can treat all
propagation wave phenomena: a version studying electromagnetic wave propa-
gation has been developed in the same way.

Two parallel algorithms were compared and has shown that Domain Decom-
position Method gives better results for huge problems.
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Abstract. The number of sequenced genes is dramatically increasing
with that of international genomic projects. The gene sequence infor-
mation proved to be helpful in predictions of protein structure, pro-
tein function and mutations targeted at improving the biological and
biotechnological properties of proteins. Processing of the immense in-
formation stored in the databases demands high-throughput computa-
tional approaches. Here, we performed a parallelization of the algorithm
for analysis of nucleotide substitutions in gene sequences from different
organisms previously implemented in the PLATO program. The results
demonstrated that the parallelization of the algorithm provides linear
speedup of the PLATO program.

Keywords: gene evolution, maximum likelihood, algorithm, parallel
computing.

1 Introduction

Gene sequence information is accumulating at an accelerating pace at genomic
centers worldwide. The incremental number of sequenced genes stored in the
databases in now over 60 millions for more than 165,000 organisms|(http://www.
ncbi.nlm.nih.gov/Genbank/). Analysis of the sequences provides clues to pre-
diction of the function of genes, their evolutionary features, structure of the
proteins they encode, also mutation effect on their structure.

An important problem in comparative analysis of genomic sequences from dif-
ferent organisms is detection of genes or their parts that possess specific modes
of nucleotide substitutions with significant deviations in the evolutionary pa-
rameters resulted from selective forces due to their specific origin, structure, or
function. Therefore, the obtained information is helpful in detecting genes of
functional importance. Grassly and Holmes [I] have proposed a method for the
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detection of gene regions evolving anomalously using the likelihood approach im-
plemented in the PLATO program (http://evolve.zps.ox.ac.uk/software/
Plato/main.html). Due to use of computation of the likelihood and the Monte
Carlo sampling to estimate statistical significance of likelihood deviation, the
original program was time- and labor-consuming. This became critical in large
scale evolutionary analyses. In this work, we perform parallelization of the
PLATO algorithm and apply the modified program to analysis of gene sequences
of the myostatin family [2].

2 Methods and Algorithms

The PLATO algorithm is based on the likelihood approach [3]. With this method,
the occurrence probability of a sequence, in a given evolutionary model, defined
by parameters such as phylogenetic tree topology, nucleotide substitution rate
and probability, is estimated. It is assumed that nucleotides mutate indepen-
dently, thus the likelihood of the sequence is the product of the likelihood for
each nucleotide site, and their logarithms are summed up. To identify the anoma-
lously evolving regions, the function was calculated for a window scanning along
a sequence:

z;ﬁj}’*s InL; /ZKS” I Li + 31— (s 0 Li

n—s

Q= (1)
For the sequence of the length n and the sliding window of the length s starting
from the site sp the logarithmic likelihoods, L;, for each site ¢ are summed over
the region within the window; the sum is divided by the length of the region. The
denominator contains the average likelihood for the nucleotide sites except the s
region. Thus, the value @ is a measure of the mean likelihood for the particular
window relative to the mean likelihood for the rest of the sequence. The gene
regions with high @s correspond to the regions with the least likelihoods and
are most likely subject to anomalous evolution (due to natural selection, genetic
recombination etc.). Authors used Monte Carlo simulation to estimate statistical
significance of the () parameter using Z-score technique [IJ.

Work with the PLATO program requires laborious calculations to estimate
likelihood function in sequence sites. PLATO calculates the @ value for the
window s from 5 nucleotides to n/2 in length, for all windows starting form
the sp position along the sequence (1 < sp < n — s+ 1). The @ values for each
position and window length form the matrix. The calculation of the matrix is the
most time consuming part of the algorithm. In our parallel implementation, the
matrix element calculation was equally distributed among the processors as jobs.
This distribution is done automatically, depending on how many processors are
accessible to the program. Thus, each processor contains a piece of the resulting
matrix after finishing its job. The pieces are assembled into the matrix, which is
then sent to all the processors so that each contains a full copy of the similarity
matrix for the sequences being analyzed by the sliding window. Parallelization
is done using the MPI library.
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Fig. 2. Results of the PLATO algorithm
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Aligned nucleotide sequences of related genes from several organisms, also
phylogenetic tree topology, are PLATO input. PLATO outputs a list of gene
regions whose evolutionary mode was anomalous as opposed to the rest of the
gene.

Here, we analyse the evolutionary features of the genes of the myostatin fam-
ily. The myostatins are negative regulators of skeletal muscle development and
regarded as good drug targets. There was reason expect that therapeutics that
modulate skeletal muscle growth would be useful for disease conditions such as
muscular dystrophy, sarcopenia, cachexia, even diabetes [2]. The myostatins are
secreted from the cell in the non-active dimer form, noncovalently bound at their
N-ends containing the so-called LAP (Latency Associated Peptide) domains. For
conversion to the active form, proteins are activated by detachment of the TGF-b
(functional domain) and LAP from each other, which occurs through site-specific
proteolysis of the LAP domain [4]. The domains TGF-b and LAP accomplish
different functions. Using the PLATO program, we analyse here the evolutionary
modes of the myostatin gene regions to compare their evolutionary features.

Multiple alignment of myostatins contains 44 sequences 1002 nucleotides in
length. The PHYML program was utilized to reconstruct the phylogenetic tree [5].

3 Results

The original PLATO version did not allow to analyse the myostatin family be-
cause work with such long sequences was unstable. Before proceeding to paral-
lelization, the code was improved. The parallel version of PLATO is more stable
and calculation time under multiprocessor mode is significantly reduced.
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Calculations using the parallel version of PLATO ran at PC-clusters with
different numbers of CPUs. The program was developed and bug-fixed on MVS-
1000 at the Siberian Supercomputer Center in Novosibirsk (128 Alpha 21264
processors), most calculations were done on MVS-15000 at the Joint Supercom-
puter Center in Moscow (900 PowerPC 970FX processors). The more processors
were employed per task, the less time it took to complete the calculations (Fig.
[); for example, 256 processors did the job in 15 seconds (for comparison, one
processor did it in 45 minutes). The tests have shown the linear speedup of the
program relative to the number of processors.

Analysis of sequences in the myostatin family genes carried out using the
modified PLATO program demonstrated that the @ value Z-score is greater
than the value of 3 for the N-end LAP domain, and it is 0 for the TGF-b domain
(Fig. B). The significant deviation of the ) parameter in the region of the LAP
domain may be due to the positive selective pressure, as previously reported [6],

.

Acknowledgments. This work was supported by the program Promotion of
Scientific Potential in Higher Education Institutions of Russian Federal Agency
on Education, project 2.1.1.4935, program 10002-251 /P-25 /155-270 /200404-
082 ”Biosphere Origin and Evolution” of the Presidium of the Russ. Acad. Sci.,
CRDF grant RUX0-008-NO-061, and grants 05-04-49141-a, 05-07-98012-p from
Russian Foundation of the Basic Research.

References

1. Grassly, N.C., Holmes, E.C.: A likelihood method for the detection of selection and
recombination using nucleotide sequences. Molecular Biololy Evolution 14(3), 239
247 (1997)

2. Tsuchida, K.: Activins, myostatin and related TGF-beta family members as novel
therapeutic targets for endocrine, metabolic and immune disorders. Current Drug
Targets — Immune, Endocrine, Metabolic Disorders 4(2), 157-166 (2004)

3. Felsenstein, J.: Evolutionary trees from DNA sequences: a maximum likelihood ap-
proach. Journal of Molecular Evolution 17(6), 368-376 (1981)

4. Lee, S.J.: Regulation of muscle mass by myostatin. Annual Reviev Cellellular De-
velopment Bioliology 20, 61-86 (2004)

5. Guindon, S., Lethiec, F., Duroux, P., Gascuel, O.: PHYML Online: a web server for
fast maximum likelihood-based phylogenetic inference. Nucleic Acid Research 33
(Web Server issue), W557-W559 (2005)

6. Tellgren, A., Berglund, A.C., Savolainen, P., Janis, C.M., Liberles, D.A.: Myostatin
rapid sequence evolution in ruminants predates domestication. Molecular Phyloge-
netics Evolution 33(3), 782-790 (2004)

7. Kerr, T., Roalson, E.H., Rodgers, B.D.: Phylogenetic analysis of the myostatin gene
sub-family and the differential expression of a novel member in zebrafish. Evolution
Development 7(5), 390-400 (2005)



Object Serialization and Remote Exception
Pattern for Distributed C++/MPI Application

Karol Banczyk, Tomasz Boinski, and Henryk Krawczyk

Gdansk University of Technology, Faculty of Electronics, Telecommunication and
Informatics, ul. Gabriela Narutowicza 11/12, 80-952 Gdarisk
{aban,tobo,hkrawk}@eti.pg.gda.pl

Abstract. MPI is commonly used standard in development of scientific
applications. It focuses on interlanguage operability and is not very well
object oriented. The paper proposes a general pattern enabling design of
distributed and object oriented applications. It also presents its sample
implementations and performance tests.

Keywords: MPI, object serialization, remote exception handling.

1 Introduction

MPI[I] is a widely accepted standard for message passing in scientific applica-
tions. It focuses on interlanguage compatibility (FORTRAN, C, C++) rather
than on leveraging a single language constructs. Nevertheless, in many C++ ap-
plications a more object oriented, MPI based network interface (later referred to
as connector) would be desireable. Although bindings for C++ were introduced
to MPI [1], more sophisticated features are often needed for practical use.

This work focuses on object serialization and remote exception handling. The
former is a mechanism for converting objects between their in-memory repre-
sentations and a stream of bytes. The latter allows us to transmit exceptions
occurring in a remote server process to the calling client process. Some example
applications are also shown.

The paper consists of five sections: Section 2 define design goals; Section 3
presents the proposed pattern; Sections 4 and 5 provide sample implementations
and Section 6 discusses certain experimental results.

2 Design Goals

The connector should provide methods for collective and for point-to-point com-
munication as well the possibility to receive exceptions that occurred remotely.
A remote exception should be handled in the same way as any local exception.
An application satisfying those features could be implemented without any new
communication layer. Most of the design goals could be achieved using either
the SR language [0] or its Java based ancestor, JR [6] [4], or else MPI wrappers
for Java (like mpiJava [10]).

V. Malyshkin (Ed.): PaCT 2007, LNCS 4671, pp. 188 2007.
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It is risky to write a sophisticated program in a language, such as SR, which
has small community around it and few available libraries. Java serialization
mechanisms has negative impact on overall performance (which is confirmed by
the below mentioned results). Similarly, the mpiJava, as a wrapper around C,
introduces additional overhead. So we decided to create the C++ application
and implement simplified versions of suitable Java oriented mechanisms.

3 Architecture of Application Pattern

The assumed architecture is depicted in Fig. [l with two lower layers: Object
Lifecycle Management (OLM) and Object Serialization (OS), both inspired by
Java’s mechanisms, i.e. reflection and serialization. The former enables class
identification and memory management for objects. The letter provides methods
for writing and reading objects to/from a stream of integers.

Serialization, though inspired by Javalg], is a simple solution. Per class imple-
mentation is needed for each serializable object, no security issues are considered
and the serialized stream contains no matadata. This solution requires more de-
velopment time, but reduced serialization time. Similarly, in Java a per class
implementation is also needed, if performance issues are a concern.

The connector transmits serializable Message objects between the nodes. It
uses MPI as its underlying network communication library but also Object Se-
rialization with Object Lifecycle Management for converting object messages
to/from byte sequences required by MPI.

Every exception occurring during handling procedures is caught by the com-
munication layer, transmitted through the network to the appropriate node and
thrown the next time that node invokes a method on the communication layer.

Node Node
S S
Master | S| Slave
Code g MPI MPI g Code
O O
oS Network os
OLM OLM

Fig. 1. Application architecture pattern

4 Implementation

4.1 Basic Classes

In the proposition each serializable class has to be subclass of the IntSerializ-
ableObject class and has to implement writeTolnts and readFromInts methods.
A special Exception class was also defined. Unfortunately, it is impossible to
transmit the original exception object itself. The C++ specification [7] states
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that the memory for the temporary copy of the exception being thrown is allo-
cated in an unspecified way thus allowing each compiler implementation to do
it differently. This conflicts with the idea of ObjectFactory and could lead to
uncontrollable memory leaks if not handled properly. Both the abovementioned
Message class and Exception class needs to be serializable.

Some sublasses of Message are defined: SimpleMessage used for wrapping
requests and responses; CarrierMessage employed in transmitting any number
of different objects of the IntSerializableObject type in one communication at-
tempt; and ExceptionMessage used for wrapping and transmitting exceptions.

Any of given classes can be further subclassed by any number of more spe-
cialized ones to better suite the given solution.

4.2 Serialization

Here is and example ofserialization algorithm: two objects, containing fields f1
and 2, wrapped into CarierMessage, will be serialized in the following way:

1. CarrierMessage class Id is written so that Object Factory will be able to
recreate it;
2. CarrierMessage’s writeTolnts method is invoked in such a way that:
(a) the object’s Id is written so that recipient can deduct meaning of this
message, i.e. if it is a message with results or a control message,
(b) number of contained objects is written (here 2),
(c) for each of the objects its class Id is written and its writetoInts method
is invoked; this method stores Id and fields of that object.

Then, the message is being send and after receiving the serialized object it is
recreated as follow:

1. Class Id is read and used for recreating the object, CarrierMessage in this
case;
2. CarrierMessage readFromInts method is executed; this method:
(a) restores value of it’s 1d,
(b) reads number of contained objects,
(c) each contained object is being recreated and it’s readFromInts method
is employed.

4.3 Remote Exceptions

Exceptions were added to MPI C++ bindings. However, they only apply to
MPI communication operations so a more general solution for user aplication
exceptions is needed.

Fig. @l presents the algorithm for remote exception handling. When an excep-
tion on a remote node occurs and cannot be handled locally on that node, it is
caught and wrapped into an ExceptionMessage object. That object is serializable
and thus can be transmitted through the network. After that it is deserialized
and thrown again on the target node. Later, on a proper solution for the problem,
it can be transmitted to the node where the exception originated.
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Message with solution for

exception is sent|to node k

Situation is handled
according to orders
form control node

Fig. 2. Remote exception handling algorithm

5 Application Examples

5.1 Assertions

Assertions are a well-known method for finding bugs in software[2]. If a con-
dition is not fulfilled on a single node the standard C++ assert macro silently
terminates, leaving the other nodes completely unaware of that fact.

We created our own version called xassert. When the assertion fails on one
node, the process throws an Exception. It reaches the master node and causes
a standard fatal error handling procedure that can, for example, send all the
slaves a termination message and gracefully shut down the whole system.

5.2 Exceptions Thrown in a Slave Node

We developed a master-slave applications designed to solve timetabling problem
[3]. Exceptions thrown within slave nodes may sometimes be handled locally,
like buffer overflow errors, otherwise have to be passed to master. When, for
example, a slave node cannot generate random individuals for given input data,
an exception needs to be passed to the master node, where the user is notified
about the problem and can apply the solution for it. This approach can be used
in any type of client/server approach.

6 Test Results

This section shows the results proving serialization’s efficiency. All presented
tests were performed on a 10 node cluster. Each node consists of 4 Intel Xeon
CPU 2.80GHz and has 4GB of RAM. The nodes are connected via gigabit eth-
ernet network. Measured latency was around 100 microseconds.
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6.1 Serialization’s Overhead

Table[Il compares time (in microseconds) of preparation of MPI message buffer
with serialized objects by means of the proposed serialization mechanisms to
writing to a raw integer buffer. For this test we have created a serializable class
containing a vector of integers of agiven length. No actual sending is performed.

Table 1. Serialization time in microseconds

Vector size With serialization Without serialization With/Without ser.

1 1.62 0.20 8.10

10 2.74 0.21 13.05
100 4.84 0.40 12.10
1000 10.46 1.37 7.64
Average: 10.22

The average serialization is 10.22 times slower than writing data directly to
integer vector. Nevertheless, it is by one level of magnitude shorter than the
latency time, and it simplifies and structurizes the code, which makes the per-
formance loss is acceptable.

6.2 Comparison to Java

Java offers very good methods of serialization and remote exception handling.
These methods, however, introduce additional overhead both in terms of needed
time and size of the result. For this test, a simplified connector was imple-
mented in Java. Also two realizations of serialization were provided: normal
(standard java.util.ArrayList class with standard serialization) and optimized
(using com.sosnoski.util.array.IntArray [9], an array optimized for storing inte-
gers and custom read and write methods).

Table 2. Java and C++ serialization comparison

Vector size Standard Java Optimized Java C++

10 32.00 25.00 2.74
100 107.00 16.00 4.84
1000 1180.00 43.00 10.46

The results are presented in Table @l (in microseconds). Java serialization
is slower than the proposed C++ implementation, especially when using stan-
dard Java classes. Although simpler to code, optimized Java serialization is 4 to
10 times slower than C++ implementation. Additionally, C4++ application in
general has smaller memory requirements.
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7 Conclusions

The object serialization presented in the paper proved to be efficient and simple
for implementation. All types of objects are being serialized in the same manner
thanks to usage of integers as a common way of representing data. It allowed
us to transport a wide range of objects between nodes. The presented solution
provides full transparency both from object’s and application’s point of view. In
all those aspects it is similar to Java solutions yet faster and simpler.

The proposed remote exception handling, is simple but requires forming a
special Message objects for each type of exception sent. Those, however, can be
coded once and included into a library for future reuse.

In addition to design goals, introduction of a Connector makes applications,
built with this patter in mind, extendable. Communication performance and
reliability tuning becomes very easy as only changes to Connector needs to be
done.
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Abstract. Dealing with a large amount of data in Data Grids makes the
requirement for efficient data access more critical. In this paper, we pro-
posed a new approach to replication problem by organizing the data into
several data categories that it belongs to. This organizing will help im-
proving placement strategy of data replication. We studied our approach
in combination with scheduling issue and evaluating it through simula-
tion. The result shows that our strategy has improved the scheduling
performance by 30%.

1 Introduction

Data Grid is an integrating architecture that allows the connection of hundreds of
geographically distributed computers and storage resources located in different
part of the world to facilitate sharing of data and resources [4]. Dealing with
large amount of data that are geographically spread causes many challenges to
Data Grid. One of them is how the scheduling efficiently work with the amount
of data and the impact of replication to the scheduling performance.

1.1 Motivation

Replication and scheduling problem has been studied separately for a long time.
However those of Data Grid have just recently received attention from researchers.
Effective job scheduling in Data Grid has its own complicated characteristics since
it deals with a large amount of data input in the dynamic environment of Grid. The
decision of where and when to execute a job is made by considering the job require-
ment and current status of The Grid, here are computational, storage and network
resources. In Data grid, the performance is greatly influenced by the data’s locality
[5]. A good scheduling strategy will allow shorter access to required data, therefore
reduces the data access time. Vice versa, replication strategy that allows placing
data in a wisely manner will offer a faster access to files require by grid jobs, hence
increases the job execution.
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1.2 Related Works

There are some recent works that address the problem of scheduling and/or
replication of Data Grid, and their combination. The importance of data locality
in job scheduling problem was first proposed by Ranganathan and Foster [5]. The
authors propose Data Grid architecture and evaluate the scheduling performance
in combination with replication. Even though the architecture and algorithms
are simple, results of this study show the importance of data locality in job
scheduling.

In OptorSim [12], data replication is combined with job scheduling in a two-
stage optimization mechanism. Our proposed architecture, however, is the com-
bination of the two mentioned above. Some more recent works by Chakrabati,
et al. [6] or Tang Ming et al. [7] improved the previous works by integrating the
scheduling and replication strategy to improve the scheduling performance.

Having analyzed these works, the author found two shortcomings. The first
one is the relationship among data and between the data and job using them.
Instead of relying on the grid capability, we approach the problem from the
job and data property. The second issue is that the important role of Dataset
Scheduler was not fully recognized.

This paper is organized as followed: Section [2 describes the scheduling issue,
section [3] goes in detail the replication strategy, of which the simulation results
are presented in Section [l Section [§] summarizes the paper.

2 Scheduling Strategy

Scheduling strategy is relied on the estimation of completion time of a job:
ETTC]‘J = max{DTf(j)’i, QT]ﬂ)} + EET]‘VZ‘ . (1)

This estimation equation is similar to what was introduced in [7]. In the
real case, the work of obtaining QT ; - queuing time in site i - is quite simple.
Suppose that j-1 is the last job in site i’s queue. We can realize that QT};; =
ETTC;_1;. Resource broker can communicate with local scheduler to obtain
ETTC;—1 ;. Data transferring time DT ;) ; can also be estimated by the Grid
status information as described in [7].

3 Dynamic Replication

We assume that Data Grid is used for some fields of study, such as Physics,
Biology, Chemistry, Meteorology, etc. These fields can be divided into sub-fields,
for example biology can be divided to cell biology, molecular of biology, cell
technology, etc. Data in Data Grid must belong to one of these fields. The reason
behind this assumption is that data in one field rarely or never be used in other
fields. By doing so, we can form a hierarchical tree of data category, on which we
define the relationship between data in same category and relationship between
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nearby categories. Our idea is to gather the data that are "related” to each other
into the small region so that the job that uses such data will be executed within
that region in order to lower data transfer cost. Considering current data and
scenario, we can just define a flat category system, including a set of category.
Data in one category can only be used with data in the same one.

With the above assumption, we define an strategy called Dynamic Data Repli-
cation Strategy (DR) to solve the replication question (which data to be repli-
cated and where to place the replica) in following sections.

3.1 Replica Decision

In order to decide which file needs to be replicated, we use a metric call average
number of access of a file as indicated in [7]. In replication mechanism, each
replication server maintains data accesses record. When it is time to replicate
data, all replication servers send the access records to the central replication
manager. The manager will aggregate and create a summarized access record for
every unique file identifier (FID). Each item NOA(f) on the record indicates
the times that a file with unique ID f is accessed on the whole grid system. Once
the average number of accesses is calculated, if a replica is accessed more than
the average, it needs to be replicated.

— Compute average number of access:

NOA =Y NOA(f)/N . (2)
vf

N: number of distinguished data file (number of FID) in Grid system.
NOA(f): number of access of file f
— For every file f that satisfies:

NOA(f)

NOR(Y) X |f| > NOA x |f] . (3)

(NOR(f): number of replicas of file f on the whole grid system; | f| is average
file size of all files in the system)
create new replica for f at site chosen by Replication Placement Strategy.

3.2 Replica Placement

As described above, our strategy is to place replicated files that belong to the
same category close to each other so that job of the same category will be
executed nearby. Then, the cost of transferring files will be reduced. We call this
strategy Dynamic Replication Placement (DP).

To measure how close a replica is to the data in the same category, we define
a new concept: Dis(i.e. Distance).
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— Distance is measured from site D to site D1 for a file f ( of category C) is
defined as time to transfer all files that belong to C on D1 to D: If D is the
same as D1, then Dis(f, D1) = 0. Else:

Dis(fp,D1) =+ > sl /BWbp, - (4)
fi€eD1,fieC

Dis(fD, D1) carries sign +(—) when D1 does (does not) contain a replica of
f. It means the further the distance of the two replicas of one file, the better
it is. However, they are close enough to other files of the same category.

— Similarly, distance for a replica f (of category C) on site D to all files of C'
is time to transfer all files belongs to category C on the Grid system to D:

Dis(fp) = _ Dis(fp, D) . (5)
VD,

Lower Dis(fp) indicates that fp is closer to other files in the same category.

To choose a site to place a new replica, Dis(f, D) for each site in the Grid
system is evaluated. Site with lowest Dis(f, D) will be chosen to store the replica.
We use Least Recently Used (LRU) [2] as replacement strategy for its efficiency.

4 Performance Studies

In order to evaluate the performance of the replication strategy, the OptorSim
simulation tool and The EU Data Grid configuration are used. The grid job is
submitted to the RB for every 2.5 seconds. Each computing node has a processing
speed of 0.1 second/GB. The initial file distribution among the grid sites is
random. Each node has 0 or 1 Storage Element of size 15GB to 100GB.

4.1 Replica Placement Strategy Evaluation

The replica placement strategy is tested to measure its performance against
the random placement strategy. In this test, we use the calculation equation in
Section [3.1] to decide which replica to be replicated. The site to place the newly
created replica was chosen randomly (RP) or by the strategy that is described
in Section (DP). The scheduling strategies set up for this test were the
Random scheduling (RS) and Combined-cost Scheduling (CCS) as in [2]. For
each combination of methods and parameters, the mean job execution time was
measured (Figure [I(a)]). The DP is outperformed that with random placement.

4.2 Dynamic Replication Strategy Evaluation

The whole replication strategy is evaluated with the OptorSim’s LFU (Least
Frequently Used) and LRU (Least Recently Used) replication. Once again, the
OptorSim’s CCS scheduling strategy is used.
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The simulation result (Figure[1(b)) shows that by combining Dynamic Repli-
cation Strategy (DR) with LRU (as a replacement strategy), the performance is
significantly increased by 30%.

Various Placement Algorithms Various replication strategies
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Fig. 1. Job performance when using various (a) placement algorithms (b) replication
strategies

5 Conclusion

In this paper, we found a new approach to the replication problem in Data
Grid and combining it with job scheduling strategies. The simulation result
showed that our replication placement strategy overcomes the random placement
strategy. Also, the dynamic replicating algorithm made an improvement and
could be used with OptorSim’s replication optimization. In the future work,
we will improve the replication strategy. Meanwhile, the scheduling component
needs to be completed for integrating with replication mechanism to perform a
whole system simulation.
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Abstract. In this work we present a simple network design for all-to-all
routing and study deflection routing on it. We present a time-scheduled
routing algorithm where packets are routed address-free. We show that
a total exchange relation, where every processor has a packet to route
to every other processor, can be routed with routing cost of 1/2 + o(1)
time units per packet.

The network consists of an n-sided d-dimensional torus, where the
n?~1 processor (or input/output) nodes are sparsely but regularly sit-
uated among n% — n?~! deflection routing nodes, having d input and
d output links. The finite-state routing nodes change their states by a
fixed, preprogrammed pattern.

Keywords: network, routing, hot-potato, torus, sparse.

1 Introduction

Routing algorithms have many applications in computation and in data commu-
nication. OQur work is motivated by situations, where there is need to transfer a
lot of messages between a large number of sources and destinations. Such set-
tings appear in the Internet and telecommunication network routing switches,
but also in implementing shared memory abstraction on top of distributed mem-
ory modules. In the latter case, a large number of processors can send each other
messages, on almost every step of computation.

In this paper we focus on describing a large-scale routing switch based on a
sparse (optical) torus. We claim that the sparse torus is truly scalable, efficient
and offers a high bandwidth. In the 2-dimensional case, our switch resembles
a crossbar of n vertical and n horizontal wires, but has only connections of a
constant length. An n xn crossbar can deal with n packets at a time whereas our
2-D sparse torus moves n? packets at a time. In [1I2], the architectural approach
is very similar but the main focus is on link load instead of overall routing time.

By [10], in 3-dimensional world, the distance of processors grows at least by
the cubic root of the number of processors. 2- and 3-dimensional meshes and
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tori are such architectures. Note, however, that higher dimensional structures
may still be useful at the design level, because it may be possible to embed them
in a 2- or 3-dimensional structure. If the routing network has the diameter (or
average routing distance) ¢, then obviously a packet needs time {2(¢) to get
to the target. However, if the network can move 2(p¢) packets in each step,
where p is the number of sources and destinations, it may be possible to route
ph packets in time O(h) for some h > ¢. Hence, it may be possible to achieve
a constant time cost per packet. We present such a cost-optimal solution for
the d-dimensional torus. Other architectural solutions satisfying the above have
been presented; see [TI2IBIR9], for example.

The condition that the network must be able to move at least ¢ packets per
processor, assuming that nodes have a constant degree, implies that at most
O(1/¢)’th of the nodes can be processors. Such an architecture is called sparse
or sparsely populated. It may seem waste to have ¢ routers per processor, but
it is the price for the ability to inject a packet at every step. Note, however,
that the routers can be very simple components in comparison with processors.
Of course, “dense” (or fully populated) architectures may work, if only a sparse
rate of packet injection is needed.

2 Sparse Torus ST (n,d)

A d-dimensional n-sided sparse torus ST (n, d) consists of n? nodes. Among these,
n?~1 are processors that are located “sparsely”, and the rest are routers.

Definition 1. Layer j of the sparse torus ST (n,d) is the set

d
Lan(G) ={(z1,22,...,24)| sz =j}
i=1

Nodes in layers O,n,...,(d — 1)n are called processors and other nodes are
routers.

In ST(6,2) of Figure[Il there are two processor layers having six processors alto-
gether. In ST'(4,3), there are three layers with one, twelve and three processors.

Router nodes Ry, z,, .z, are located at positions (z1,s2,...xq) such that
Z?Zl x; 7 0mod n and 0 < 2; < n — 1. The d outputs of a node at location
(z1,22,...2q) (processor or router) are connected to the routers or processors
at locations (z1 + 1 mod n, za,...,z4), (1,22 + 1 mod n,z3,...,24), ..., and
(x1,22,...,24-1,24+ 1 mod n). All connections are unidirectional. In Figure [I]
directions are to the “right”, “up”, and “away”. We assume that each deflection
node and processor is capable of receiving (along incoming link) and sending
(along outgoing link) one message per link in one time unit.

Consider projection m;((x1,...,24)) = (T1,...,Ti—1,Tit1,-..,2Zq) of
{0,1,...,n — 1}? to {0,1,...,n — 1}?~! . As an immediate corollary we get
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Fig. 1. Left picture: A 6-processor 6 X 6 sparse optical torus ST'(6, 2). Circles are router
nodes. Right picture: ST'(4, 3) in slices.

Lemma 1. For ST (n,d),

(i) The number of processors is n¢=1.

(ii) Processors, when projected to the surfaces of ST(n,d), cover the whole
surface. Le., for all i, {m((x1,...,24))|z1 + ... + 24 = 0 (mod n)} =
{0,1,....,n — 1}4-1L.

(iii) Average distance from processors to the origin (0,0,...,0) is d(n —1)/2

Proof is easy.

By lemma[I] we can now estimate how fast it might be possible to route packets.
Each packet sent by any of the n?~! processors needs d(n — 1)/2 moves in the
torus, on the average. On the other hand, each of the n routers can forward d
packets. Hence, if there are no collisions, on the average we need
d—1
X dn—1)/2 -1
ntlxdmn =12 _(n=1)
dnd 2n

routing steps per packet. Indeed, it is possible to achieve this bound, but in order
to prove it we need to know more about the structure of the ST'(n, d).

Lemma 2. (i) |Lq,(0)] =1,

(ii) |Lan(k)| = (F547Y) — SSW/md (42140) s Ly (k — i - )| when 0 < k <
din —1).

(#i) |Lan(k)] =0 when & <0 or k >d(n—1).

Proof of (i) and (iii) is obvious, and (ii) bases on a recursive argument.

In ST(n,2), there is one processor at the origin and n — 1 processors at the
distance n from the origin and the distance from a processor to another is n — 1.
In higher dimensional cases, the numbers of processors at different levels, and
also the distance from processor to processor vary. In ST'(8,4), for example, the
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sizes of processor levels are 1, 161, 315, and 35, and the distance from a processor
to another can be 8, 16, or 24. Due to this irregularity it is not obvious how to
route packets efficiently.

3 Scheduled Routing of h-Relations

A routing strategy used to resolve the output port contention problem in packet-
switched interconnection networks is the hot-potato or deflection routing strategy.
In the hot-potato routing all entering packets must leave at the next step —
i.e. packets cannot be buffered as in the store-and-forward routing strategy. In
general, in each node the out-degree must be at least the in-degree, and the
output port contention must be resolved somehow. If there are multiple packets
preferring the same output port, the routing strategy must select at most one
for each out-going link. See [4] or [7] for definitions and a survey of hot-potato
routing techniques and results.

In Section 2] we reasoned that on a d-dimensional sparse torus it may be
possible to achieve the routing cost ~ 1/2 per packet. The question is, whether
this routing cost indeed can be achieved and how.

In deflection routing, packets move so that the coordinate sum increases by 1
(mod n) at every moment. In ST'(n, d), processors are located at distances mod
n. Therefore, packets sent at different moments (mod n) cannot collide. It is
enough to avoid collisions between packets sent at the same moment (mod n).

Consider a path pattern II=<< Ay, Ag, ..., Ag >, where Z?ZI A; =0 mod n,
0< Z?Zl A; < dn,and 0 < A; <n for 1 <i < d. From each processor node,
such a path pattern leads to another processor node. In fact, a path pattern
forms a permutation of processor nodes. Moreover, consider the rotation operator
p(Il) = < Ap, Avy. .oy Ay >, Then p(IT), p*(IT), ..., p?~1(II) also are path
patterns. Note, however, that not all rotations of a path pattern are different.
E.g. if I = < 1,4,1,4 >, then path patterns IT and p?(II) form the same
permutation, similarly p(IT) and p?(IT).

An important observation is that if one packet is sent to the first dimension
by II, another packet to the second dimension by p(IT) etc, these packets always
turn at the same time and do not collide.

Now, the basic idea of scheduled routing in the d-dimensional case should
be obvious. First consider all processors at layer Lg,((d — 1)n) and the corre-
sponding path patterns < Ay, Ag, ..., Ay >, for which Zle A; = (d—1)n and
0 < A; < n. Divide the path patterns to groups, where patterns are rotations
of each other, and route the whole group at the same time to the (at most) d
dimensions. The same is repeated for all layers.

As in the 2-dimensional case, in n consecutive steps we can start routing
packets along n different cyclic path patterns. Each cyclic path pattern forms
a wave, and waves do not interact. Also, as explained previously, no conflicts
appear within waves.

As routing packets in layer Lg,(kn) takes kn steps, the processors can not
use time moments n,2n,3n, ... (k — 1)n time units later. A new sending can be
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started kn time units later. However, n successive time moments are indepent
of each other, and there can be n sending processes running in parallel. Figure
shows a schedule for ST(3,4).

time slice paths / time 0 1 2 3 4 5 6 7 8 9 10 11 12
0 0 12122121 — R |
1 1 1221221121121122 — ; T
2 2 022222202202 2022 ; ; ; |
3 0
4 1
5 2
6 0 011111101101 1011 T —
7 1 010210200201 2010 [—H—
8 2 002102102100 1002 T————
9 0 00120120 1200 2001 T E—
10 1 0000
# free slots 21 0 0 0 0 0 0 0 0 1 2

Fig. 2. Schedule for ST(3,4). Altogether 3% = 27 packets are sent, 10 to distance 6, 16
to distance 3, and 1 to distance 0. In each group of rotated paths, we show the schedule
for the first one starting with dimension 1. Thus, 1221 starts with the dimension 1,
2211 with the dimension 4, 2112 with the dimension 2, and 1122 with the dimension
3. Note that the packets sent at moments 0, 1, 2 prevent sending at moments 3, 4 and
5, because the time slice is not free. At moment 12 all packets have reached the target.
Hence, the cost per packet is 12/27 < 1/2.

In the following Theorem, we consider a total exchange p-relation, where every
processor sends exactly one packet to every other processor.

Theorem 1. The scheduled routing protocol routes any total exchange relation
on ST(n,d), for d >3, in time p/2 + o(1), where p = n(¢=1) . Hence the cost per
packet is approzimately 1/2.

Proof is nontrivial but omitted due to page limit.

In ST (n,2) it is easy to schedule the routers so that they move simultaneously to
the crossing state and back to the direct state. It would be interesting to know,
if the same is possible for the ST'(n,d), too, and at what cost.

In this work we have studied only the total exchange operation. However, by
a general result [6], a h-relation with large h can be implemented with (h/p)(1+
o(1)) total exchange operations, with high probability. Obviously, if processors
have h packets to random addresses and h grows high, the routing relation
approaches to a multiple total exchange relation, and the routing cost tends
towards 0.5 time per packet.
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Conclusions

We presented a routing architecture, sparse d-dimensional (optical) torus, stud-
ied its routing properties, and described deflection algorithms for routing packets
efficiently on it. We believe that the simple, regular structure and efficient com-
munication are important benefits of the architecture. The architecture suits
especially for on-line routing situation where steady high bandwidth is more
important than the actual latency. We also believe that the presented routing
algorithms based on greedy principle are useful and realistic.
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Abstract. The parallel technologies of iterative solving the symmetric
and nonsymmetric systems of linear algebraic equations (SLAEs) with
very large sparse matrices by means of conjugate and semi-conjugate
gradient iterative methods are described. The performance computing
for various matrix formats (diagonal, compressed sparse row/column),
at the different degrees of freedom of SLLAEs, are analysed. The results
of experimental measurements under OPENMP, MPI and hybrid systems
are presented and discussed.

Introduction

The goal of this paper consists in experimental investigation and performance
measurements for parallel implementation technologies of iterative solving the
systems of linear algebraic equations (SLAEs) with very large sparse matri-
ces, symmetric or non-symmetric, which arise in grid approximations of multi-
dimensional boundary value problems (BVPs) for mathematical modeling, see
[1], [2] for example. These topics have been considered by many authors, and
corresponding literature is presented in [3].

We focus our attention on two algorithms in Krylov subspaces: classical con-
jugate gradient (CG) method for symmetric positive definite (s.p.d.) SLAE and
non-conventional left semi-conjugate gradient (LSCG, see [4] ) method for solv-
ing non-symmetric system. In the last case, we suppose that the original matrix
A has s.p.d. own symmetric part A* = (A + A')/2, i.e. the real parts of eigen-
values of A are positive.

The estimations of computational resources, in terms of the number of arith-
metic operations and memory volume, necessary for obtaining required accuracy
of iterative solution, and efficiency of parallelezation are presented, under the
simple assumptions on computing model, as well as results of numerical exper-
iments for the representative set of test problems. We consider the systems of
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seven-diagonal equations, provided by exponential type finite volume approach
on the structured mesh, for 3-D Dirichlet BVP for convection-diffusion partial
differential equation (PDE) in unit cube computational domain, which was de-
scribed in [5].

Parallelezation of iterative processes is made by means of domain decomposi-
tion techniques, see [6] and references citied there. Realization of algorithms and
computations are fulfilled in the framework of OPEN MP and MPI systems at
the platforms with shared and distributed memory. The influence of different
matrix formats is analyzed for the set of embedded grids. For the simplicity, we
do not use any preconditioning procedure.

This paper is organized as follows. Into section 2, a short description of itera-
tive methods and their peculiarities are introduced. The third section is devoted
to discussion of program implementation and parallel technologies in the code
development. In the last section we give and analyze the results of comparative
performance measurements at the clusters, on the base of Itanium-2 processors.

1 Conjugate and Semi-conjugate Iterative Methods

Let us consider the system of linear algebraic equations (SLAEs)
Au = f7 u = {u2}7 f = {fl} € RN’ A= {ai,j} S RN’Na (1)

with real, square, non-singular and symmetric or non-symmetric matrix A which
is positive definite, in the sense,

(Au,u) > 8(u,u), 6>0, Yuec RN (2)

The last means positiveness of real parts of eigenvalues of matrix A and pos-
itive definitness of symmetric part of matrix A: A° = (A + A?)/2, At is the
trasposed matrix.

For solving SLAE(1), some conjugate direction method is applied, see [1]-[2]:

P =g—Au, p°=r n=0,1,..: 3)
unJrl =" + O[npn7 ,r.nJrl P anj4pn7
which has variational or/and orthogonal properties in Krylov subspaces
ICW+1(T07 A) = span{p07p17 7pn} = Span{p07 Ap07 () AnpO} (4)

For symmetric A, we use the classical conjugate gradient (CG) method defined
by the formulas

pn+1 — Tn+1 + ﬁnp"7 a, = (’I“n,’l“n)/(Apn,pn), ﬂn — (Tn+1,7“n+1)/(7“n,’l"n).
()
This algorithm provides the residual and direction vectors with the following
orthogonal properties:

(Tn,rk) — pnén,k’ Pn = (T”,T”), (Apn7pk) _ Unéan (6)
on = (Ap™,p"), (r,pF) =0, for k #n,
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where 6, 1, is Kroneker symbol. Also, CG method is minimizing the functional
(A=1rm ™) in Krylov subspace, and for error reducing: (A=, ) /(A=1r9 r0)
< ¢ the following estimation of necessary iteration number is valid —

1 1—¢2?
n(e) <ln +\/€ c

[lny+1, v =(Ve-1)/(1+ V), (7)
where @ = ||Al|2 - ||A7!||2 being the spectral condition number of matrix A.

If matrix A is non-symmetric, two-terms recursions (5) with orthogonal prop-
erties (6) are not valid, and direction vectors p™, in general, can be found from
the “long” recursions

n n
pn+1 - ,r,n+1 + Zﬁn,kpk = pn+17l + Zﬂn,kpkv l= 07 ]-7 c 1
k=l

k=0 =
pn+1,0 — ,,an+17 pn+1,l :anrl,lfl +ﬂn,l—1plil7 anrl :pn+1,n.

(®)

Let us define the coefficients au,, By, 1 in (3), (8) from the condition that di-
rection vectors being left semi-A-orthogonal (left semi-conjugate), see [4]:

(Ap",p*) =0, k=0,1,.,n—1. 9)

Then the residual vectors satisfy to orthogonal properties (6), «;, are defined
by (5), as in CG method, and for coefficients 3, the following formula is ap-
plicable:

ﬂn,k = _(pk7Apn7k)/(pka Apk)a k= 07 1a s T — 1. (10)

So, the formulaes (2), (3),(6), (8), (10) define left semi-conjugate gradient
(LSCG) method as generalization of CG algorithm for non-symmetric case. In-
plementation of each LSCG iteration needs only one matrix-vector multiplica-
tion, similar to CG algorithm. However, LSCG method has not any variational
property and the estimation of type (7) for n(e) can not be obtained. In a similar
way the right semi-conjugate gradient (RSCG) method could be derived.

It is evident from (8) that realization of long recursions in LSCG method for
solving non-symmetric SLAE requires to store at n-th iteration the direction
vectors p°, pt,...,p" ! and to compute n?/2 additional vector-vector operations
in total. For this reason, it increases considerably the computational complexity
of algorithm, in compare to CG. There are two approaches which provide the
decreasing of necessary memory and the number of arithmetic operations.

The first one is based on using restarts after given number m,. of iterations. It

means that at each iterations n = ngy = [W?J -q, q=1,2,... ([a] is the integer

part of value a) the residuals vectors are calculated not by recurrent relations
(3), but from original equation directly:

re = f — Au™. (11)

The rest iterations are implemented in convential form (3), (8).
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The second approach applies the truncated semi-orthogonalization of direction
vectors pF: for given integer mg and n > mg we save the last mg vectors only
and use reduced recurion

n
pn+1 — ,rn-‘,-l + Z ﬂn,kpk — pn+1,n’
k=n—myg
anrl,nfmo — Tn+17 pn+1,l — pn+1,l71 + ﬁn,lflplila l=n— mo + 1’ ey T
(12)

Also, it is possible to generalize, or to combine formally these two aproaches:
for given integers m, and mg we can define m = min{mg, m,} and compute
direction vectors by formulaes (12), under changing symbol mg into m.

It should be remarked that restart and truncated orthogonalization approaches
decrease the iterative convergence, because of reducing the dimension of Krylov
subspaces in both case.

2 The Parallel Technologies of Algorithms
Implementation

In the Table 1 we give the values of memory P and the total number of arithmetic
operations () which are necessary for implementation of CG and LSCG methods.
It is supposed here that the total number of nonzero matrix entries S > 1, as
wellasn > 1, N > 1.

Table 1. The volumes of necessary resources for CG and LSCG methods

CG LSCG
P 4N+ S AN + S+ mN
Q2(BN + S)n 2(BN + S+ mN)n

We remark here that in both method only one matrix-vector product is needed
at each iteration, and for stopping criteria we check the condition

I = (7™ < D f e, (13)

where € < 1 is the given tolerance.
We consider the parallelezation of algorithms for solving SLAEs which arise
in approximation of 3-D boundary value problems at the parallelepiped reqular
mesh
Tit1 :.I‘i—Fhf, 1 1,.
Yi+1 =y +hi, §=0,1,..,

J, (14)
Zp+1 =2+ hi, k=0,1,. K.

For simplicity, the computational domain is supposed to be cube £2=[zg, Z41]
X [0, ys+1] X [20, 2K +1], and the matrix A is seven-diagonal one, which is defined
from the set of equations at the regular seven-point grid stencil:
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0 1 2
(Awi gk = PijpWigk — Piji—1,j,k — Pjj kWij—1,k—
4 5 6
_pi,j,k“iﬂo‘,k = Dij kWi 1k = Dij kWigk—1 — Dg j Wi, k+1s (15)
1=1,...,I;, j=1,..,J; k=1 . K.

So, in convential algebraic representation vector u has dimension N = [JK:
u={uijr=1us, s=s(,jk)} (16)

The quality of parallelezation will be estimated by the speedup and efficiency
coeflicient
R=T1/T,, E=R/q, (17)

where T, is the time of solving the problem at g-processor computer (in our case,
it will be implementation time of one iteration). This value is assempled from
CPU time (implementation of arithmetic operation) and communication time
(data exchanges between different processors):

M
T = Ta + Tm Ta = QTL‘L7 Tc Z 7—0 + TF‘/t (18)
t=1

Here we use the simplest computational model, i.e. 7, is the realization time
of an average arithmetic operation, 7, is transfer time for one value, M is the
number of communications, 7y is delay time for one exchange, and V; is the
number of exchanged values in ¢-th array communication. Usually, 7, < 7. < 79,
but in modern computers with multi-level memory and vectorization possibilities
the real times T,, T, and T can differ from (18) significantly.

For parallelezation of iterative alorithms, we shall use the simplest 1-D domain
decomposition technique: computational domain {2 is divided into strips §2; =
{L; <i< Iiy1,t =1,...,q} which are corresponding to “own” processors.

The main operations in CG and LSCG methods are matrix-vector multipli-
cation, vector- vector inner product and linear combinations of vectors. The
performance of the first operation depends on the sparse matrix storage for-
mats, and we compare the efficiency of parallelezation for three types of storage.
In the first format, matrix A is represented by the values of it’s diagonal en-
tries pY ;4. Dp j ks -+ DY ; 1 the zero values including (DS — diagonal storage). The
second and the third formats are general compressed row storage (CRS) and
compressed column storage (CCS), see [2]. If the matrix A is symmetric, we
only store the upper triangular portion of the matrix.

3 Results of Numerical Experiments

We demonstrate the performance of described methods and technologies in ap-
plication for solving symmetric and non-symmetric SLAEs which are obtained
by exponential type finite volume approximation of the Dirichlet boundary value
problem for diffusion-convection equation [5]
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in unit cube at the set of cubic grids with the meshsteps
h=1/(N+1), N=I=J=K =32,64,128.

The functions f and g from (19) are choosed under condition that exact solution
u(r,y,z) = 1. The initial guess for iterations was u® = 0, and tolerance value
e = 107% in all experiments. The computations were done in standard double
precision, at the cluster with Itanium-2 processors. The code was realized in
FORTRAN 90.

For illustration of the numerical efficiency of considered methods we present
in each cell of Table 2 three values: number of iterations, CPU time (sec) for
one processor and resulting error of obtained solution. Here we use convection
coefficients a = p = ¢ = r = 0,4, 8, 16, restart parameters (for non-symmetric
cases only) m = m, = mgy = 8,32,200, and three different grids with total
numbers of nodes 322,643, 1283, In the following, we use CG method for a = 0
(symmetric case) and LSCG method for a = 4, 8, 16.

Table 2. The characteristics of CG and LSCG methods

0 4 8 16

m 00 8 32 200 8 32 200 8 32 200

53 177 102 80 135 113 84 101 122 89

I=32 0043 034 050 089 026 054 097 019 0.60 1.09
1.1E-4 1.2E-4 5.2E-4 3.7E-4 1.0E-3 3.7E-4 4.8E-4 5.6E-4 2.3E-4 2.4E-4

105 549 185 152 409 188 162 270 211 173

I=64 158 19.6 158 526 149 155 59.2 97 176 66.6
1.9E-4 3.9E-3 1.6E-3 7.3E-4 2.9E-3 8.4E-4 7.4E-4 1.9E-3 1.3E-3 6.7E-4

204 1797 581 369 1349 462 400 84 366 407

I=128 20.7 527.7 420.1 1266 396 324 148 251 256 148
4.8E-4 1.1E-2 4.6E-3 2.2E-3 8.6E-3 3.7E-3 1.8E-3 5.9E-3 2.6E-3 1.9E-3

)

Next two tables present the results of performance measurements for CG
method with using DS matrix format at three different grids. Table 3 includes
CPU times for separate using OMP and MPI. For OMP the integer ¢ means the
number of threads defined at the node. The application of OpenMP is based on
using PARALLEL DO Directive for each loop in the CG code and static defini-
tion of the number of threads, with equal execution of CHUNK=N/OMP NUM
THREADS.

The cases MPIa and MPIb for the number of nodes ¢t = 2,4 are correspond-
ing to loading the processors from the different nodes or from the same node,
respectivaly.

In the Table 4, we give the similar experiment data for hybrid use of OpenMP
and MPI possiblilities. Here s means the number of nodes and ¢ is the number
of defined threads for each node, so the total number of processors is s - t.
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Table 3. CPU times for different OpenMP and MPI specifications (CG method, DS
format)

t 1 2 4

OMP OMP MPIa MPIb OMP MPIa MPIb
64 150 1.15 1.04 092 0.28 0.32 0.58
128 20.1 18.0 125 11.9 17.8 11.8 897
256 357 316 260.1 171.63 299 255.5 105.2

Table 4. The results of CG performance measurements: combine use of the OpenMP
and MPI, DS format

S 2 4

t 1 2 4 1 2 4
64 0.53 0.23 0.13 0.32 0.26 0.24
128 8.28 6.87 6.34 4.78 4.03 3.5
256 127 105 100 68.9 57.6 56.0

In each cell of the Table 5, 6 three CPU times are given: for t = 1,2 and 4
OpenMP threads respectivaly (one cluster node was used only). Here, we com-
pare the results of using CSR and CSC formats for a = 0,4, in implementation
of CG(a = 0) and LSCG(a = 4) with m = 8,32,200. Three values in each
cell of these Tables, frov the top to bottom, are corresponding to m = 1,2,4
respectivaly.

Table 5. CPU times for CG and LSCG, CSR format, OpenMP, t =1, 2,4

a 0 4

m 00 8 32 200
0.14 0.66 0.63 0.96

32 0.078 0.64 0.88 1.60
0.055 0.42 0.63 1.26
2.43 28.8 17.8 53.7

64 1.39 19.8 14.3 47.1
0.84 15.3 11.8 39.6
40.8 755.1 465.9 1285.0

128 25.3 581.6 406.6 1216.1
19.1 516.1 382.8 1175.9

Table 7 demonstrates performance of CG method (¢ = 0) under hybrid
OpenMP and MPI using for CSR format for numbers s = 1,2,4 and t = 1,2, 4.

In the Tables 8, 9, we present the values of CPU times for solving SLAEs with
CSR format for the grids N = 64,128 by the CG method (a = p=s=1r =0)
and LSCG algorithm (a = 4,m = 8), under MPI system at the numbers of
processors s = 1,2,4,8. Here the first columns contain into the bracket the
corresponding numbers of iterations.
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Table 6. CPU times for CG and LSCG, CSC format, OpenMP, t = 1,2,4

a 0 4

m o0 8 32 200
0.093 0.59 0.59 0.92

32 0.125 0.59 0.97 1.78
0.117 0.59 0.75 1.36
2.04 24.6 156 47.1

64 1.95 22.5 155 484
1.91 19.6 13.2 40.9
35.0 701.5 449.2 1272.3

128 34.3 660.1 416.2 1169.0
32.6 637.5415.0 1161.2

Table 7. CPU times for CG, CSR, OpenMP+MPI

s 1 2 4

t 1 1 2 4 1 2 4
64 243 1.70 1.36 1.14 1.66 1.56 1.49
128 40.8 31.6 25.1 214 29.1 25.0 23.5
256 636.0 501.4 387.4 337.4 448.6 390.1 367.4

Table 8. CPU times for CG method, MPI, CSR format

s 1 2 4 38
64(105) 2.74 2.07 0.78 0.33
128(204) 43.89 29.12 14.77 7.4

Table 9. CPU times for LSCG method (m = 8,a = 4), MPI, CSR format

s 1 2 4 8
64(549) 30.52 18.99 8.56 3.75
128(1797) 871.18 622.73 313.77 166.73

In conclusion, we can make the following derivation about the results of nu-
merical experiments.

— The number of iterations in CG and LSCG methods without precondition-
ing are several times bigger, in compare with incomplete factorization al-
gorithms, presented in [5] for similar test problems. But implementation
of considered in this paper methods is reasonable at the multi-processor
computers because parallelezation of preconditioned algorithms presents a
“bottle neck” in computational algebra.

— Using the diagonal format provides the more high performance then general
compressed sparse formats. So, the first one is more preferable for simple
computational domains. But for real life BVPs, the parallelezation of matrix
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operation in solving SLAEs with universal compessed formats is an impor-
tant question for investigation.

— Performance of conjugate gradient method is approximately the same for
CSR and CSC formats, but the last one is more preferable for the fine grids
(bigger degree of freedom (d.o.f.), or dimension of SLAE). It is true for
different numbers of threads in OpenMP (¢t =1,2,4).

— Increasing the number of processors provides reducing CPU times, although
speedup is small enough for OpenMP and hybrid OpenMP-MPI program-
ming. These “negative” results were obtained for both considered algorithms,
for different orders of SLAEs, different matrix formats, and for various
numbers of computer nodes, processes and threads. But using MPI system
demonstrates very good speedup, sometime even super linear one (efficiency
coefficient E > 1).

— The unification of cluster resources is the unique approach now for solving
very large SLAE, i.e. tens and hundred millions of d.o.f. with huge com-
putational complexity. I.e., the speedup is not the unique reason for using
multi-processor computing.

— The further research should be continued for code optimization and devel-
opment of technologies for parallelezation of iterative algorithms with differ-
ent matrix storage: multi-dimension domain decomposition techniques, loop
unrolling, using various compiler options and OpenMP directives, creating
special library of tools to solve large SLAESs, etc.
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Abstract. Most existing Peer to Peer (P2P) systems support name-
based retrieval and have provided very limited support for the full-text
search of document contents. In this paper, we present a scheme (TRES-
CORE) to support content-based retrieval. First, we propose a tree struc-
ture to organize data objects in vector-format in the P2P system, which
is height-balanced so that the time complexity of search can be decreased.
Second, we give a simple strategy for the placement of tree’s nodes, which
can guarantee both load balancing and fault tolerance. Then an efficient
policy for the query is given. Besides theoretical analysis that can prove
the correctness of our scheme, a simulation-based study is carried out to
evaluate its performance under various scenarios finally. In this study, it
shows that using this content-based retrieval scheme (TRES-CORE) is
more accurate and more efficient than some other schemes in the P2P
system.

1 Introduction

Peer to Peer (P2P) systems have wide applications in many fields in recent years,
such as file sharing, distributed computing and so on. Information retrieval is
the key technology for file sharing. However, traditional approaches have either
been centralized or used flooding to ensure the accuracy of results returned and
most of them only provide name-based retrieval, that is, the user can not search
a data object unless he knows its name. They lack support for content-based
retrieval.

Current P2P retrieval technologies can be classified into three types. First, a
centralized index is maintained at a server, and all queries are directed to this
server. However, a centralized search engine is not suitable to be scalable, which
can not perform the efficient retrieval in the P2P system and it is also a single
point of failure, such as Napster [1]. Second, a distributed index is employed. The
query will be flooded across the network to some other peers. But, network traffic

* This work is supported by National Science Foundation of China (NSFC) under
grant No0.60433040 and by China CNGI Projects under grant No.CNGI-04-12-2A,
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generated by these flooding queries becomes un-scalable in large environments
and it will lead to the poor network utilization. An example of this approach
is the Gnutella system [2]. The third approach is the Distributed Hash Table
(DHT) based scheme where the peer and the data object are structurally orga-
nized by a hash function. A query can get the result in O(log N') hops and it can
generate fewer traffic in comparison with flooding-based mechanisms. Whereas,
it can only support exact match queries and incurs the overhead maintaining
the structure. Chord [3], Can [4], Pastry [5] and Tapestry [6] are examples of
this approach.

In this paper, we explore the content-based retrieval scheme in P2P systems.
First, traditional information retrieval techniques [7][8] are used to extract fea-
ture vectors from data objects. Using feature vectors of all data objects, a bal-
anced search tree structure is formed. Then based on this search tree, we give an
efficient retrieval scheme. And the time complexity of searching is O(loggz N) be-
cause the tree is height-balanced where B is the balancing factor of the tree. Our
simulation results show using our content-based retrieval scheme(TRES-CORE)
can increase recall and reduce the network traffic, that is, it can improve the
efficiency of query routing.

The rest of this paper is organized as follows. In section 2, we present related
works to our work. Section 3 explains basic ideas of our information retrieval
scheme. Section 4 discusses some improvements to the basic design in order to
provide load balancing, fault tolerance and efficiency. Experimental results are
presented in section 5, and the last section gives conclusions and future works
of our work.

2 Related Work

There are also some of today’s works in the P2P information retrieval focusing
on the content-based search. We describe them as follows.

A Hierarchical Summary Structure is proposed in [9], which employs three
levels of summarization, naming as unit level, peer level and super level. How-
ever, in each level summary, how it is organized is not explained. And this is a
key problem, which is able to result in the liner time complexity for the search if
it is not organized well. Furthermore, it is another problem that how the feature
vector of super peers and ordinary peers is generated accurately, which can effect
the recall for the retrieval operation.

PlantP [10] presents a distributed content-based search algorithm in P2P sys-
tems. An inverted (word-to-document) index of the data objects that the peer
wishes to share is created in each peer, and this index is summarized in a compact
form. Then the summary is diffused throughout the network. Using these sum-
maries, any peer can query and retrieve matching information from the collective
information store of system. However, it is suitable for the multi-keyword-based
retrieval but not for content-based retrieval using an inverted index.

The basic idea behind EZSearch [11] is in the following. Peers are partitioned
into clusters. Each cluster contains peers having similar contents and manages a
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subspace of indices or an index zone. For a query, the simplest solution is to scan
all the clusters, which, however, would incur a linear search time. Alternatively,
similar to using search trees for the logarithmic runtime search, the Zigzag hi-
erarchy [12] originally devised for the streaming multimedia is built on top of
these clusters such that the search scope will be reduced by some factor if the
query is forwarded from a high layer of the hierarchy to a lower layer. However,
this method is suitable for the environment that each peer only shares a single
category of data, which is unrealistic in P2P systems.

In pSearch [13], documents in the network are organized around their vector
representations (based on modern document ranking algorithms) such that the
search space for a given query is organized around related document. And it is
designed for the structured overlay network.

There are also some other content-based retrieval schemes [14][15] that are
built on the hybrid P2P systems. In such a network, Ultra Peers act as directory
service providers. These directory peers that provide regional directory services
construct and use the content models of neighboring peers to determine how to
route query messages through the network. Leaf peers that provide information
use content-based retrieval to decide which data objects to retrieve for queries.
However, how best to relay the query among the Ultra Peers is an open prob-
lem. In these schemes, an Ultra Peer represents a neighboring Ultra Peer by
the terms in the queries it has satisfied in the past. This approach can improve
the efficiency of local query routing, but still makes it difficult to find relevant
information in a large network.

In most of the prior researches, peers are clustered by the similar content. The
problem of this kind of approach is that it is able to decrease the recall because
some matching data objects are not in any peer of target clusters. Therefore,
rather than clustering peers based on their contents, a height-balanced hierarchi-
cal tree(doc-tree) is employed to cluster data objects sharing in the P2P system.
Then, a content-based retrieval scheme(TRES-CORE) based on this doc-tree is
presented, which can resolve all of the flaws describing above.

3 TRES-CORE Scheme

In this section, we firstly give the data model for our scheme. Then we introduce
the definition of doc-tree and give the theoretical foundation for building it. In
the following, we describe how to construct a doc-tree. At last, we present a
retrieval algorithm based on this tree.

3.1 Model

In our model, we consider a P2P system where each peer has a set of data objects
to share with other peers in the system. These data objects are described based
on the vector space model used in the information retrieval theory [7][8]. Each
data object and each query are abstractly represented as a vector, where each
dimension is associated with a distinct term (word). The vector space would
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have k dimensions if there were k distinct terms. The value of each component
of the vector represents the importance of that word (typically referred to as the
weight of the word) to that data object or the query. Such as, the data object x
can be represented as a k-dimensional vector & = {d},d5,---,d}}, where each
dimension reflects the term associated with x and the weight df reflects the
significance of each term representing the semantic of x. Then, given a query
vector @ = {q1,¢q2," -, qx} to search a set of similar data objects from all of the
data objects sharing in the P2P system, we rank the relevancies of data objects
to that query by measuring the similarity between the query’s vector and each
of the candidate data objects’ vectors. The similarity between the vector x and
the vector y is generally measured as the cosine of the angle between them,

- =

using the following equation:simdist = |\?le|\%’\|2 , where @ - 7 is the dot
product between z and y and || e ||2 is the Euclidean vector norm. The larger
simdist(T - 7) is, the more semantically similar are 2 and y to each other. If
simdist(7 - q) is larger than a predefined threshold 6, we say that d and 7
are similar and d is the data object that the query ¢ wants to get.

3.2 Definitions and Properties of Doc-Tree

We use the concept similar to that proposed in BIRCH [16] for merging sub-
nodes incrementally based on the node feature N F' to derive a strategy to group
similar data objects. In this paper, the node is only referred to the node in the
doc-tree, but not be referred to the peer in the network.

Definition 1. NF(N) = (m,;ﬁ,éw) is defined as the feature value of node N,
where m is the number of data objects maintained by this node. If there are m

data points {cﬁ, dj7 cee dTZ} in node N, the j-th mean and variance of node N
are defined as:

N __ E % N __ E i N\2 s
=1 !

Definition 2. The intra-distance of a mode is a triple D =< NDP,u,0 >,
where NDP = {d;|d; € R} is a population of nearest distances,  and o are
the mean and the standard deviation of NDP. FEach d; in NDP is the smallest
distance from each sub-node to other sub-nodes in the node.

A doc-tree is a height-balanced tree with a parameter B just like the B+ tree
[17][18] and CF tree [16]. Data objects are organized in a multi-layer hierarchy
of clusters recursively defined as follows (where H is the number of layers, B is
a balancing factor):

e Layer 0 contains all data objects;

e Data objects in layer j < H — 1 are partitioned into clusters of sizes in

[1, B], Layer H — 1 has only one cluster which has a size in [2, B].

Each node contains [1, B] entries except the root node containing [2, B] en-

tries. The form of entries is (NF;, child;),i = 1,2,---, B, in which child; is a
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pointer to its i-th child node, and NF; is the feature vector of sub-node rep-
resented by this child. That is, a node represents a cluster made up of all the
sub-nodes represented by its entries. Furthermore, all entries in a node must
satisfy the following threshold condition: let Dy =< NDP, i, 0 > be the intra-
distance of node N.Given a lower limit L;, = p—o and an upper limit Uy, = p+o,
the node N must satisfy: Ly < d; < Upfor Vd; € NDP.

And each node in the tree maintains several data structures described in the
Tablel.

Table 1. Data Structure of Node N

Notation Definition

parent the pointer to the parent node (null for root)
n the number of sub-nodes

m the number of data objects

(NF;, chilid;),i = 1,2,---,k child; is a pointer to its i-th child node
NF; is the N Fof sub-node represented by this child
D =< NDP, y,o > the intra-distance of node N

Theorem 1. Assume that there are n sub-nodes in node N and NF wvectors of
— —
its sub-nodes N; are NF; = (m;, u',8"), i = 1,2,---,n. Then the NF vector
of node N is NF = (m, [, 7), in which m =", m; and the j-th mean and
variance of node N is defined as:
dic1 miﬂj‘ 5. — dic1 mié} + 3 mi(l‘;‘ — 5)?
s 05 = .

Hi = Z?:l m; Z?:l m;

Proof. Assume that there are m data objects {d7, dj, . ,dﬁ} in node N. Ac-
cording to Definition1, the j-th mean and variance of node N are pu;= 1 >, d;,
bj = ;L Zgl(d; - ,uj)2~
Assume that there are_n sub-nodes in node N and NF' vectors of its sub-
nodes N; are NF; = (m;, pu*,6%),7i=1,2,---,n and each sub-node maintains m;
data objects. Hence,m = S my According to Definitionl, the j-th mean and
variance of node NZ is W = Wll Dok dj, 6; = nlL Zizll(d} — ,u})27 i=12.---,n.
Therefore, Y7 di = mpj,
ST ()2 = mad 4 2y S5 = )2
= mi6; + 2mi(g;)2 — mi(u;)Q
= m;& + mi(ph)?,
) n mi gk " omgult
o= L i = TR T S

Doy ™ Xm0
mi 2
1 m g N2 imr 2t (dF—py)
b5 = Zi:l(dj — )" = S ms
P Y et (d)? =2u Sy M A Y mapy)®

- Yy ma
_ O masma(uf)?]=2p 1 mipf+Y Ty mauy)®
iy mi
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Zn 1 m76 +Zn 1 m?(ﬂj) —2p5 >0 mll‘;+27=1 mi(l‘j)z
i 1m1
_ i mi‘s_;'JFZ?:l mi(l‘ —uj)?
n .

i=1 "
So, from the above description, the theorem holds. O

Theorem 2. /Ls;sume that there are n sub-nodes in node N and its N F vgtoi}is
NF = (m, &, §) and NF wvectors of its sub-nodes N; are NF; = (m;, u*, 8"),
n+f 6n+f)

i=1,2,---,n.A newnode NF, 1 = (mp41,p wants to join node N.

Then the new N F vector of node N is NF' = (m/, ?, (‘7), inwhichm' = m+mp11
mp; +mn+1/‘?+1 6/» _

and the j-th mean and variance of node N is modified: ﬂ; = b

m8;+m(ps) > +mn 167 fmp 1 (0 1) = (mAma i) (1f)?
m+Mnp41 !

Proof. According to the definition of NF vector, we can get m’ = m + my,41.
Assume that there are m data objects {(?7(?7 .- ,W} in node N. According
to Definitionl, the j-th mean and variance of node N is u; = ! ZZ 145, 65 =

1 1y l(di )2_
Therefore ZZ 145 = muj,ziw;l(d;)z ==mé; + m(p;)?.
After inserting a new node NF,,41 = (Mpt1, 1 aa W) which maintains
M1 data objects into node N and Y270 " di = myq TSI T (d)?

mn+16;‘+1 + mn+1(uy+1)2 the j-th mean and variance of node N is

m i mEm ;
D DL 0 N R RS
IU’] . m—+my+1 N m—+my+1 ’ +
5.0 = Zimn ) R iy (e ma) (1)
J m+mp 41 - m+mn+1
_ombm(pg) Pt ma 188 T ma e () = (mAma ) (1)
- M+mp 41 :
So, from the above description, the theorem holds. a

Theorem 3. Ass_yme that there are n sub-nodes in node N and its NF_yector
is NF = (m, T, 6) and NF wvectors of its sub-nodes N; are NF; = (m;, u*, 6*),
TnHl

=1,2,---,n. A sub-node NF,11 = (Mpt1, 1 7(‘STH'T) wants to leave from

node N. Then the new NF wvector of node N is NF' = (m’,?,y), in which

m' = m — mp41 and the j-th mean and variance of node N is modified: u; =

mp;— mn+1l‘y+1 § = mb; +m(,u.]) _mn+16 + —Mn+ 1(#714»1)
’

—(m—mni1)(u})®
J m—mn+1 :

mMm—"mMnp+1

The theorem’s proof is similar to that for Theroem 2 so that we omit it here.

Corollary 1. Assume that a data object ? = (dy,da,- - ,dq) will join node N
whose NF' vector is NF = (n@ﬁﬂ?). Then the new NF vector of node N is
NF' = (m/, ? y), m which m" = m + 1 and the j-th mean and variance of

mujtd; e méj+m(uz)?+d;? —(m+1)(u})*

node N is defined as p;; = """V, &) = i

According to Theorem 2, we can get Corollary 1.
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Corollary 2. Assume that a data object ? = (dy,da, - ,dq) leaves from node
N whose NF wvector is NF = (m, [, F}) Then the new NF wvector of node N
s NF/ = (mﬂﬁﬁ?), m which m’" = m — 1 and the j-th mean and variance of

node N is defined as M;‘ = mﬁjldj ) 5; = méﬁmmj)2:;['1?_(7”_1)(“3)2.
According to Theorem 3, we can get Corollary 2.

Corollary 1 and Corollary 2 are the basis for constructing the doc-tree. Corol-
lary 1 are applied to join a node for the doc-tree and Corollary 2 is applied to

delete a node for the doc-tree.

Definition 3. Dis(N, M) is defined as the distance measure between node N and
node M. The following formula is used: Dis(N, M) = ||ﬁ - WZ|| . Dis(N, M) is

small when /W and MW are close. That is, the similar two nodes are, the smaller
the value Dis(N, M) is. It is applied to join a node for the doc-tree.

3.3 Construction of a Hierarchical Tree

We now present the algorithm for constructing a hierarchical tree, which include
two operations: adding a data object to the hierarchical tree and deleting a data
object from the hierarchical tree. The sensitivity of input ordering is one of the
major issues in incremental hierarchical clustering [19]. In order to overcome
it, the algorithm must enjoy two properties: homogeneity and monotonicity. A
homogeneous node is a set of sub-nodes satisfying the threshold condition. A
hierarchy of nodes satisfies the monotonicity property if the intra-distance of a
node is always smaller than the intra-distance of its parent[20].

A data object joins
Our approach to incorporating a new data object S into a cluster hierarchy
incrementally proceeds as below:

Step 1. Identify the appropriate location: Starting from the root, it recursively
descends the hierarchical tree by choosing a sub-node according to the smallest
value of the distance measure(Definition 3) until the new data object can reach
a leaf node. At the same time, it is to modify the information on the path from
the root to the leaf, that is, after inserting a data object into the hierarchical
tree, we must update the NF information for each node on the path from the
root to the new leaf node according to Corollary 1.

Step 2. Assuming the leaf node that the new object S wants to insert is N
and d is the smallest distance from the data object to the other data object in
node N(see Fig.1):

a) if m < B and for each d; s.t. Ly, <d; < Up, then INSERT (S, N)
b)lfm == Band L; <d; <Up or>d; s.t. d; < Ly, then SPLIT(N+ S)
c)otherwise, NEWNODE(S).

Node splitting is done by choosing the farthest pair of entries as seeds, and
redistributing the remaining entries based on the closest criteria.

Step 3. After inserting a new data object into a leaf node, we must update the
information for each non-leaf node on the path to the leaf node. In the absence
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of a split, nothing is modified for non-leaf nodes. A leaf node split requires us to
insert a new non-leaf entry into the parent node. If the parent has space for this
entry, we only add an entry to reflect the addition in the parent node. Otherwise,
we have to split the parent as well, and so on up to the root.

However, one of the problems is that a node is stranded at an upper level
cluster. Hence,

Step 4. Employ the standard in Step 2 and Theorem 1 to eliminate the in-
homogeneous clusters at the upper level if the information of non-leaf node is
changed.

06 o O ® e CR ® 00 e o

INSERT(S. N) NEWNODE(S) (N1 Nj) = SPLIT(Ng)
(@ (®) (e

Fig. 1. Node operations

A data object leaves

If a data object is found not to exist in the P2P system during a searching pro-
cess, the entry in the leaf node maintaining the data object will be omitted and
N F vectors of the nodes on the path from root to the leaf node will be changed
according to Corollary 2 and employ the standard in Step 2 and Theorem 1 to
maintain the homogeneity for each modified node.

The placement of tree nodes

Which server is each node in the tree placed on when a doc-tree is constructing?
A root node can be created by and placed on the server who joins the P2P
system firstly. The existence and address of the root node are assumed to be
either well-known, or disseminated in an application-specific manner in the P2P
system. Assume when a server P publishes a new data object to the system, a
node N, is created in the hierarchical tree. Then, the owner of N, is P or the
owner of N,’s parent and all the nodes in the tree are placed on their owner.
Each node has a single owner, and may be replicated at servers other than the
owner. The information about a node may also be cached by other servers. We
also describe the placement scheme in section 4.

3.4 Query Processing

Let q = {6, 6,id,} be the query feature vector. id, is a pseudorandom number,
uniquely identifying each query. simdist( 1, @) is the distance measure between
the query and a node whose mean 15 T . The search algorithm needs to return
data objects such that simdist( 7 Q) >0.

Assume a peer P initiates a search to find similar data objects to its query.
First, the features of this query are extracted and used to calculate the distance
between the query and the tree node. The query will forward the root node and
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the query also forward tree nodes maintained in the peer if simdist( 7, 6) > 60.1f
the query reaches a tree node, all the nodes maintained by the peer maintaining
this node are checked whether they satisfy the matching criteria. Hence, the
peer is labeled by id, such that the query is not propagated if it reaches this
peer again. If there is no existing the node such that simdist(ﬁ,@)) > 6 or
0 == 0, the node which simdist(ﬁ,@)) is largest is selected to transmit the
query. Until a leaf node reaches, the address of data object will send back to the
query peer if simdist(?, @) >0, "dis the feature vector representing the data
object maintained by the leaf node. During each searching processing, the query
only passes through the server at most one time. The doc-tree is a balanced
tree and the number of data objects M is in direct proportion to the number of
servers N in the system so the time complexity for the searching is O(loggN) .

Example: Assume server 1 in Fig.2. initiates a search to find similar data objects
to its query ¢ = {67 0,id,} . First, this query is routed to server 5 maintaining
the root node nl. And at the same time, it is also routed to server 4 because
the distance between 6 and the node nd maintained by server 4 is larger than
0. Furthermore, the data object d4 in server 4 satisfies the matching criteria.
Therefore, server 4 will reply the requester server 1 about the address of d4.
And, node n8 maintained by server 4 is also larger than 6. So the server 4 will
reply the server 1 about the address of d8, which is a matching result. Then
server 4 is labeled to have been visited so that this query passes through it next
time will be ignored. Also, the query reaching the root is routed to server 3
because the node n3 in server 3 also satisfies the matching criteria and then
server 3 is labeled to have been visited. The query continues to route to server
2 and server 4 because both n7 and n8 in them satisfy the matching criteria.
Because server 4 has been labeled, the query routed to it will be ignored. Server
2 will reply the requester server 1 about the address of d6 because it satisfies the
matching criteria.

Q server identifier |:|tree node identifier D data object

Fig. 2. The query processing
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4 Extension to the TRES-CORE Scheme

TRES-CORE described above is only a basic scheme. Many other problems must
be considered, such as fault tolerance, load balancing and the efficiency. We will
discuss them in this section.

4.1 Load Balancing

All of the tree nodes in the doc-tree must be placed on different servers in order
to achieve load balancing among the servers in the system.

From [21], we can know there are a kind of servers in the network who pro-
vide very high quality connections, stay consistently connected and allocate large
amounts of disk space. We call these peers as strong peers and the others are
called as weak peers. Generally, in order to maintain load balancing in the sys-
tem, the overhead for the computing, the communication and the key data are
taken on by strong peers. And the overhead of storage is taken on by weak peers.

Nodes in the doc-tree can also be classified into two categories: non-leaf nodes
and leaf nodes. The visiting frequency of non-leaf nodes is high so that they
need strong consistency and the frequency of node splitting is low. However, the
visiting frequency of leaf nodes is low and the frequency of node splitting is high.
Therefore, non-leaf nodes are placed on strong peers and leaf nodes are placed
on weak peers.

So, the placement of tree nodes can be modified as following. Assume when
a server P publishes a new data object to the system, a node N, is created in
the hierarchical tree. Then, the owner of N, is P if P is a strong peer or N, is
a leaf node. Otherwise, the owner of N, is the owner of N,’s parent and all the
nodes in the tree are placed on their owner.

4.2 Fault Tolerance

At the same time, in order to guarantee fault tolerance of the doc-tree, each tree
nodes must replicate in several servers. Assume that a server P publishes a new
data object to the system.

(1) If the new data object is placed on a node N, node N will be replicated
on the server P;

(2) If a leaf node N is on the server, all the nodes from the root to the node
N are replicated on the server.

Each node is replicated several copies so that all the copies must be modified
when a node is changed in order to maintain the consistency.

4.3 Improvement of the Efficiency

The change of doc-tree is very frequent if there are too many data objects.
Therefore, in order to improve the efficiency for building the doc-tree, we can
employ some classic clustering algorithms [22] to cluster all the data objects
sharing in every server in advance. After that, the centroid of each cluster can
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be regarded as a data object to join the doc-tree. During the searching process,
a cluster’s centroid which is most similar to the query can be found and then
the query will route to this cluster for the result. That is, clustering locally in
advance can reduce the burden of building the doc-tree in a large-scale data
environment and improve the speed of searching.

5 Simulation

In this section, we provide a brief description of each experiment and the re-
sults obtained. We conduct simulation experiments to prove our algorithms are
effective and efficient.

5.1 Experiment Setup

For content-based retrieval in P2P systems, both the retrieval accuracy and the
efficiency of query routing are important. So we measure the performance using
three accepted metrics: recall, msg and efficiency, which are defined as follows:
recall — |{V?,simdist(?,?)>0,7€results}|
|{V?,simdist(?,?)>0,7€datuset}| ’

recall

_ Pl ‘ ; _
msg =y ,_; message(p;), ef fiency = sy

The metric recall captures the fraction of relevant documents a search and
retrieval algorithm is able to identify and present to the user, which measures
the retrieval accuracy. The metric msg shows the number of query messages
generated for a query. The metric efficiency measures the efficiency of query
routing.

We simulate our system with a certain number N of peers. The method that
each peer joins the system is the same as that for Gnutella. Then Data objects are
assigned to peers in the following manner. First, L sets of the mean vector and
the variance vector are generated randomly. The dimension of these vectors is D
and the range of each dimension is shown in Table 2. Each set represents a kind
of data objects. In the following, we randomly assign S different classes to each
peer. Then one data point is generated according to the normal distribution for
each chosen class in every peer. After building the system and the doc-tree, each
peer initiates 20 queries. We take the average for the number of query messages
generated and recall accordingly. Table 2 gives some simulation parameters and
their values.

5.2 Experiment Results

In this section, we compare TRES-CORE with the random BFS [23], one of the
methods in the Gnutella network. We explore how the performances are affected
by:

(1) different number of peers in the P2P systems;

(2) different balancing factor B of the doc-tree.
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Table 2. Parameters and Settings

Algorithm  Average routing latency Latency stretch

N 1000-10000 Number of peers in the system

0 0.9 Query range threshold

L 100 Number of classes in the system
S 50 Number of classes in each peer
Mean [0,1] Range of mean

Var [0.05,0.5] Range of variance

D 200 Number of dimension

TTL 7 Time to live for each query for BFS
M 4 The maximal number of neighbor
B 2-10 Balancing factor of the doc-tree

Fig.3. depicts the recall against the number of peers for BFS and TRES-CORE
with B =2, B =5 and B = 10 respectively. When the size of network increases,
the recall of our scheme continues to remain at a higher range, while the recall
for BF'S drops when the size of network grows. And in our scheme, the smaller B
is, the bigger the metric recall is. We conclude that our algorithm is insensitive
to the change of network size, that is, our mechanism is more scalable.
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Fig. 3. Recall against the number of peers

Fig.4(a). shows the number of query messages against the number of peers for
BFS and TRES-CORE with B = 2. We vary the number of peers from 1000 to
10000 in the network to observe changes in the number of query messages gen-
erated when a peer initiates a search. From Fig.4(a), the TRES-CORE method
shows a much slower increase in the number of query messages than the BFS
method. Fig.4(b). shows the number of query messages against the number of
peers for TRES-CORE with different balancing factors. From it, we can know
that the bigger B is, the smaller the number of query messages is. Therefore,
we can conclude that the TRES-CORE method can generate much less network
traffic.
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Fig. 4. Number of query messages against the number of peers

Fig.5. depicts the query efficiency against the number of peers for BFS and
TRES-CORE with B =2, B =5 and B = 10, respectively. The TRES-CORE
always outperforms BFS although query efficiencies of all of them decrease when
the size of network increases. From it, we can also know that the query efliciency
will increase with the increase of the balancing factor B. However, if B is too
large (B = 10), the query efficiency will decrease.

= g
o
[=)
[T
—
o
— g
4y
4y
oz
p Lo
W00 2000 3000 4000 SO00 G000 TOO0 8000 900D 10000
rumber of peers
—— EFS —=— TRES~CORE(E=2) THRES-CORE(E=S) TRES-COBE(E=10)

Fig. 5. Query efficiency against the number of peers

6 Conclusion and Future Work

In this paper, we propose a new scheme TRES-CORE for P2P content-based
information retrieval, along with various optimization techniques to improve
system efficiency and the quality of search results. We made the following con-
tributions: (1) we propose a height-balanced tree structure doc-tree to organize
data objects in vector-format in the P2P system which can reduce the time
complexity of searching; (2) we give a simple strategy for the placement of tree’s
nodes, which can guarantee both load balancing and fault tolerance; (3) TRES-
CORE can be used to support content-based retrieval. Simulation results show
TRES-CORE is an accurate and efficient scheme. In the future, we will study
how to maintain the consistency of several copies in a large scale environment
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and the cache scheme in the P2P system. We also plan to construct a P2P
system that gets physically neighboring peers into a cluster. Then, TRES-CORE
is employed in each cluster, which is the more suitable environment.
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Abstract. Races must be detected for debugging parallel programs with
OpenMP directives because they may cause unintended nondeterministic
results of programs. The previous tool that detects races does not verify
the existence of races in programs with no internal nondeterminism be-
cause the tool regards nested sibling threads as ordered threads and has
the possibility of ignoring accesses involved in races in program models
with synchronization such as critical section. This paper suggests an ef-
ficient tool that verifies the existence of races with optimal performance
by applying race detection engines for labeling and detection protocol.
The labeling scheme generates a unique identifier for each parallel thread
created during a program execution, and the protocol scheme detects at
least one race if any. This tool verifies the existence of races over 250
times faster in average than the previous tool even in the case that the
maximum parallelism increases with the fixed number of total accesses
using a set of synthetic programs without synchronization such as criti-
cal section.

Keywords: OpenMP directive, races, verification, labeling scheme,
protocol scheme.

1 Introduction

Races [I1] of a serious error in OpenMP programs with directives occur when
two more parallel threads access to at least a write access of each shared variable
without proper inter-thread coordination. Races must be detected for debugging
parallel programs because they may cause unintended nondeterministic results.
On-the-fly detection technique [4IT0] which detects races by monitoring accesses
of each shared variable during a program execution is efficient in the aspect
of space complexity because it may remove the unnecessary information while
monitoring an execution.

Intel Thread Checker [GI7UI3], the previous tool for detecting on-the-fly races
in programs with OpenMP directives, sequentially executes parallel threads and
detect races by checking data dependency during an execution of program with
no internal nondeterminism [4]. The tool however regards nested sibling threads
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as ordered threads and has the possibility of ignoring accesses involved in races
in program models with synchronization such as critical section. So this tool does
not verify the existence of races in programs with no internal nondeterminism

This paper suggests an efficient tool that verifies the existence of races with
optimal performance by applying race detection engines for labeling and detec-
tion protocol. The labeling scheme generates a unique identifier in each parallel
thread created during a program execution, and the protocol scheme detects at
least one race if any. Target program model is C programs with OpenMP direc-
tives, which may include the parallel directives “#pragma omp parallel for” and
the synchronization directives “#pragma omp critical.” To verify the existence
of races with optimal performance, we classify program models into two types
based on the existence of synchronization.

We use a computer based on linux on a dual 64bit Intel Xeon processor for ex-
perimentation of the suggested tool, and use Intel C/C++ compiler [5] installed
for compiling the target programs. We use a set of synthetic programs with activ-
ity management models that execute jobs in each thread independently usually
with different kinds of data structures. This tool verifies the existence of races
over 250 times faster in average than the previous tool even in the case that the
maximum parallelism increases with the fixed number of total accesses.

Section 2 illustrates data races that occur in programs with OpenMP direc-
tives, and indicates the problems of the previous tool. Section 3 designs and
implements the efficient race-verification. Section 4 shows the experimentation
results on the efficiencies of the previous tool and the suggested tool. The last
section includes conclusions and future work.

2 Background

This section illustrates OpenMP programs with directives and races to occur in
the programs and explains about the operation principle and problems of the
previous tool for detecting races.

2.1 The Data Race in OpenMP Program

OpenMP programs [2/T2] are an industry-standard program model for shared
memory parallel programs written in C/C++ and Fortran 77/90 and These
consist of compiler directives,library routines, and environment variables. The
directives extend the Fortran or C sequential programs and provide support for
the sharing and privatization of data. The library routines and environment vari-
ables provide the functionality to control the run-time execution environment.
The sequential programs can be transformed easily into parallel programs be-
cause of providing compiler directives of OpenMP. These directives [12] consist
of parallel directives, work-sharing directives, data-environment directives, and
synchronization directives.

An execution of parallel programs with no internal nondeterminism [4] is
represented by a directed acyclie graph called POEG (Partial Order Execution
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(@ (b)

Fig. 1. POEG for program model with nested parallelism and critical section

Graph) [3]. In this Fig. [ a vertex of POEG means a fork or join operation for
parallel threads, and an arc started from a vertex represents a thread started
from the vertex. The access r and w drawn with small disks upon the arcs
represent a read and a write access which access a shared variable. A number
attached to each access indicates an observed order, and an arc segment delimited
by symbol M and U means a critical section protected by lock variable. With
POEG, we can easily understand a partial order of happens-before relationship
of accesses that occurred in an execution instance of parallel programs. Two
accesses is ordered relationship if a path exists in two accesses and two accesses
are concurrent relationship if not. Fig.[I(a) is to represent programs with nested
parallelism as POEG. In this Figure, r1 has the ordered relationship with 72
because the path exists in the accesses. 1 has the concurrent relationship with
w3 because the path does not exist in the accesses.

We call it races when it includes at least one write access of two concurrent
accesses without proper inter-thread coordination and represent races as e;-e;.
Fig.M(a) has four races: {rl-w3, rl-w4, r2-w3, r2-w4}. Fig. I(b) is to represent
programs with synchronization as POEG. This figure has only one race: {rl-
w3}. r2 in thread T'1 is concurrent with w3 thread T2 but 2 and w3 are not
involved in a race because r2 and w3 are protected by the same lock. Races
must be detected for debugging the programs because of causing unintended
nondeterministic results.

2.2 The Previous Tool

On-the-fly detection technique [4/T0] which detects races monitoring accesses of
each shared variable during a program execution is efficient in the aspect of
space for detecting races because it removes the unnecessary information while
the technique collects information for accesses. The previous tool that detects
races on-the-fly in OpenMP programs with directives are Thread Checker of
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Intel corporation is a unique tool. The errors detected by Thread Checker are
deadlock, race, logical error, and so on. This paper applies only to races.

The projection technique [I3] of Thread Checker [BJ7I13] for OpenMP pro-
grams uses sequential execution information obtained during the compilation
of program and checks data dependency [I/T3] on-the-fly to detect races. This
technique is applied only to relaxed sequential OpenMP programs [13] which
consist of only OpenMP directives for parallelism. Thread Checker detects races
as follows. First, when the programs written in OpenMP directives are compiled,
a part of this tool integrated in the compiler traces the information related to
OpenMP directives and shared variables into an exclusive database. Second,
OpenMP directives are ignored when the compiled program is executed sequen-
tially. Third, the tool uses the traced information in any storage to check data
dependency of accesses to shared variables whenever OpenMP directives is ex-
ecuted. Last, the tool reports the accesses as races if it satisfies a anti, a flow,
and an output data dependency [I] except an input data dependency.

Thread Checker does not detect races in the program model with nested par-
allelism of Fig. [[l(a) but four races exist in this program: {r1-w3, rl-w4, r2-w3,
r2-w4}. four accesses that exist in nested threads have an ordered relationship
because Thread Checker regards nested sibling threads as ordered threads. Also,
Thread Checker does not detect races in the program model with synchroniza-
tion of Fig. M(b) but one race exists in this program: {rl-w3}. Because Thread
Checker has the possibility of ignoring accesses involved in races, r1 is removed
by r2. Therefore, Thread Checker does not verify the existence of races in pro-
grams with nested parallelism or synchronization.

3 Efficient Race Verification

This section explains the race detection technique which uses the efficient race
verification tool. This tool uses the labeling scheme and the protocol scheme
for race verification and analyzes race detection engines according to OpenMP
programs models.

3.1 The Verification Schemes

This tool uses labeling schemes [8JT4] and protocol schemes [4J10]. The labeling
schemes create a logical concurrency of created threads during a program ex-
ecution and the logical concurrency is a unique identifier of each thread. The
protocol schemes detect races by comparing current access with previous accesses
that are saved in access history of shared data structure every time accesses oc-
cur in a thread. Access history consists of concurrent accesses in set of accesses
to occur in a program execution. It is possible to verify the existence of races if
the labeling and protocol schemes are applied. This tool provides the configura-
tion for efficient verification of the existence of races with optimal performance
by applying race detection engines which classify the labeling and the protocol
schemes according to program models. These program models are distinguished
with no synchronization and synchronization.
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First, we explain the labeling scheme. In the program models for no synchro-
nization, Nest-Region (NR) labeling [8I14] scheme is used. This scheme does not
have the bottleneck problem proportionate to the number of maximum paral-
lelism because of using a private structure and creating the concurrency infor-
mation. So this scheme has the most superior performance in the aspect of time
and space. And in the program models for synchronization, Nest-Region (NR)
Labeling which applies Lock Cover [4] scheme are used. Next, we explain the pro-
tocol scheme. In the program models for no-synchronization, Mellor-Crummey
protocol [I0] scheme is used. This scheme has high efficiency in the aspect of
space because of keeping the access history to save only three accesses: the most
late-write access, the most left-read access, and right-read access. And in the
program models for synchronization, Dinning protocol [4] scheme is used. This
scheme has the most superior performance in the aspect of time and space in the
program model with synchronization such as critical section because of removing
all accesses within access history after checking races when a write access in a
thread without critical section occurs.

3.2 The Efficient Tool

A source program written in directives of OpenMP program is transformed into
a instrumented program which libraries for monitoring are inserted where the
libraries consist of labeling and protocol engines. The labeling engines create
“Label log” including fork/join information of threads and lock/unlock informa-
tion of critical section during a program execution. The detection engine which
takes the information created by labeling engine creates “Detect log” including
the detected races for each shared variable.

The labeling engine consists of Foker, Joiner, and Locker of a library type.
Forker module creates the label information for threads created by the directive
like “#pragma omp parallel for,” Joiner module creates new label information
according to joins of parallel threads by the join directives and implicit join oper-
ation, and Locker module creates to remove lock information by the directive like
“#pragma omp critical.” In the program with synchronization, lock information
is created in the beginning of the critical section and is removed in termina-
tion of the critical section. The detection engine consists of MellDetector for
the programs without synchronization and DiScDetector for the programs with
synchronization. MellDetector applies the protocol scheme of Mellor-Crummey
which creates access history for each shared variable and reports races by ana-
lyzing label information of accesses. DiScDetector applies the protocol scheme
of Dinning which initializes the structure for saving lock variables and creates
access history for each shared variable and reports races by analyzing label and
lock information of accesses.

Fig. [ is to show that labeling and protocol engines are applied to target
program. InitLabel of line 2 creates label information for the most top parent
and initializes the structure for label. InitDetection of line 3 allocates the mem-
ory for access history of each shared variable. “#pragma omp parallel for” of line
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1: main () { ---

2: InitLabel(---);

3: InitDetection(- - );

4

5: #pragma omp parallel for shared(x)private(y,z,i)
6: for (4=0; ¢ < 100 ; i++) {
7 Forker(--+); ---

8: Yy =z + 1

9: ReadChecker(---); -

10: #pragma omp critical(Ll) {
11: LockAdder(---);

12: T =2z + 1

13: WriteChecker(--+); --- }
14: LockRemover(--+); -+ }
15: Joiner(---); --- }

Fig. 2. Labeling Engine and Detection Engine in OpenMP

5 parallelize threads and variable z is shared variable by shared(z) and vari-
able y, z, and i are private variable by private(y,z,i). Forker of line 7 uses label
information of parent thread and creates label information of current thread.
ReadChecker of line 9, construction factor of detection engine, compares current
read access with previous write accesses and reports races after checking con-
currency relationship and then determines whether current access is updated in
access history.

Line 10 of source code is set to critical section by lock variable L1 using
the directive of “#pragma omp critical.” LockAdder of line 16 adds the infor-
mation for lock variable defined by line 11 into current thread’s label informa-
tion. WriteChecker of line 13, construction factor of detection engine, compares
current write access with previous read and write accesses and reports races
after checking concurrency relationship. If races is reported, WriterChecker re-
moves the label and lock information of accesses which is saved in access his-
tory and the information for current write access is added in access history.
The critical section defined by line 10 is terminated in line 13, and LockRe-
mover of line 14 removes the lock information created by LockAdder in thread’s
label information. Joiner of line 15 creates the label information of the joined
thread using the parent thread’s label information and the current thread’s label
information.

4 Experimentation

The section measures the required time for verifying the existence of races using
synthetic programs written for proving the efficient race verification, and we
analyze the previous tool and the suggested tool using the measured result.
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Table 1. The Detected Races

A-113 Race Verification Previous Tool
1 rl [w3] rl-w3 -

[r2]
2[r1] r2 [wd] r2-w4 -

[r3]

w2-rd, r1-wb,
3 [rl [r3][wh] r3-wb, rd-wb, w2-r4
w2] rd w2-wh

4.1 Synthetic Programs

We use synthetic programs for experimenting the efficiency and the possibility of
race verification in the previous tool and the suggested tool. OpenMP programs
with directives based on C language have a parallel computing program model
[15] and an activity management program model [I5] based on parallel threads.
Parallel Computing Program divides single computation job into several parallel
jobs and these jobs have data structure and variables of the same kind. Activity
Management Program creates parent and child threads that have the allocated
jobs in a program and these jobs have the different kind of data structure.

In race detection, dependency for tool’s efficiency is graphed considering the
number of accesses and maximum parallelism, and Accesses occurred in vari-
ous locations of source code and threads is executed independently so that the
synthetic programs based on activity management program models than parallel
computing program models are effective and general program in the experiment.
Also, For race verification analysis, synthetic programs is written considering
synchronization and nested parallelism, and for the efficient analysis, synthetic
programs is written considering critical section, maximum parallelism, and the
number of total accesses in the programs without synchronization and nested
parallelism where maximum parallelism is increased as two exponents and the
number of accesses per thread creates one hundred, two hundred, and three hun-
dred and odd threads create read accesses and even threads create write accesses
in the programs.

4.2 Race Verification and Its Efficiency

We measure the required time in race verification using synthetic programs. The
system based on linux which is used for the experimentation is the computer
with 64bit Intel Xeon Dual CPU and has Intel C/C++ compiler [5] for OpenMP
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The Required Time - I
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Fig. 3. The Required Time according to Total Accesses

programs with directives. For the previous tool, Thread Checker 3.0 is installed
and for the suggested tool, the libraries for verifying the existence of races are
installed in this system. These libraries are implemented by C language. Two
tool experiment in the same system environment.

Table [l is the result which verifies the existence of races using the suggested
tool and the previous tool in the synthetic programs with synchronization and
nested parallelism. Symbol “[ ]” means lock. In Table [T], the previous tool does
not verify the existence of races in the first and second programs but the sug-
gested tool does. For the efficiency of these tools, we measure the required time
for race detection using synthetic programs. We knew empirically this fact that
the race detection technique of Intel Thread Checker has practical performance
in the aspect of required time and space in the programs based on parallel
computing program models, because this tool does not monitor the accesses if
accesses having the same date structure occur repetitively. For example, Intel
Thread Checker recognizes as one access and detects races. So parallel computing
program models excludes in this experimentation. Fig. [l shows the result which
measures the required time for race detection in synthetic programs. These syn-
thetic programs are increased to two exponents for maximum parallelism and the
number of accesses per thread: {E-200-100, E-200-200, E-200-300, E-400-100, E-
400,200, E-400-300, E-800-100, E-800-200, E-800-300, E-1600-100, E-1600-200,
E-1600-300}. The top line is to show time variation for the previous tool, Intel
Thread Checker. The bottom line is to show time variation for the suggested tool
according to these synthetic programs. As the result of Fig. Bl the time variation
of two tools increased progressively according to the number of total accesses
but the suggested tool is averagely over 250 times faster than the previous tool.

Fig. @ is to measure the required time in detecting races with synthetic pro-
grams. These synthetic programs fixed the number of total accesses to 4000 and
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The Required Time - II
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Fig. 4. The Required Time according to Maximum Parallelism

increased to two exponents for maximum parallelism: {E-200-2000, E-400-1000,
E-800-500, E-1600-250, E-3200-125}. The top line is to show time variation for
the previous tool [9] which has been developed in our laboratory, the bottom
line is to show time variation for the suggested tool according to these synthetic
programs. As the result of Fig. @l there is scarcely the time variation of the
previous tool [9] although maximum parallelism is increased but the detection
time of the suggested tool is reduced as the increase of maximum parallelism
occurs. Therefore, the suggested tool is more efficient than the previous tools in
detecting races

5 Conclusions

Races must be detected for debugging parallel programs with OpenMP direc-
tives because they may cause unintended nondeterministic results of programs.
The previous tool that detects races does not verify the existence of races in pro-
grams with no internal nondeterminism because the tool regards nested sibling
threads as ordered threads and has the possibility of ignoring accesses involved
in races in program models with synchronization such as critical section. This
paper suggests an efficient tool that verifies the existence of races with optimal
performance by applying race detection engines for labeling and detection pro-
tocol. The labeling scheme generates a unique identifier for each parallel thread
created during a program execution, and the protocol scheme detects at least
one race if any. This tool verifies the existence of races over 250 times faster in
average than the previous tool even in the case that the maximum parallelism
increases with the fixed number of total accesses using a set of synthetic pro-
grams without synchronization such as critical section. We are going to make
the integrated environment for detecting races in the future.
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Abstract. The problems of scheduling computations in GRID and optimal
usage of GRID resources from client side are considered. The general cost
functional for GRID scheduling is defined. The cost function is then used to
define some scheduling policy based on Simutaneous Perturbation Stochastic
Optimization Algorithm, which is used because of it’s fast convergence in
multidimensional noisy systems. The technique proposed is being implemented
for brokering in GPE4GTK environment to compare it with other techniques.

1 Introduction

Last years GRID technologies grow rapidly. People start to use GRID on commercial
basis for not only scientific, but also industrial purpose. To succeed in this, high
quality (and high efficiency) control of computational process is needed. This means
new resource allocation and management facilities. Standards for resource
management in GRID do exist; however, there are not many products which match
the standards perfectly.

Here we consider two problems of control and optimization of the GRID:
scheduling of GRID Single Program Multiple Data computation. Second: how to
solve some problem having GRID as a black-box computational device.

SPMD computing is used in variety of fields [1]. Good discussion about SPMD
tasks is provided in [2]. The results about SPMD computing and adaptive techniques
now start to appear. Earlier, the comparatively simple strategies were used [3]. Later,
several different problems of adaptive learning class in scheduling field appeared.
Firstly, the distributed computing runtime can adopt the number of client computers
used by any task [4, 2]. Research proposed here can be generalized with techniques
from [4]. Here we address only problem of optimal execution of the one SPMD task;
in [4, 2] it is assumed that there are several concurrent.

Some authors propose to adapt to the imbalance by changing the "relative power"'
on each step when imbalance is more than some threshold. In our opinion, this is not
often needed. If the system performs in average well, then there is no need to change
the work given to target systems on each step.

V. Malyshkin (Ed.): PaCT 2007, LNCS 4671, pp. 240 2007.
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2 Scheduling of Computations

2.1 Cost Function Definition

In usual GRID system there exist resources of sequential use, which serve as atomic
containment of GRID, and some resource broker, which is given the right to manage
them (to make scheduling). Typical scheduling of some long-running computation has
two main steps:

¢ Distribution of computations to resources of sequential use contained in the
GRID system;
e Synchronization of the results.

We suppose that the cost function of a scheduler looks like:
N(x)

F(a)=Y (Z()+L(2)+G(C,T) (M

i=1

a — is a vector of problem being solved, with all parameters and
requirements;

Z, (0()— time for loading some sub-task and unloading the results from itch
computational device (resource);

Li (0{ ) — idle time of i-th resource, or time between the i-th finishes its

computations and the whole computation is finished;
N (0{) — determines number of resources, which can be used in these

computations on current step;
C - cost;
T — time for computations;
G(C,T) - If the task is not finished in time 7 , then monetary losses are

equal to cost C and it is included to the cost function as G(C,T).
2.2 Cost Function Motivation

The best scheduler is supposed to give minimal value for F' (0() among all the

possible balancers. However, the best scheduler for every computation & obviously
cannot be found. Different strategies succeed in different cases, so the problem of
minimization in mean should be taken into account.

The cost function proposed is very general. It serves to determine how efficiently
the task is computed. It includes the main resource wastement components: waiting,
communication, and also penalty. Next, we will explain some derivation based on this
cost function with specific scheduling approach.

The problem of brokering computations between resources which are given to the
process can be easily adapted to cost functional (1). Brokering usually is defined by
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some policy. In systems like Grid Programming Environment [5] brokering is done
without any feedback after the atomic task is completed. So, the problem of search for
of reliable task distribution between resources of sequential use without feedback is of
interest. We propose to formalize a problem by considering a policy based on ratios
for every device. Let us denote | X | as number of atomic sub-tasks. Then ratio for
each resource i from 1 to N(¢& ) is p”=la /I |. The scheduling policy then is
defined by a vector of ratios.

We propose to use algorithms of SPSA class for the optimization of the scheduling
[6,7].

Consider problem described in [8]. Let the task be consisting of a large set of
primitive calculations {o0,...,on}. It will be grouped into sequential portions, which
will correspond to distribution-synchronization steps of the balancing, and each
portion will be divided into blocks given to each computational resource.

Then, we can approximately say that time of calculations of some task on one
system S can be seen as an integral of some function Op(k) (time to complete k-th
computation) over some segment.

s,:,-+pil/)b 5,j+l7i(j>h
(.5, 0 ") =Y, Optky= [ Op(xax, @)
k=s; s

o

where b is the size of task. Parameter i denotes the step of iterative ratios adjustment,
pi” are as before.

We will not go deeper into the design of the controller for GRID in this extended
abstract. We should say only, that SPSA deals with approximation of the function ¢
(tracking in close model of [2], Pic. 1 (b)). Controller uses this approximation to build

next estimator division of a portion into blocks.

3 Resources Assessment Problem

3.1 Problem Description

When customer of GRID system prepares a task for processing the main question is
the cost of distributed resources and the time witch is necessary for calculation.
Obviously, resources have to be allocated according to priority. Such priority can
depend on requested time and suggested price. Thus appraise task is estimation of
optimal cost of required resources.

It is possible request to calculate several small tasks and consider reaction of
system, thus, determine optimal cost and time for solving the whole task. The author’s
approach to resources assessment is based on that idea.

Suppose that the task consists of a lot of small independent

subtasks ¥ = {7/], )/2,...7/L}. The question: is it optimal to send the whole task for

processing in GRID or it is better to send one by one small tasks. Evidently, that long
task can be marked with low priority and process long time, however, sending small
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task, which marked with high priority, it is possible to get the solution faster. Thus,
optimization - means to determining optimal block of subtasks, witch is sending to
distributed system. Moreover, it is necessary to adapt to changes of system capacity.
Methods of stochastic optimizations (SPSA)[1,2] are good in such problem area,
because of sufficient uncertainty of the system and fast convergence needed.

3.2 Problem Statement

Suppose that we need to solve the task Y ={}Y,%,,...7;}, where L - is
comparatively big, and S(};)=S(y f )WVi, je[l,L]. One step of algorithm sends
some collection of {%} with range 7 elements of task ¥ (block) to the GRID. Here
S(y,) - “capacity” of calculations for element J; from task . Let choose N < L.

N -number of blocks, composed with elements ¥ from task /, witch are sending

before algorithm changes the range of block r.

F(y,r,k,N)= NL(W(}/, r)+ﬁ:T(}/, r, (kN+i))j

r i=l

where r is a range of block (number of ¥, which are being sent simultaneously to
computation system), W() - expenses for load of block with r subtasks (r is constant

and not dependent on the range of block value); T(¥,7,1) - time for processing of

block witch consists of 7 subtasks from } starting with ;.

3.3 SPSA Algorithm
Algorithm performs following steps:

e Step 1. Choose start value of estimation of block range 7 ;

e  Step 2. Generate A ;

e Step 3. Before each step calculate 7, =7, + ﬂAn ;

e Step 4. After each step calculate new value T, =t  -(a/B)A F(y,r, ,n,N);

e Step 5. Increase n;
e Step 6. Go to step 2 or stop algorithm, in case when during several sequential
iteration estimation changes very low.

A, - Bernoulli sequences of independent random value equal toX1. ¢, ,B - fitted

value.

Algorithm is very simple, and, at the same time, allows quick adaptation even with
noise in system. Moreover, on each step it is required only one noise calculation of
cost function.
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4 Conclusion

Two different tasks for optimization of the calculation in GRID were considered
above. The aim of both tasks is to increase controllability and efficiency of GRID.

Implementation of suggested algorithms is in process, and modeling can’t give the
exact results, because building of GRID system is very complex.

Authors are members of research project on GRID in SPRINT Lab of SPbSU with
Intel collaboration. Our main software is GPE4GTK tool [4]. In this project the goals
are to investigate dispatching and resources optimization problems together with
development of tools to make GRID software adoption easier on arbitrary system.
The model of programming for GPE is very high-level, based on standard BPEL
workflow definition. The whole GRID runs on Java platform, so it works in similar
way on the platforms supported by JRE.

In the project group we have several SPMD tasks implemented. We start to
investigate better scheduling using the cost function discussed and its derivations. Our
main future work is to propose better algorithm for the broker of GPE.
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Abstract. In this paper we address the critical issues of efficient resource man-
agement and high-performance parallel distributed computing on the Grid by
introducing a new hierarchical approach that combines a user-level job schedul-
ing with a dynamic load balancing technique that automatically adapts a black-
box distributed or parallel application to the heterogeneous resources. The algo-
rithm developed dynamically selects the resources best suited for a particular
task or parallel process of the executed application, and optimizes the load bal-
ance based on the dynamically measured resource parameters and estimated re-
quirements of the application. We describe the proposed algorithm for auto-
mated load balancing, paying attention to the influence of resource heterogene-
ity metrics, demonstrate the speedup achieved with this technique for different
types of applications and resources, and propose a way to extend the approach
to a wider class of applications.

Keywords: dynamic load balancing, resource management, high-performance
computing, Grid, heterogeneous resources, parallel distributed application.

1 Introduction and Motivation

Grid-based problem-solving environments (PSEs) play an increasingly more impor-
tant role in a broad range of applications stemming from fundamental and applied
sciences, engineering, industry, medicine and economy. In [1,2] we provide an exten-
sive overview of the Grid-aware problem-solving environments and virtual laborato-
ries for complex applications. A great number of noticeable advances were achieved
as a result of joint efforts of the multidisciplinary research society, such as the devel-
opment of widely acknowledged standards in methodologies, formats and protocols
used within the environments [11]. Another manifesting development concerns the
move from specific one-application PSEs to the high-level generic environments that
provide services, tools and resources to formulate and solve a problem using standard-
ized methods, modules, workflows and resource managers [1]. Our research in this
field has started from porting a Virtual Reactor problem-solving environment to the
Grid [1-5], pioneering the move of fully integrated simulators from a single PC via
computer clusters with a remote user interface [5] to fully distributed heterogeneous
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Grid systems [2,3]. A detailed description of the Virtual Reactor application and our
"gridification" activities can be found in [1-5].

We have implemented and tested several approaches, and adapted an existing in-
teractive distributed application to the peculiarities of the Grid, thanks to the comple-
mentary projects developing Grid middleware, tools and portals [3,9,10]. However a
few things shadow the overall optimistic picture of the major advances in Grid usabil-
ity as observed in our extensive experiments with different Grid implementations.
Among the most prominent and as yet unsolved problems we experienced are effi-
cient resource management at the application and system levels, and optimization of
the workload allocation for parallel and distributed applications on highly diverse and
dynamically changing Grid resources. These two intertwined fundamental issues
hindering the progress of Grid computing have pulled the forces of a vast computer
society that strive to extrapolate an efficient high-performance computing on the Grid
from a single demo test-case to a ubiquitous reality. A huge number of algorithms,
approaches and tools have been developed to bring Grid resource management and
job scheduling issues to a more advanced level of efficiency and, even more impor-
tantly, usability (see for instance [12-21]). In addition to that, an excessive number of
load balancing techniques have been implemented and tested since the times when
heterogeneous cluster computing emerged. We could not find a recent book providing
a good overview of the state-of-the-art in load balancing, and a list of relevant papers
would take at least several pages, so we will give references only to those intimately
related to the technique we propose hereunder.

In a seemingly successful research field teeming with various solutions at hand,
when things came to practice it turned out to be impossible to find a tool/library for
automatic load balancing of a parallel distributed application on heterogeneous re-
sources of the Grid. The first-priority consideration we had in mind was instrumenting
our Virtual Reactor application with a library that would require minimal intrusion
into the code and that would adapt the parallel codes previously developed for homo-
geneous computer clusters to the heterogeneous and dynamically changing Grid re-
sources. Another goal was finding the means to enable "smart" resource selection and
efficient utilization for the whole problem-solving environment, i.e. distributing the
PSE disparate modules wisely, according to their individual requirements. The stum-
bling-block is that these application requirements are not known beforehand in most
real-life complex applications, where only the key developers can embrace the com-
plexity and dependencies of the PSE components. And even the code designers aware
of the numerical methods' particularities can not predict the exact application re-
quirements, which differ in each new computational experiment, depending on initial
conditions, combination of real-life processes to be simulated, numerical schemes
chosen, computational parameters, etc. This uncertainty prompted us to use the term
black-box applications in the title of this article; we certainly do not mean that the
user does not know what application he is running and of what avail. Our extensive
benchmarking and performance assessment of the Virtual Reactor application clearly
showed that even within one solver different trends can exist in the application re-
quirements and parallel efficiency, depending on the problem type and computational
parameters, therefore distinct resource management and optimization strategies shall
be applied, and automated procedures for load balancing are needed to successfully
solve complex simulation problems on the Grid [6-8].
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A countless number of parallel and distributed applications have been developed
for traditional (i.e. static homogeneous) parallel computers or cluster systems. Porting
such applications from homogeneous computing environments to dynamic heteroge-
neous computing and networking resources poses a challenge to keep up a high level
of application efficiency. To assure efficient utilization of Grid resources, special
methods for workload distribution control should be applied. An adequate workload
optimization method should take into account two aspects:

— (1) The application characteristics, such as the amount of data transferred be-
tween the processes, logical network topology, amount of floating point operations,
memory requirements, hard disk or other I/O activity, etc.

— (2) The resource characteristics, like computational power and memory of the
worker nodes, network links bandwidth, disk I/O speed, and the level of heteroge-
neity of the resources randomly assigned to the application by the Grid resource
broker.

The method should be (a) self-adapting and flexible with respect to the type of appli-
cation, (b) computationally inexpensive not to induce a large overhead on the applica-
tion performance, and (c) should not require significant modifications in the code. On
top of that, the load balancing shall be (d) dynamic and fully automated since we want
to hide the "ugly" features of the Grid from innocent users.

2 Background: Automated Load Balancing on the Grid

The issue of load balancing in Grid environments is addressed by a number of re-
search groups. Generally studies on load balancing consider distribution of processes
to computational resources on the system/library level with no modifications in the
application code [22,23]. Less often, load balancing code is included into the applica-
tion source-code to improve performance in specific cases [24,25]. Some research
projects concern load balancing techniques that use source code transformations to
speedup the execution of the application [26]. We employ an application-centric ap-
proach where the balancing decisions are taken by the application itself. This is dic-
tated by two arguments: first, the immaturity (or the lack of "intelligence") of the
middleware or system-level resource managers; and second, the complexity of the
problem-solving environments such as our Virtual Reactor, which has a number of
communicating modules, some of which are parallel programs. An important feature
of our approach is that although it is application-centric, the algorithm that estimates
available resources and suggests the optimal load balancing of a parallel job is generic
and can be employed in any parallel application to be executed on heterogeneous
resources by instrumenting it with the load-balancing library.

A detailed description of global load optimization approaches for heterogeneous
resources and adaptive mesh refinement applications can be found for instance in
[29,30,31]. We shall note however, that in [29] and [31] no network links heterogene-
ity was considered and only static resource estimation (initialization) was performed
in [29] and [30]. These two issues are the major challenges of Grid high-performance
computing: 1) the heterogeneity of the network links can be two orders of magnitude
higher that that of the processing power; and 2) Grid resources are inherently
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dynamic. Developing our algorithm, we tried to address specifically these two issues.
The approaches discussed in [29] and [31] are only valid for batch sequential applica-
tions (specifically for the queuing systems and computer cluster schedulers), whereas
our effort is directed towards parallel programs utilizing heterogeneous resources.

A number of semi-automatic load balancing methods have been developed (e.g. diffu-
sion self-balancing mechanism, genetic networks load regulation, simulated annealing
technique, bidding approaches, multiparameter optimization, numerous heuristics,
etc.), but all of them suffer one or another serious limitation, most noticeably the lack
of flexibility, high overheads, or inability to take into consideration the specific fea-
tures of the application. Moreover, all of them lack the higher-level functionality,
such as the resource selection mechanism and job scheduling. In our view, this is an
essential step to be made in order to make Grid computing efficient and user-friendly.
Although some tools are already available for "smart" system-level process-resource
matching and job scheduling on the Grid, none of them is automatic yet, and none is
coupled with a mechanism evaluating the application requirements. We aim to bridge
this gap by building a hierarchical approach that combines a user-level job scheduling
[32,33] with a dynamic load balancing technique that automatically adapts a black-
box distributed or parallel application to the heterogeneous Grid resources.

To summarize, the existing algorithms and tools provide only a partial solution.
Our target is to combine the best achievements and to design a flexible tool for auto-
mated load balancing on the Grid. In this paper we present the results of the ongoing
work in this direction. In Section 3 we introduce the basic ideas and steps of a gener-
alized automated load balancing technique for a black-box application on the Grid.
Section 4 presents the results of implementation of the load balancing algorithm,
describes a synthetic test application developed for experiments, and shows the trends
of the load balancing speedup and the influence of the resource heterogeneity level.
Section 5 concludes the paper with discussion and future plans.

3 Generalized Automated Load Balancing with Resource
Selection

Based on our previous experience [6-8], we developed a load balancing technique that
takes into account the heterogeneity and the dynamics of the Grid resources, estimates
the initially unknown application requirements, and provides the resource selection
and most optimal mapping of the parallel processes to the available resources. In the
most general case we consider that the resources have been randomly assigned to the
application by a Grid resource broker via the User-Level Scheduler [32,33], or that
the application can request the desirable resources with a set of parameters. An impor-
tant feature of the proposed mechanism is that all the functionality described below is
implemented as an external library, and the application is instrumented by linking to
this library. As we mentioned in the introduction, this is a work in progress: The tech-
nique described below has not been fully implemented yet. A part of coupling the
parallel load balancer with the user-level job scheduler is under development now. It
will be published with additional details after deployment and testing.
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3.1 The Basic Algorithm of the Automated Load Balancing

The load balancing meta-algorithm includes 8 basic Steps. Below we provide a de-
scriptive explanation of each Step, mentioning special cases to be considered at each
stage. We shall note that this is a conceptual description, rather than a mathematically
strict algorithm. An exact formulation of the core load balancing heuristic is provided
in the next subsection.

Step 1. Benchmarking resources: Measuring the computational power and mem-
ory available on the worker nodes, network links bandwidth, hard disk capacity
and I/O speed. In a more generic sense of "resources”, some other metrics can be
added characterizing the equipment and tools associated with a particular Grid
node. These can be various parameters of databases, storages, sensors, scanners,
and other attached devices.

Step 2. Ranking resources: The priority of ranking parameters shall be dependent
on the type of application. For traditional parallel computing solvers, which we
consider as test-case applications in present work, the first ranking parameter shall
be computational power (CPU) of the processor, the second parameter being the
network bandwidth to this processor. For memory-critical applications, memory
shall be the top-priority metric. For a large emerging class of multimedia streaming
applications, the network bandwidth and the disk I/O speed would be the key pa-
rameters. In most cases memory ranking is an essential complimentary operation,
since available memory can be a constraining factor defining if the resource can be
used by the application or not. The same goes for the free disk space parameter that
can constrain the streaming applications that damp data on hard disks.

Step 3. Checking the level of heterogeneity: This parameter is often not consid-
ered in the load balancing heuristics; however it plays a crucial role in the choice
of load balancing approach to be taken. The first and most obvious argument is that
if the resources happen to be almost homogeneous, for traditional parallel applica-
tions no additional load rebalancing is required (and parallel tasks are distributed in
equal chunks). In subsection 3.2, we discuss how the levels of heterogeneity affect
the weighting factors used for calculating the workload per processor. We intro-
duce the heterogeneity metrics and pay special attention to the way it influences
the load balancing performance for our parallel computing test-case application.

Step 4. Testing application components and their interconnections: For that, run
a small subset of the routine operations on the resources given. For a majority of
traditional computational applications, the best is to perform one or a few time
steps, iterations or events (depending on the type of simulation) in order to ensure
that no time is wasted just for the testing, and the simulation is already running,
though not in the most optimal way yet. This Step will measure the application per-
formance on a given set of resources and collect the data needed to calculate the
application requirements.

Step 5. Estimating the application requirements: The idea is to quantitatively
estimate the requirements of the application based on the results of resource
benchmarking (Step 1) and measurements of the application response (Step 4). For
our parallel computing test-case application, the requirements to be calculated are
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the communication to computation ratio and the minimally required memory per
node. An extensive description of the theoretical background and details of the cor-
responding heuristic can be found in [6-8]. In the next subsection we give an ex-
cerpt completing this meta-algorithm.

Step 6. Matching resources I. Constraining factors: This is the first stage of
checking the suitability of the available resources to the given application. It is
based on the analysis of the results of Steps 2 and 5. In our computational applica-
tion example, memory can be the constraining factor: In case of sufficient memory
on allocated processors, the load balancing can be performed further, taking into
account all the other factors. In the unfavourable case of insufficient memory on
some of the processors, they must be disregarded from the parallel computation or
replaced by other, better suited processors. This shall be done on the level of job
scheduling and resource allocation, within the framework of a combined approach
coupling the application-centered load balancing with a system-level resource
management. For this, we consider the User-Level Scheduler [32,33] as a feasible
application-level intermediate resource managing approach.

Step 7. Matching resources IlI. Selecting resources: This is the second stage re-
quiring a hierarchical approach we are developing. It provides the means to select
the best-suited resources for each of the PSE components. This Step consists of 3
basic functionalities: finding an optimal number of processors for each application
component, the actual resource matching, and rejecting some of the resources and
requesting some others -depending on the approach taken and resource availability.
The resource matching procedure (to be distinguished from process mapping) shall
take into account the application requirements derived in Step 5 and can be imple-
mented using some standard multi-parameter optimization method. In our parallel
computing test-case, selecting resources might look fairly simple: we always want
the fastest processors with the fastest links between them. But with the severe het-
erogeneity of Grid resources, this is not so trivial anymore. What is better, fast
worker nodes connected by the slow links or slower processors with the fast links?
The answer is strongly dependent on the application characteristics: the communi-
cation-bound applications will achieve a better performance on faster links even
with slower processors, and the computation-intensive application will not care
about the network bandwidth. Another open question to be answered is how many
worker nodes shall be assigned to a parallel solver. Again, the answer will be dif-
ferent depending on the solver characteristics: For a majority of "pleasingly" paral-
lel applications (employing the resource farming concept), the more processors the
better, so the actual number of processors to be allocated is an issue of availability
and competition with the other PSE components. On the other hand, for a wide
class of "normal" parallel applications (characterized by a speedup saturation with
a growing number of parallel processors), an optimal number of processors can be
estimated based on the measured resource parameters and the application fractional
communication overhead.

Step 8. Load balancing: After selecting the best suited set of resources, we need to
perform the actual optimization of the workload distribution within the parallel
modules, in order words mapping the processes onto the allocated resources. This
Step is based on the heuristic developed earlier [6-8], which includes a technique to
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calculate the weighting factors for each processor depending on the resource char-
acteristics and application requirements established in Step 5. In Section 3.2 we
summarize the methodology, introduce some corrections in the theoretical formula-
tion and discuss the role of the heterogeneity function.

In case of dynamic resources where performance is influenced by other factors (which
is generally the case on the Grid), a periodic re-estimation of resource parameters and
load re-distribution shall be performed. This leads to repeating all the meta-algorithm
Steps except of Step 4 and Step 5. In most cases this can be done by running the ap-
plication with a few consecutive time steps or iterations (see comments to Step 4).
NB: if the selected resources did not change much, Steps 6 and 7 can be omitted not
to incur unnecessary overhead.

If the application is dynamically changing (for instance due to adaptive meshes,
moving interfaces or different combinations of physical processes modeled at differ-
ent simulation stages) then the application requirements must be periodically re-
estimated even on a static set of resources. In this case, the periodic re-estimation loop
stars from Step 4, with the same remark on skipping Steps 6 and 7 if the application
change is not dramatic.

Periodic re-estimations shall be performed frequently during the runtime of the ap-
plication to correct the load imbalance with a reasonably short delay. The minimally
required frequency of rebalancing can be estimated and dynamically tuned by calcu-
lating the relative imbalance introduced during the controlled period of time.

In the next subsection we provide a strict formulation of the most important aspects
essential for understanding the experimental results shown in Section 4. A scrupulous
mathematical description of all the conditions, metrics and algorithms in a complete
meta-algorithm we save for another paper.

3.2 Adaptive Load Balancing on Heterogeneous Resources: Theoretical
Approach

In [6,7] we proposed a methodology for adaptive load balancing of parallel applica-
tions on heterogeneous resources, extending it to dynamic load balancing and intro-
ducing the heterogeneity metrics in [8]. In this section we give a theoretical descrip-
tion of the basic concepts and parameters mentioned in the meta-algorithm, and con-
centrate on the two most important issues: (1) estimating the application requirements
(Step 4 and Step 5) and (2) the actual load balancing of parallel or distributed black-
box applications on heterogeneous Grid resources (Step 8). The load balancing Step
aims at optimizing the load distribution among the resources already selected in pre-
vious Steps (after performing the check against the restricting factors such as the
memory deficiency). Therefore the theory is given under the assumption that the re-
sources are "fixed" for a single load-balancing loop, and that using all these resources
provides a reasonably good performance result (e.g. parallel speedup for traditional
parallel computing applications). Another prerequisite is that the application is al-
ready implemented as a parallel (or distributed) program, and is able to distribute the
workload by chunks of controllable size. Saying this we kept in mind the Master-
Worker model, but the technique is applicable to other communication logical topolo-
gies, given that the measurements are carried out along the links used within the ap-
plication. The load balancing procedure we describe is implemented as an external
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library, and after linking with the application provides a recommendation on how
much work shall be done by each of the assigned processors to ensure the fastest
possible execution time —taking into account the specific parameters of the resources
and the estimated application requirements [6-8]. We designed the algorithm in such a
way that the knowledge of these resource and application characteristics would give
an instant solution to the workload distribution, thus making the procedure very
lightweight and suitable for dynamic load balancing at runtime.
The main generic parameters that define a parallel application performance are:

e An application parameter f, =N_,,,./N where N, i the total amount of

calc >
application communications, i.e. data to be exchanged (measured in bit) and N is
the total amount of computations to be performed (measured in Flop);

e The resource parameters 4; = p;/n; , where p; is the available performance of the

i processor (measured in Flop/s) and n; is the network bandwidth to this node
(measured in bit/s).

The resource characteristics p; and n; we obtain in Step 1 after benchmarking the re-
sources, but the application parameters N, and N.,. are not known beforehand in
real-life applications. The target is to experimentally determine the value of the appli-
cation parameter f, that provides the best workload distribution, i.e. minimal runtime
of the application mapped to the resources characterized by a parameter set pL = {,ul} .

A natural way to do that is to run through the range of possible values of f, with a
discrete step, calculating a corresponding load distribution and performing one time
step/iteration with a new load distribution. Measuring the execution time of this itera-
tion and comparing it for different values of f., we find an optimal value f.", which
provides the minimal execution time. This idea is implemented in Step 5 and will be
illustrated in the Results section (4.2). A detailed algorithm is described in [8]. There
we suggested estimating the range of possible values of the application parameter f. as
following: The minimal value is £"" =0, which corresponds to the case when no
communications occur between the parallel processes of the application. The maximal

possible value was calculated as f," = max(n;)/ min(p;) . Experimenting with this

rough upper bound evaluation, we found that in many cases it gives a too high value
of £™**, unnecessarily extending the search range and thus reducing the efficiency of
the load balancing procedure. Another approach to search for the optimal value f." can
be borrowed from the optimization theory, for instance using an adaptive 1-
dimensional non-linear constrained optimization method with a correction for small
stochastic perturbations in resource performance [34]. This approach can reduce the
number of the load balancing loops needed to find the best load distribution.

To calculate the amount of the work per processor in the load balancing Step 8, we
assign a weight-factor to each processor according to its processing power and net-
work connection. A similar approach was applied in [25] and in [27] for heterogene-
ous computer clusters, but the mechanism for adaptive calculation of the weights -
taking into account the application requirements- was not developed there. Moreover,
the tools developed for cluster systems can not be used in Grid environments without
modifications since static resource benchmarking is not suitable for dynamic Grid
resources.
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The weighting factor w; determines the final workload to be assigned to each of N
processors: W; = w; W, where W is the total workload. The weighting factor w; shall
reflect both the capacity of resources according to the estimated infrastructure pa-
rameters 4; and the application parameter f.. In [8] we derived an expression for

processor weights analogous to that used by other authors [25,27]. Extensive experi-
mentation and analysis of this expression revealed that the optimal balance for com-
putation-intensive applications running on fast network links is not computed cor-
rectly. To correct this, we modified the equation for weights calculation, deriving it
from the first principles of equalizing the time spent by each processor. In the simpli-
fied model of communication that can suite as the first approximation of real commu-
nication topologies, the weights can be calculated as follows:

N
W =q,-/Zq,~; q; =p;/ 1+ @ fu) (1)

i=1
Here ¢; is the dimensional weight calculated from the resource parameters p; and 4, ,
and from the guessed application parameter f.. ¢ is the heterogeneity metrics of the

network links that can be expressed as a standard deviation of the set of normalized
dimensionless resource parameters:

N

1 1
N_IZ(l—ni/navg)2, Mg =ﬁ2ni )

i=1

¢:

The purpose of this heterogeneity metrics is to ensure that if the network links are
homogeneous, i.e. n; = ng,,, then the weighting is done only according to the proces-
sors capacity. In this case ¢ =0, and the last term in the denominator of Eq.(1) is

nullified, thus providing that the weights w; are linearly proportional to the processing
power p;. Then we can see that in the infrastructure of heterogeneous processors con-
nected by homogeneous network links the value of application parameter f. does not
affect the load distribution, which is exactly the case in the Master-Worker lock-step
synchronous communication model. Generally speaking, in other communication
models this can be different, so a bit more sophistication is needed in order to design a
generic algorithm that would suit well the majority of logical topology models.

To evaluate the efficiency of the workload distribution we introduce the load bal-
ancing speedup O =T, 1 o /Toaiancea - 100% , Where Ton batancea 1S the execution

time of the parallel application without the load balancing (even distribution of the
prosesses), and Tpyunceq 1S the execution time after load balancing on the same set of
resources. This metric is used to estimate the application parameter f,* that provides
the best performance on given resources, that is the largest value of speedup © in a
given range of f.. In a non-trivial case we expect to find a maximum of © and thus an
optimal f,” for some workload distribution, which means that the application require-
ments fit best the resources in this particular workload distribution. The case of f, = 0
while @ # 0 means that the application is totally computation dominated, i.e. there is

no communication between different processes, and the optimal workload distribution
will be proportional only to the computational power of the processors.
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While deriving Eq. (1), we considered a simple case when memory requirements
only put a Boolean constraint to the allocation of processes on the resources: either
there is enough memory to run the application or not. But memory can be one of the
determining factors of the application performance and play a role in the load balanc-
ing process. This is the case for applications that are able to control memory require-
ments according to the available resources. In this case there will be additional pa-
rameters analogous to f. and g, but the idea and the load balancing mechanism re-

main the same. Similar considerations shall be applied for the other types of applica-
tions. For instance, in a widely used class of applications performing sequential
computing with hard disk intensive operations, the network link bandwidth parameter
n; shall be replaced with the disk I/O speed for finding an optimal load distribution in
"farming" computations on the Grid.

4 Performance Results

In this section we provide some details on implementing the load balancing algorithm
and show the results illustrating the load balancing technique for our computational
application case-study and demonstrating the speedup achieved with this technique
for different types of applications and resources. The adaptive load balancing tech-
nique we propose was first applied while deploying the Virtual Reactor parallel com-
ponents on heterogeneous Grid resources [3]. Several simulation types have been
extensively tested on various sets of resources, demonstrating how the algorithm
works. However one application can obviously provide only a limited freedom for
experiments. To be able to examine the behavior of an arbitrary parallel application
(characterized by various values of the application parameter f, and various interproc-
ess communication topologies) on arbitrary sets of heterogeneous resources, we de-
veloped a synthetic parallel application that allowed us to model different combina-
tions and to compare the best theoretically achievable performance results with those
given by our workload-balancing approach.

4.1 Synthetic Application and Experimental Setup

To evaluate the performance of the proposed load balancing technique for generic
cases, we developed a "synthetic" application modeling different types of parallel
applications mapped to the resources of various capacity and levels of heterogeneity.
From a technical point of view, this synthetic application is an MPI program running
on a homogeneous computer cluster system. Flexible configuration capabilities allow
tuning the communication-computation ratio f, within the application, and designing
the communication logical topology (i.e. the patterns of interconnections between the
processes). The latter gives the possibility to model different connectivity schemes,
e.g. Master-Worker, Mesh, Ring, Hypercube etc. The value of the application parame-
ter f, is controlled by changing the total amount of calculations to be performed and
the total amount of data to be sent between the nodes. The underlying heterogeneous
resources are modeled by imposing extra load on the selected processors or links, thus
reducing their capacity available for the application.
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The load balancing algorithm was implemented as an external library using the
MPI message passing interface, and the synthetic application (also an MPI program)
has been instrumented with this library as any other application would be. We use this
experimental setup to examine how a specific parallel application defined by a com-
bination of communication/computation ratio f, and communication logical topology
will behave on different types of heterogeneous resources, and what types of applica-
tions can show the best performance on a given set of resources. To validate the syn-
thetic simulator, we modeled and analyzed the performance of the Virtual Reactor
solvers on sets of resources similar to those used in our previous experiments on the
RIDgrid [7,8]. The experiments were carried out on the DAS-2 computer cluster [35],
using MPICH-P4 implementation of MPIL.

4.2 Load Balancing Speedup for Different Applications

In this section we illustrate the idea of searching through the space of possible values
of the application parameter f, in order to find the actual application requirement F,
(see Step 5 of the meta-algorithm and the detailed description of the procedure in
Section 3.2). Figure 1 presents the results of load balancing of our synthetic applica-
tion with the Master-Worker non-lockstep asynchronous communication logical to-
pology (when a Worker node can immediately start calculation while the Master con-
tinues sending data to the other Workers). We show a load balancing speedup for 5
applications with different pre-defined values of F. (0.1 — 0.5) on the same set of
heterogeneous resources. The value of f.° corresponding to the maximal speedup
assures the best application performance. We can see that the best speedup in all cases
is achieved with £, close to the real application F,, thus proving the validity of our
approach. Another observation is that the applications characterized by a higher
communication to computation ratio F,, achieve a higher balancing speedup, which
means that the communication-intensive applications benefit more from the proposed
load balancing technique. It is also worth noticing that the distribution of the work-
load proportional only to the processor performance (f,=0) also gives a significant
increase of the performance (180 % in case of F. =0.5), but introduction of the
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Fig. 1. Dependency of the load balancing speedup ® on the "guessed" application parameter f,
for 5 synthetic applications with different values of F,
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dependency on application and resource parameters adds another 35 % percent to the
balancing speedup in this case (up to 217 %). In experiments with a higher level of
resource heterogeneity, this additional speedup contributed up to 150 %.

4.3 Load Balancing for Master-Worker Model: Heuristic Versus Analytically
Derived Load Distribution

To test our load balancing algorithm, we analytically derived the best workload distri-
bution parameters for some specific communication logical topologies of parallel
applications, and compared the speedup achieved with our heuristic algorithm with
that provided by the theoretical method. Here we present the analytically derived
weights and the performance comparison for a widely used Master-Worker non-
lockstep asynchronous communication model. The values of the weighting factors
defining the best (most optimal) load distribution have been derived from the princi-
ple of equalizing the time spent by each processor working on the application, follow-
ing the same idea used for derivation of eq. (1). Omitting the mathematical details,
we present the final recurrence relation for calculating the weights:

1
7, +T, 7, +T, ] N
[I+ZH k k] , qi_l:qiTlforzzN...Z; w; =g, qu' 3)
= i=1

i=2 k=i k—l

where 7; = N_,,,,/n; is the time for sending the total amount of application commu-

nications N, from the Master to the i Worker node over the network link with the
measured bandwidth n;; and 7, = N,/ p; is the time for performing the total amount

of application's calculations N, by the i processor with the processing power of p;.
We have tested our synthetic applications with different communication to computa-
tion ratios F. on different sets of resources, with the two different load distributions:
theoretical and heuristic. In Fig. 2 we present an example of comparison of the execu-
tion times achieved with these load balancing strategies on a set of highly heterogeneous
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Fig. 2. Comparison of the execution times for different weighting: the best theoretical distribu-
tion versus the generic heuristic load balancing
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resources. We can see that the heuristic time is only about 5-15 percent higher than the
best possible for these applications (the larger difference attributed to the very commu-
nication-intensive test). Considering that our approach is generic and suits any type of
communication topology, this overhead is a relatively small impediment.

4.4 Influence of the Resource Heterogeneity on the Load Balancing Efficiency

Thorough testing of the different applications on different sets of resources showed a
strong influence of the level of resource heterogeneity on the results achieved. We
performed a series of targeted experiments varying the resource heterogeneity both in
the processor power and the network links bandwidth. As a sample of these tests, in
Fig. 3 we show the dependency of the load balancing speedup on the processing
power heterogeneity metrics, analogous to that of the networks links heterogeneity
introduced by Eq. (2). As we see, the speedup grows superlinearly with the heteroge-
neity level, thus indicating that our approach is especially beneficial on strongly het-
erogeneous resources, such as the Grid resources.

Phi_comm=0.603

balancing speedup ©, %

200

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Processing power heterogeneity metrics, Phi_comp

Fig. 3. Dependency of the load balancing speedup © on the resource heterogeneity metrics ¢

5 Conclusions and Future Work

We introduced a new hierarchical approach that combines user-level job scheduling
with dynamic load balancing technique that automatically adapts a black-box distrib-
uted or parallel application to the heterogeneous resources. The proposed algorithm
dynamically selects the resources best suited for a particular task or parallel process of
the application, and optimizes the load balance based on the dynamically measured
resource parameters and estimated requirements of the application. We studied the
performance of this load balancing approach by developing a synthetic application
with flexible user-defined application parameters and logical network topologies, on
artificially designed heterogeneous resources with a controlled level of heterogeneity.
Some of the conclusions from our methodological experiments are as follows:
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e The proposed algorithm adequately finds the application requirements;

e Based on that, our approach adapts the application to the set of heterogeneous
resources with a very high load balancing speedup (up to 450 %);

e The novelty of our load balancing approach —dependency of the load distribution
on the application and resource parameters— adds up to 150 % to the balancing
speedup compared to the balancing that takes into account only the processors' per-
formance;

e Analysis of the speedup achieved for different types of applications and resources
indicates that the communication-intensive applications benefit most from the pro-
posed load balancing technique.

e The speedup from applying our approach grows superlinearly with the increase of
the resources' heterogeneity level, thus showing that it is especially useful for the
severely heterogeneous Grid resources.

e Comparison of the performance of our heuristic load balancing with the perform-
ance achieved with the analytically derived weights, showed a relatively small dis-
crepancy of 5-15 %, with a larger difference attributed to the very communication-
intensive applications. This overhead is a relatively small impediment, considering
that our approach is generic and suits any type of communication topology.

The results presented here were obtained for traditional parallel computing applications
with the most widespread communication model: a Master-Worker scheme in a non-
lockstep asynchronous mode. At present, we test other connectivity schemes, such as
the different Master-Worker modes, as well as Mesh, Ring and Hypercube topologies.
Another direction of our work is implementation and testing of hierarchical coupling of
user-level job scheduling with the load balancing algorithm presented. The User-Level
Scheduler [32,33] will provide a combined resource management strategy connecting
the application-level resource selection mechanism to the system-level job manage-
ment. In addition to that, it can support resource usage optimization and fault tolerance
[23], as a desirable functionality increasing the usability of the Grid. We also plan to
extend our approach to a wider class of applications, including memory-critical appli-
cations, multimedia streaming applications, and a widely used class of applications
performing sequential computing with hard disk intensive operations.
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Abstract. In this paper, we present a novel algorithm of optimal matrix
partitioning for parallel dense matrix factorization on heterogeneous processors
based on their constant performance model. We prove the correctness of the
algorithm and estimate its complexity. We demonstrate that this algorithm
better suits extensions to more complicated, non-constant, performance models
of heterogeneous processors than traditional algorithms.

1 Introduction

The paper presents a novel algorithm of optimal matrix partitioning for parallel dense
matrix factorization on heterogeneous processors based on their constant performance
model. We prove the correctness of the algorithm and estimate its complexity. We
demonstrate that this algorithm better suits extensions to more complicated, non-
constant, performance models of heterogeneous processors, such as a model presented
in [1,2], than traditional algorithms.

A number of matrix distribution strategies for parallel dense matrix factorization in
heterogeneous environments have been designed and implemented. Arapov et al., [3]
propose a distribution strategy for 1D parallel Cholesky factorization. They consider
the Cholesky factorization to be an irregular problem and distribute data amongst the
processors of the executing parallel machine in accordance with their relative speeds.
The distribution strategy divides the matrix into a number of column panels such that
the width of each column panel is proportional to the speed of the processor. This
strategy is developed into a more general 2D distribution strategy in [4]. Beaumont et
al., [5-6] employ a dynamic programming algorithm (DP) to partition the matrix in
parallel 1D LU decomposition. When processor speeds are accurately known and
guaranteed not to change during program execution, the dynamic programming
algorithm provides the best possible load balancing of the processors. A static group
block distribution strategy [7-8] is used in parallel 1D LU decomposition to partition
the matrix into groups (or generalized blocks in terms of [4]), all of which have the
same number of blocks. The number of blocks per group (size of the group) and the
distribution of the blocks in the group over the processors are fixed and are determined
based on speeds of the processors, which are represented by a single constant number.
All these aforementioned distribution strategies are based on a performance model,
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which represents the speed of each processor by a constant positive number and
computations are distributed amongst the processors such that their volume is
proportional to this speed of the processor. The number characterizing the performance
of the processor is typically its relative speed demonstrated during the execution of the
code solving locally the core computational task of some given size.

We present in this paper a novel matrix partitioning algorithm for 1D LU
decomposition called the Reverse algorithm. Like the DP algorithm, the Reverse
algorithm always returns an optimal solution. The complexity of the Reverse
algorithm is a bit worse than that of the DP algorithm, but the algorithm has one
important advantage. It better suits extensions to more complicated, non-constant,
performance models of heterogeneous processors, such as the functional performance
model [1,2], than traditional algorithms.

The rest of the paper is organized as follows. In Section 2, we present the
homogeneous LU factorization algorithm that is used for our heterogeneous
modification. In section 3, we outline two existing heterogeneous modifications of
this algorithm using the constant model of heterogeneous processors before
presenting our original modification, the Reverse algorithm. This section also presents
the correctness of the algorithm and its complexity. Finally we present experimental
results on a local network of heterogeneous processors to demonstrate why the
proposed algorithm better suits extensions to the functional performance model of
heterogeneous processors than the traditional algorithms.

2 LU Factorization on Homogeneous Multiprocessors

Before we present our matrix partitioning algorithm, we describe the LU
Factorization algorithm of a dense (nxb)x(nxb) matrix A, one step of which is shown
in Figure 1, where n is the number of blocks of size bxb, optimal values of b
depending on the memory hierarchy and on the communication-to-computation ratio
of the target computer [9,10].

The LU factorization applies a sequence of Gaussian eliminations to form
A=PxLxU, where A, L, and U are dense (nxb)x(nxb) matrices. P is a permutation
matrix which is stored in a vector of size nxb, L is unit lower triangular (lower
triangular with 1’s on the main diagonal), and U is upper triangular.

At the k-th step of the computation (k=1,2,...), it is assumed that the mxm
submatrix of A (m = ((n—(k—1))xb) is to be partitioned as follows:

Ay Ap _p L, 0 U, U,

A, A, L, L,){L0 U,
L,U, L, U,
L,U, L,U,+L,, U,

where the block A, is bxb, A, is bx(m-b), A,, is (m-b)xb, and Ay, is (m-b)x(m-b). L;,
is unit lower triangular matrix, and Uj;is an upper triangular matrix.
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Fig. 1. One step of the LU factorization algorithm of a dense matrix A of size (nxb)x(nxb)

A

P, P, P; P, P, P;

Fig. 2. Column-oriented CYCLIC distribution of six column blocks on a one-dimensional array
of three homogeneous processors

At first, a sequence of Gaussian eliminations is performed on the first mxb panel of
A™ (ie., A;; and Ay)). Once this is completed, the matrices Ly, Ly, and U;; are known
and we can rearrange the block equations

-1
U, < (Lll) Ap,
An <« A,-LU,,=L,U,,.
The LU factorization can be done by recursively applying the steps outlined above to

the (m-b)x(m-b) matrix A22 . Figure 1 shows how the column panel, L;; and L;;, and
the row panel, U;; and Uj,, are computed and how the trailing submatrix A,, is
updated. In the figure, the regions Lo, Uy, L1, Uy, Ly, and Ui, represent data for
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which the corresponding computations are completed. Later row interchanges will be
applied to Ly and L,;.

Now we present a parallel algorithm that computes the above steps on a one-

dimensional arrangement of p homogeneous processors. The algorithm can be
summarized as follows:

1.

A CYCLIC(b) distribution of columns is used to distribute the matrix A over a one-
dimensional arrangement of p homogeneous processors as shown in Figure 2. The
cyclic distribution assigns columns of blocks with numbers 1,2,...,n to processors
1,2,....,p,1,2,....,p,1,2,..., respectively, for a p-processor linear array (n»p), until all
n columns of blocks are assigned.

. The algorithm consists of n steps. At each step (k=1,2,...),

The processor owning the pivot column block of the size ((n—(k—1))xb)xb (i.e., Ay
and A,),) factors it;

All processors apply row interchanges to the left and the right of the current
column block k;

The processor owning L;; broadcasts it to the rest of the processors, which convert
the row panel Ay, to Uyy;

The processor owning the column panel L,; broadcasts it to the rest of the
processors;

All the processors update their local portions of the matrix, A, in parallel.

The implementation of the algorithm, which is used in the paper, is based on the
ScaLAPACK [10] routine, PDGETREF, and consists of the following steps:

1.

PDGETF2: Apply the LU factorization to the pivot column panel of size ((n—(k—
1))xb)xb (i.e., Aj; and A,)). It should be noted here that only the routine PDSWAP
employs all the processes involved in the parallel execution. The rest of the
routines are performed locally at the process owning the pivot column panel.

[Repeat b times (i = 1,...,b)]

PDAMAX: find the (absolute) maximum element of the i-th column and its
location

PDSWAP: interchange the i-th row with the row that holds the maximum

PDSCAL: scale the i-th column of the matrix
PDGER: update the trailing submatrix

The process owning the pivot column panel broadcasts the same pivot information
to all the other processes.

. PDLASWP: All processes apply row interchanges to the left and the right of the

current panel.

. PDTRSM: L, is broadcast to the other processes, which convert the row panel A,

to U12;

. PDGEMM: The column panel L,; is broadcast to all the other processes. Then, all

processes update their local portions of the matrix, Ay,.

Because the largest fraction of the work takes place in the update of A,,, therefore,

to obtain maximum parallelism all processors should participate in its update. Since
A, reduces in size as the computation progresses, a cyclic distribution is used to
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ensure that at any stage A,, is evenly distributed over all processors, thus obtaining
their balanced load.

3 LU Factorization on Heterogeneous Platforms with a Constant
Performance Model of Processors

Heterogeneous parallel algorithms of LU factorization on heterogeneous platforms are
obtained by modification of the homogeneous algorithm presented in Section 2. The
modification is in the distribution of column panels of matrix A over the linear array
of processors. As the processors are heterogeneous having different speeds, the
optimal distribution that aims at balancing the updates at all steps of the parallel LU
factorization will not be fully cyclic. So, the problem of LU factorization of a matrix
on a heterogeneous platform is reduced to the problem of distribution of column
panels of the matrix over heterogeneous processors of the platform.

Traditionally the distribution problem is formulated as follows: Given a dense
(nxb)x(nxb) matrix A, how can we assign n columns of size nxb of the matrix A to p
(n»p) heterogeneous processors Py, P,, ..., P, of relative speeds S={si, s;, ..., $,},
Zip:l s, =1, so that the workload at each step of the parallel LU factorization is best
balanced? The relative speed s; of processor P; is obtained by normalization of its
(absolute) speed a; , understood as the number of column panels updated by the
1

processor per one time unit, §; = . While g; will increase with each next

i=1 1

step of the LU factorization (because the height of updated column panels will

decrease as the LU factorization progresses, resulting in a larger number of column

panels updated by the processor per time unit), the relative speeds s; are assumed to be
(k)

constant. The optimal solution sought is the one that minimizes max; —— for each
S,

L

(k)

. P .
step of the LU factorization ( E ) li’l,-(k) =pn® ), where n""" is the total number of
i=

column panels updated at the step k and ni(k) denotes the number of column panels

allocated to processor P;.
The motivation behind that formulation is the following. Strictly speaking, the
optimal solution should minimize the total execution time of the LU factorization,

(k)
, Where ai(k)

n
which is given by Zmaxi”:l ﬁ is the speed of processor P;
a.

k=1 ;
(k)

at step k of the LU factorization and #;”" is the number of column panels

updated by processor P; at this step. However, if a solution minimizes
(k) (k)

n

. ’(k) for each k, it will also minimize Zmaxi’;,’(—k). Because
a, pa a,

1 1

max /.
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) n® 1 *)

‘— =max’, = Xmax? —— | then for

1
(k) P (k) P (k)
4 §; X Zizl 4 Zizl a Si

(k)
i
3

L

p
max/,

n
any given k the problem of minimization of Zmaxf’zl
k=1 a

(k)
to the problem of minimization of maxf;l —— . Therefore, if we are lucky and

will be equivalent

i
(k)

i

there exists an allocation that minimizes max ,p=1 for each step k of the LU
i
factorization, then the allocation will be globally optimal, minimizing
n (k)
Zmaxf;] ’(k) . Fortunately, such an allocation does exist [5,6].
k=1 a;

Now we briefly outline two existing approaches to solve the above distribution
problem, which are the Group Block (GB) distribution algorithm [7] and the Dynamic
Programming (DP) distribution algorithm [5,6].

The GB algorithm. This algorithm partitions the matrix into groups (or generalized
blocks in terms of [4]), all of which have the same number of column panels. The
number of column panels per group (the size of the group) and the distribution of the
column panels within the group over the processors are fixed and determined based
on relative speeds of the processors. The relative speeds are obtained by running the
DGEMM routine that locally updates some particular dense rectangular matrix. The
inputs to the algorithm are p, the number of heterogeneous processors in the
one-dimensional arrangement, b, the block size, n, the size of the matrix in number of

blocks of size bxb or the number of column panels, and S={s;, s, ...,
s, )( Zi: s; = 1), the relative speeds of the processors. The outputs are g, the size of

the group, and d, an integer array of size p, the i-th element of which contains the
number of column panels in the group assigned to processor i. The algorithm can be
summarized as follows:

1. The size of the group g is calculated as Ll/min(si)J (1<i<p). If glp<2,

then g = \_2/ min(s, )J This condition is imposed to ensure there is sufficient

number of blocks in the group.
2. The group is partitioned so that the number of column panels d; assigned to

processor i in the group will minimize max, —~ (see [5] for a simple algorithm
S,

L

performing this partitioning).
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3. In the group, processors are reordered to start from the slowest processors to the
fastest processors for load balance purposes.

The complexity of this algorithm is O(pXxlog, p). At the same time, the
algorithm does not guarantee that the returned solution will be optimal.

The DP algorithm. Dynamic programming is used to distribute column panels of the
matrix over the processors. The relative speeds of the processors are obtained by
running the DGEMM routine that locally updates some particular dense rectangular
matrix. The inputs to the algorithm are p, the number of heterogeneous processors in
the one-dimensional arrangement, b, the block size, n, the size of the matrix in
number of blocks of size bxb or the number of column panels, and S={sy, 57, ...,

p . .
s, 1( Zi:] s; = 1), the relative speeds of the processors. The outputs are ¢, an integer

array of size p, the i-th element of which contains the number of column panels
assigned to processor i, and d, an integer array of size n, the i-th element of which
contains the processor to which the column panel i is assigned. The algorithm can be
summarized as follows:

(1rer0)=(0,...,0);
dy,....d,)=(0,...,0);
for (k=1; k<n; k=k+1) {

CosStpin="°;
for(i=1; i<=p; 1i=i+1) {
Cost=(c;+1)/s;;
if (Cost < Costy) {Costy,=Cost; j=1i;}
}
An-xe1=7 7
cy=cy+1;

}

The complexity of the DP algorithm is O(pxn). The algorithm returns the optimal
allocation of the column panels to the heterogeneous processors [6]. The fact that the
DP algorithm always returns the optimal solution is not trivial. Indeed, at each
iteration of the algorithm the column panel k is allocated to one of the processors,
namely, to a processor, minimizing the cost of the allocation. At the same time, there
may be several processors with the same, minimal, cost of allocation. The algorithm
randomly selects one of them. It is not obvious that allocation of the column panel to
any of these processors will result in a globally optimal allocation. But, fortunately,
for this particular distribution problem this is proved to be true.

In this paper, we propose another algorithm solving this distribution problem, a
Reverse distribution algorithm. Like the DP algorithm, the Reverse algorithm always
returns the optimal allocation. The complexity of the Reverse
algorithm, O(p Xnxlog, p), is a bit worse than that of the DP algorithm, but the

algorithm has one important advantage. It better suits extensions to more complicated,
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non-constant, performance models of heterogeneous processors (such as the
functional model [1, 2]) than both the DP and GB algorithms.

The Reverse algorithm. This algorithm generates the optimal distribution
(n](k),...,n;k)) of nxb column panels of the dense (nxb)x(nxb) matrix over p

heterogeneous processors for each step k of the parallel LU factorization
(Zip:l l’ll-(k) =n—k+1, k=1,...,n) and then allocates the column panels to the

processors by comparing these distributions. In other words, the algorithm extracts the
optimal allocation of the column panels from a sequence of optimal distributions of
the panels for successive steps of the parallel LU factorization. The inputs to the
algorithm are p, the number of heterogeneous processors in the one-dimensional
arrangement, b, the block size, n, the size of the matrix in number of blocks of size

bxb or the number of column panels, and S={sy, 55, ..., 5,}( Zil s, = 1), the relative

speeds of the processors. The output is d, an integer array of size n, the i-th element of
which contains the processor to which the column panel i is assigned. The algorithm
can be summarized as follows:

(dy,...,d)=(0,...,0);
w=0;
(ny,...,np,)=HSP(p, n, S);
for (k=1; k<n; k=k+1) {
(ny,...,n,) =HSP(p, n-k, S);
if (w==0)
thenif (3 j e [I, pD(n; == n] +D)A(Vi# j)n, =n,))

then {d,=j; (nl,...,np) = (nl,,np) 3
else w=1;
elseif (Fie [, p])(n, <n,))
then w=w+1;
else {
for (i=1; i<p; i=i+1)
for (A = n, —n,; A#0; A=A-1, w=w-1)
A=
(yseesn,) =(ny,...on,);
w=0;
}
!

If(3iell,phn, =1))
then d,=i;
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Here, HSP(p, n, S) returns the optimal distribution of n column panels over p
heterogeneous processors of the relative speeds S={sj, s,, ..., 5,} by applying the
algorithm for optimal distribution of independent chunks of computations from [5]

Table 1. Reverse Algorithm with three processors Py, P, P3

Step of Distributions at step
the k Allocation
algo(;;l)thm P, P, P made
6 2 2
1 5 2 2 Py
2 4 2 2 Py
3 3 2 2 P,
4 1 3 2 No allocation
5 1 3 1 No allocation
6 1 2 1 Py, Py, P;
7 1 1 1 P>
8 0 1 1 P,
9 0 0 1 P
10 Ps

(HSP stands for Heterogeneous Set Partitioning). Thus, first we find the optimal
distributions of column panels for the first and second steps of the parallel LU
factorization. If the distributions differ only for one processor, then we assign the first
column panel to this processor. The reason is that this assignment guarantees a
transfer from the best workload balance at the first step of the LU factorization to the
best workload balance at its second step. If the distributions differ for more than one
processor, we postpone allocation of the first column panel and find the optimal
distribution for the third step of the LU factorization and compare it with the
distribution for the first step. If the number of panel columns distributed to each
processor for the third step does not exceed that for the first step, we allocate the first
and second column panels so that the distribution for each next step is obtained from
the distribution for the immediate previous step by addition of one more column panel
to one of the processors. If not, we delay allocation of the first two column panels and
find the optimal distribution for the fourth step and so on.

In Table 1, we demonstrate the algorithm for n=10. The first column represents the
step k of the algorithm. The second column shows the distributions obtained during
each step by HSP. The entry “Allocation made” denotes the rank of the processor to
which the column panel k is assigned. At steps k=4 and k=5, the algorithm does not
make any assignments. At k=6, processor P; is allocated column panels (4, 5) and
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Table 2. Distribution algorithms and their complexities

Distribution Algorithm Complexity
GB O(pxlog,p)
DP O(pxn)
Reverse O(pxnxlog,p)

processor P, is allocated column panel 6. The output d in this case would be
(P\P\P\P P P3P,P\PyP3).

Proposition 1. The Reverse algorithm returns the optimal allocation.

Proof of Proposition 1. If the algorithm assigns the column panel k at each iteration
of the algorithm, then the resulting allocation will be optimal by design. Indeed, in
this case the distribution of column panels over the processors will be produced by the
HSP and hence optimal for each step of the LU factorization.

Consider the situation when the algorithm assigns a group of w (w>1) column
panels beginning from the column panel k. In that case, the algorithm first produces a

sequence of (w+1) distributions (nl(k),...,n;k)), (nl(kﬂ),...,n;kﬂ)), .

n](kw) yees n;“w) ) such that

— the distributions are optimal for steps k, k+1,..., k+w of the LU factorization
respectively, and

- (nl(k),...,n;k))>(nl(k+i),...,n;k+i)) is only true for i=w (by definition,

(ai,....a,)>(by,...,b,) if and only if (Vi)(a; =b,) A(Ji)(a; >Db,)).

Lemma 1. Let (n;,...,n,) and (n],,np) be optimal distributions such that

n, +1

A\

14 p ' . ' . n,
n= zi=1 n, >Z,-:1”i =n, (Ji)(n, <n,) and (Vj)(max], —<
S; S;
n. n.
Then, max/, — = max, , —.
i S;

Proof of Lemma 1. As n>n and (ny,...,n,) and (nl, .. .,n;,) are both optimal

i

n. n

distributions, then max/, — = max, —. On the other hand, there exists
S, S
1 1

'

JEIL pl such that n;, <n;, which implies 7n;+1<n;. Therefore,
n, n;+1

. n. +1
> . As we assumed that (Vj)(max/, — <

Zi
Sj Sj S, Sj

n;

), then

n
max;  —
s

i
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n, n. +1 I’lj » n, , N »
max/, — < S—<max;, —. Thus, frommax; , — = max; —
S Sj Sj Si i ;
p p p p T
and max;_, — < max,_, — we conclude that max; , — = max,_, —. O
S S S S
We can apply Lemma 1 to the pair (n(k),.. (k)) and (n(k+l),. 7 ;k+l)) for any
P (k) P (kD) (k) (k1) .
[ € [1,w—1] Indeed, Zi:] n, >Zi:l n, and (Ji)(n;”’ <n;""). Finally,
® 4]
the HSP guarantees that (Vj)(max/, — < —) (see [5,6]). Therefore,
Si Sj
k) (k+1) (k+w-1)
p M p M p T ~ -
max,; , —— =max =...=max;,, —. In particular, this means
Si Si i
that for any (m,...,m,) such that m1nk+w "'n? <m, < maxker 'n?
m, *
(i=1,...,p), we will have max/, — =max ——. The allocations made in

i i
the end by the Reverse algorithm for the column panels k, k+1,...,k+w-1 result in a
new sequence of distributions for steps k, k+1,....,k+w-1 of the LU factorization such
that each next distribution differs from the previous one for exactly one processor.

Each distribution (ml,...,m in this new sequence satisfies the inequality

mlnkJr]V(L - l(]) <m; < max“w : n;.i) (i =1,..., p). Therefore, all they will have
(0

the same cost max f; | ——, which is the cost of the optimal distribution for these
i

steps of the LU factorization found by the HSP. Hence, each distribution in this

sequence will be optimal for the corresponding step of the LU factorization. m]

Proposition 2. The complexity of the Reverse algorithm is O(p XnXlog, p).

Proof. At each iteration of this algorithm, we apply the HSP, which is of complexity
O(pxlog, p) [5]. Testing the condition
@jell,pDn;, =n, + ) A(Vi# j)(n, ==n,) is of complexity O(p).
Testing the condition (i € [1, p])(n, < n,) is also of complexity O(p). Finally, the
total number of iterations of the inner loop of the nest of loops
for (i=1; i<p; i=i+1)
for (A = n, —n, ; A#0; A=A-1, w=w-1)
di.=1;
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Table 3. Specifications of sixteen Linux computers of a heterogeneous network

Processor GHz CPU (nllll?yl:/([es) (kCl;igc/:lees) Ab;g};tlz;g; ed
hcl01 3.6 Xeon 256 2048 246
hcl02 3.6 Xeon 256 2048 226
hcl03 3.4 Xeon 1024 1024 258
hcl04 3.4 Xeon 1024 1024 258
hcl05 3.4 Xeon 1024 1024 260
hcl06 3.4 Xeon 1024 1024 258
hcl07 3.4 Xeon 256 1024 257
hcl08 3.4 Xeon 256 1024 257
hcl09 1.8 AMD Opteron 1024 1024 386
hcl10 1.8 AMD Opteron 1024 1024 347
hclll 32P4 512 1024 518
hcl12 34P4 512 1024 258
hcll3 2.9 Celeron 1024 256 397
hcl14 3.4 Xeon 1024 1024 558
hcll5 2.8 Xeon 1024 1024 472
hcll6 3.6 Xeon 1024 2048 609

during the execution of the algorithm cannot exceed the total number of allocations of
column panels, n. Thus, the overall complexity of the algorithm is upper-bounded by

nxXO0(pxlog, p)+nx0(p)+nx0(p)+ pxnxO(l) = O(pxnxlog, p).Table 2

presents the complexities of the algorithms employing the constant performance model
of heterogeneous processors.

4 Experimental Results

A small heterogeneous local network of sixteen different Linux workstations shown
in Table 3 is used in the experiments. The network is based on 2 Gbit Ethernet with a
switch enabling parallel communications between the computers.

The absolute speed of a processor is obtained by running the DGEMM routine that
is used in our application to locally update a dense non-square matrix of size n;xn,.
DGEMM is a level-3 BLAS routine [11] supplied by Automatically Tuned Linear
Algebra Software (ATLAS) [12]. ATLAS is a package that generates efficient code
for basic linear algebra operations. The total number of computations involved in
updating A;=Aj,-L,;x U, of the rectangular n;xn, matrix A,,, where L,; is a matrix
of the size n;xb and U;, is a matrix of the size bxn,, is 2xbxn;xn,. The block size b
used in the experiments is 32, which is typical for cache-based workstations [9,10].

Figure 3 shows the first set of experiments. For the range of problem sizes used in
these experiments, the speed of the processor is a constant function of the problem
size. These experiments demonstrate the optimality of the Reverse and the DP
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LU factorization (constant performance model)
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Fig. 3. Execution times of the Reverse, DP, and GB distribution strategies for LU
decomposition of a dense square matrix

algorithms over the GB algorithm when the speed of the processor is a constant
function of the problem size. The figure shows the execution times of the LU
factorization application using these algorithms. The single number speeds of the
processors used for these experiments are obtained by running the DGEMM routine
to update a dense non-square matrix of size 5120x320. These speeds are shown in the
last column of Table 3. The ratio of speeds of the most powerful computer hcll6 and
the least powerful computer icl0] is 609/226 =~ 2.7.

Tables 4 and 5 show the second set of experiments showing the execution times of
the different strategies presented in this paper along with their extensions using the
functional model of heterogeneous processors [1, 2]. The strategies FDP, FGB, and
FR are extensions of the DP, GB, and the Reverse algorithms respectively using the
functional model of heterogeneous processors.

We consider two cases for comparison in the range (1024, 25600) of matrix sizes.
The GB and DP algorithms uses single number speeds. For the first case the single
number speeds are obtained by running the DGEMM routine to update a dense non-
square matrix of size 16384x1024. This case covers the range of small sized matrices.
The results for this case are shown in Table 4. For the second case the single number
speeds are obtained by running the DGEMM routine to update a dense non-square
matrix of size 20480x1440. This case covers the range of large sized matrices. The
results for this case are shown in Table 5. The ratios of speeds of the most powerful
computer hcll6 and the least powerful computer sclO1 in these cases are (531/131 =
4.4) and (579/64 = 9) respectively.

It can be seen that the FR algorithm, which is an extension of the Reverse
algorithm and employing the functional model of heterogeneous processors performs
well for all sizes of matrices. The Reverse and the DP algorithms perform better than
the GB algorithm when the speed of the processor is represented by a constant
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Table 4. Execution times (in seconds) of the LU factorization using different data distribution

algorithms
Size
of the FR FDP FGB Reverse/DP GB
matrix
1024 15 17 18 16 20
5120 86 155 119 103 138
10240 564 1228 690 668 919
15360 2244 3584 2918 2665 2829
20480 7014 10801 8908 9014 9188
25360 14279 22418 19505 27204 27508

Table 5. Execution times (in seconds) of the LU factorization using different data distribution

algorithms
Size
of the FR FDP FGB Reverse/DP GB
matrix
1024 15 17 18 18 18
5120 86 155 119 109 155
10240 564 1228 690 711 926
15360 2244 3584 2918 2863 3018
20480 7014 10801 8908 9054 9213
25360 14279 22418 19505 26784 26983

function of the problem size. The main reason is that the GB algorithm imposes
additional restrictions on the mapping of the columns to the processors. These
restrictions are that the matrix is partitioned into groups, all of which have the same
number of blocks. The number of columns per group (size of the group) and the
distribution of the columns in the group over the processors are fixed. The Reverse
and the DP algorithms impose no such limitations on the mapping.

5 Conclusions and Future Work

In this paper, we presented a novel algorithm of optimal matrix partitioning for
parallel dense matrix factorization on heterogeneous processors based on their
constant performance model. We prove the correctness of the algorithm and estimate
its complexity. We demonstrate that this algorithm better suits extensions to more
complicated, non-constant, performance models of heterogeneous processors than
traditional algorithms.
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Abstract. A parallel random number generator is given to perform
large-scale distributed Monte Carlo simulations. The generator’s qual-
ity was verified using statistically rigorous tests. Also special problems
with known solutions were used for the testing. The description of pro-
gram system MONC for large-scale distributed Monte Carlo simulations
is also given.

1 Introduction

Assume that while solving equations of mathematical physics one wants to esti-
mate some functional ¢. To implement a Monte Carlo technique one writes the
following stochastic representation

¢~ E¢ = E¢(w).

Here w is a sample trajectory of stochastic process, ( is called a stochastic esti-
mator. Note that the above mentioned relationship gives the fair approximation.
It means that the stochastic estimator has nonzero deterministic error. Then one
evaluates the value of EC using the sample average

- 1 X

Here N is quite large number of independent samples (,.

When M independent processors are used and independent trials are
distributed over the processors, the time complexity of statistical modeling is
obviously reduced by M times, because the combined complexity of the final
summation and averaging is negligible. Naturally, there should exist a possibil-
ity for handling samples of different volumes on different processors with the use
of statistically optimal averaging of the results based on the formula
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B M B M
m=1 m=1

where n,, is the sample volume on the m-th processor and (,, is the correspond-
ing average.

When M is large, the corresponding sample of the underlying pseudorandom
numbers is also large. Therefore, the use of long period sequences of pseudoran-
dom numbers is expedient if a simple method for splitting the sequences into M
subsequences of required length is available (see description of the bf-generator
in Sect. 3). Such modified algorithms for generating pseudorandom numbers re-
quire approximately modified statistical testing (see Sect. 5). To obtain a global
estimate of the solution in the C metric, the groups of trajectories originating
from different points of the phase space can be simulated on different processors.
In so doing, it is expedient to use the same pseudorandom numbers at different
points (possibly, on different processors). These numbers should be distributed
between individual trajectories by means of a special deterministic procedure
(see description of the lf-generator in Sect. 3).

Note that there does not exist any ideal algorithm for parallel realization of a
stochastic ensemble of Ny interacting particles. However, for such an ensemble,
the asymptotic determinate error of estimators for the functionals under study
is Cy N(;l and the probabilistic error is CQN(;O'S. Therefore, to reduce the prob-
abilistic error, such an ensemble should be simulated independently on different
processors (Ca/C1)% Ny times, the resulting estimates for the functionals should
be averaged.

2 Generating Pseudorandom Numbers on Single
Computer

Typically, a pseudorandom variable ¢ with a given distribution is modeled by
transforming one or several values of a pseudorandom numbers distributed uni-
formly over the interval (0,1). That is, the following formula is used

f = f(Oél,OtQ, .. )

A sequence of ”sampled” values of « is generally obtained by applying number-
theoretic algorithms. Among them, the most frequently used is the residue
method (also called the congruential generator) formulated as follows:

up =1, up = up_1A (mod 27), Op = U277, n=12,...,

Here, r typically denotes the number of bits used in the computer to represent
a number and A is a sufficiently large number relatively prime with respect to
2". We call A the generator factor. The quantities «,, are called pseudorandom
numbers. They are verified by statistical testing, by analytical studies, and by
using them in solving typical problems (see, for example, [I], [2], [6]). For the
above mentioned generator the period of the sequence {a,} equals to 2" 2.
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3 Generating Pseudorandom Numbers in Parallel

The solutions to various problems may be correlated by using pseudorandom
numbers as follows. The sequence {u,} is splitted into subsequences of length
m that start with the numbers ug,,, £k = 0,1,... called the initial values of the
subsequences. Each subsequence is used to construct the corresponding sample
trajectories of the process to be modeled (i.e., its separate trials). The value of m
should be such that m pseudorandom numbers would be sufficient to construct
a trajectory. In the residue method, the initial values ug,,, £ =0,1,2,... of the
subsequences are obviously calculated as follows
U(k+1)m = UkmAm (mod 27), k=0,1,2,...,

Here the factor A,, in the auxiliary generator of leaps of length m is calculated as

Ay = A™(mod 27)
Thus, the k-th trajectory is simulated using the subsequence in the residue
method that starts from

Qkm = Ukm 27"

We call this method the lf-generator (’lf” means ’little frog’). Clearly, the value
of m for the lf-generator should be chosen in such way that its divisors include
each n corresponding to successful n-dimensional uniformity tests (see Sect. 5).

In contrast to the straightforward distribution of pseudorandom numbers in
the order of their generation, the lf-generator ensures a small change in simulated
results under small variation of the parameters of the problem. Accordingly,
the lf-generator is more amenable to the testing based on solution of typical
problems than the conventional generator. Moreover, the lf-generator is better
suited to the important multidimensional uniformity tests in estimation problems
for multidimensional integrals (see Sect. 5).

The modified generator considered above can obviously be used to distribute
pseudorandom numbers over individual processors, but the leaps should be con-
siderably longer to do this. More precisely, m should be replaced by p = mN,
where NN is the number of trajectories that are actually simulated on an indi-
vidual processor. This ”large-scale” generator is called the bf-generator ("bf’
means 'big frog’).

It is recommended to use both the lf- and bf-generators while performing
distributed Monte Carlo simulations. Modifying the expression for lf-generator
we find that the initial values of the subsequences can be calculated as

Ujiim = Ujp(1—1)ymAm (mod 27), i=12,....M,1=1,2,...,

where u; are the initial values of the subsequences for the bf-generator.

4 Choice of Parameters for the Parallel Generator

As a source generator, we used one of the congruential generators tested in [IJ.
Its parameters are
r =128, A=5'"901 (;mod 2!28),

i.e., the corresponding period is
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L =226 ~ 1038,

Different values of the factor A are given in [I]. For the first billion numbers
(starting with ug = 1), standard statistical tests were successfully performed
in [I]. Analytical studies of the n-dimensional distributions were additionally
performed in [I] for the method of residues. It was shown in [5] that these distri-
butions are concentrated on sets of planes, i.e., on manifolds of lower dimension.
On the other hand, it was shown in [I] for the generator considered here that
these manifolds densely fill the corresponding n-dimensional hypercubes, but
this shortcoming can be disregarded. A FORTRAN code for the congruential
generator with above mentioned parameters is presented in [3].

We used the following value of the leap length in the bf-generator:

p =102 ~ 286,

This value is more than sufficient to have enough pseudorandom numbers for
computations on each processor. The suggested bf-generator makes it possible to
distribute the original sequence evenly between processors: 10%% pseudorandom
numbers for about 102 ~ 2% processors. Both the factor for the bf-generator and
a FORTRAN code for its computation are presented in [3]. The corresponding
initial values wo = 1, u, = A, uzy = Agyu, ... of the subsequences for the
bf-generator are also given in [3].

5 Statistical Test of Parallel Generator

We examined the constructed bf-generator by performing n-dimensional unifor-
mity tests (see [2] for a sample of 10'° numbers, which was obtained by joining
the first 10° numbers from the first ten subsequences. Each of them used no
more than 10° pseudorandom numbers. The resulting statistical estimates were
averaged as indicated in the Introduction. The multidimensional distributions
were checked for uniformity for n = 1,2,...,7 by using the criterion x2, with
partition along each axis into one hundred parts for n = 2 and 3 and into ten
parts for n = 4,...,7. We denote by k(n) the number of degrees of freedom of
the distribution x? corresponding to n. In this way, the number of classes (i.e.,
the number of elementary cubes), which equals k(n) + 1, was 10?" at n = 2 and
3 and 10™ for n = 4,...,7. The number of classes used for n = 1 was chosen to
maximize the efficiency of the criterion according to the formula (see [2])

k(1) + 1~ 4V2(R/da)?®,

where R is the sample size, and the constant d, = O(1) can be set equal to two
for practical purposes. In this case, R = 10'° and k(I) + 1 ~ 34800 according to
above mentioned formula. We denote by )Ei(n) the sampled value of the criterion:

1 k(n)+1
X'z(n) = T Z (Tz(n) - Tn)27

i=1
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where r, = R(n)/(k(n) + 1) is the theoretical frequency of finding a number
in a class, R(n) is the sample volume corresponding to n, and {rgn)} are the
sampled frequencies obtained. In analyzing the results of the statistical test of
the constructed bf-generator, we used the fact that the quantity

o = (Xi(ny — k(n))/v/2k(n)

corresponding to genuine random numbers is a standard normal random variable
to a high accuracy for the values of k(n) involved; i.e., it satisfies the relations

P(|7n] > 1) = 0,32, P(|fjn| > 2) = 0,05, P(|7},| > 3) ~ 0,003.

The numerical results obtained are shown in table. Thus, the values of k(n)
are irrelevant, and the test is passed.

Table 1. Results of statistical test of multidimensional uniformity for bf-generator

Parameters n=1n=2 n=3 n=4 n=>5 n==~6 n="7T
R(n) 10*° 5.10° ~ 3,3-10° 2,5-10% 2-10° ~ 1,67 - 10° ~ 1,43 - 10°
kE(n) 34799 9999 999999 9999 99999 999999 9999999

Tin 0,215 0,622 1,472  —0,76 0,913 —0,448 1,104

The least common multiple of the numbers n in the table is 420. Therefore,
it is expedient to set m = 420 - s for the lf-generator, where s is such a number
that m pseudorandom numbers are practically sufficient to construct a trial.

Let us point out that a comparison between numerical results obtained by
solving specific diffusion problems with the use of the generator suggested here
and those obtained with the use of the well known congruential generator with
r = 40 and r = 128 was presented in [6]. It was shown that these generators
are statistically equivalent for the problems considered. In addition, the com-
putations performed in that study for a problem with a known exact solution
have shown that the modified generator provides a statistical estimate that is
in satisfactory agreement with the exact solution. Essentially, this is one more
successful test of the modified generator suggested in this paper.

6 Review of System MONC

In conclusion, let us briefly describe the program system named MONC (MONC
corresponds to 'Monte Carlo’) for the large-scale distributed Monte Carlo simu-
lations [4]. This system is based on the use of above mentioned 128-bit generator
and bf-generator. It uses ordinary networked PCs to create powerful computa-
tional cluster.

MONC is more convenient to use than the existing competitors: it allows user
to perform distributed Monte Carlo simulations in easy way. For example, it
doesn’t require user to insert MPI calls into the computational program. This
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Fig. 1. Principle of MONC operation

make programming for MONC an easy operation. It means that the user have
the possibility to concentrate on his Monte Carlo algorithm, not thinking about
its parallel implementation.

MONC copies user’s program and all other necessary data (all this data is
called User’s project) to remote servers, starts the execution of the program,
follow the execution on servers, stops execution, copies results and averages
them. It is very easy to start the execution of the project once again after the
occasional fault such as electrical power fault, etc.

The idea of MONC corresponds to the philosophy of the use of GRID infras-
tructure. It makes MONC the desirable instrument for the specialists in Monte
carlo simulations.

The principle of MONC is given on the Fig. 1. Here files with results represent
the calculated values of ¢, (see Introduction).
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Abstract. The utilization of the computational Grid processor network has
become a common method for researchers and scientists without access to local
processor clusters to avail of the benefits of parallel processing for compute-
intensive applications. As a result, this demand requires effective and efficient
dynamic allocation of available resources. Although static scheduling and
allocation techniques have proved effective, the dynamic nature of the Grid
requires innovative techniques for reacting to change and maintaining stability
for users. The dynamic scheduling process requires quite powerful optimization
techniques, which can themselves lack the performance required in reaction
time for achieving an effective schedule solution. Often there is a trade-off
between solution quality and speed in achieving a solution. This paper presents
an extension of a technique used in optimization and scheduling which can
provide the means of achieving this balance and improves on similar
approaches currently published.

Keywords: Grid, Job Scheduling, Great Deluge, Simulated Annealing,
Network, Parallel Processing.

1 Introduction

A compute-intensive application can benefit in terms of completion time through
distribution to many processors, each of which completes an allocated task in a
parallel or pipelined fashion with respect to the overall goal of the computation.
Unfortunately distributed processor systems are not available to the majority of those
in need of greater computation power. Computational Grids are a relatively new
development in addressing this problem. They allow the sharing of geographically
distributed networked resources to create a dynamic and scalable cluster-based multi-
processor system. This requires the integration of a task scheduling system, to allocate
a set of tasks or applications for different users to available remote computing
resources and minimise the completion time [1,2,3]. Current scheduling systems are
limited by the time constraints required for remapping resources in a dynamic
environment such as the Grid. The most effective scheduling algorithms generally
require an impractical amount of time in which to produce a solution [4]. This paper
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introduces a new directed search algorithm based on the Great Deluge [5] which uses
a relatively simple set of neighbourhood search heuristics to produce good quality
schedules quickly.

2 The Scheduling Problem

As demand for the Grid increases over the next few years, effective scheduling
algorithms are required to address new concerns within the grid environment. The
computational resources available using the Grid are provided for researchers on a
“first come first served” basis. As such, resources can be limited, requiring very
efficient protocols for maximising the usage of available resources, in terms of load
balancing and maintaining a fair allocation of resources for all users. Additionally, the
network can be quite dynamic, with “nodes” added and removed continually,
increasing the unpredictability of the network. Any scheduling system controlling task
allocation must take this into account and be able to maintain efficiency as much as
possible.

2.1 Scheduling Algorithms

The scheduling of computational processes and sub-tasks to available resources in an
efficient manner is recognised as a hard problem that has been tackled for many years
by researchers in the areas of distributed processor parallelisation and Artificial
Intelligence [1]. Multi-processor systems and local “Cluster” networks have been the
target of this research for several decades. However, with the emergent demand being
placed on the resources of the Computation Grid, further considerations and
complications not previously faced by traditional load balancing and task allocation
methodologies must be addressed.

As the Grid expands and its use increases, the rather simple scheduling algorithms
currently used for scheduling work on compute resources become more and more
inadequate. A number of heuristic scheduling algorithms have been proposed in the
last number of years to address the increasing complexity of resource allocation for
computational networks [2]. List Scheduling heuristics utilises a set of priorities which
are assigned to available processors, taking into account relationships between tasks.
Each task is selected in order of its priority and scheduled to a processor based on the
minimisation of a predefined cost function. Clustering algorithms merge task clusters
onto a bounded number of processors and order the tasks within each processor. These
are mainly effective for homogenous clusters and do not lend themselves readily to
changes in resource availability or bandwidth conditions. Several solutions which
provide task scheduling for heterogeneous systems have been proposed [3]. Although
more applicable to the grid environment in terms of target resources, the consideration
and influence of dynamic resource characteristics is again limited.

More current research into guided search techniques has provided useful tools to
address the problem of dynamic remapping of resources using re-scheduling and
repair mechanisms. Neighbourhood search techniques use a single- or multi-objective
function to drive the scheduler towards an optimum schedule solution, including
objective goals such as minimisation of communication time and total task



Dynamic Job Scheduling on the Grid Environment 285

completion time while maximising throughput. The most popular of these are in the
area of Genetic Algorithms [4], using an evolutionary-based “selection of the fittest”
approach to obtaining an optimal scheduling solution from an evolving population of
possible solutions. One of the biggest drawbacks of this technique is the time required
to obtain an acceptable solution, as it must maintain a dynamic population of
candidate solutions throughout the search process. This problem is common to most
of the more complex search techniques.

A more practical approach is with the use of Simulated Annealing, an extension to
the simple Hill-climbing algorithm which uses a simple neighbourhood search to
improve an initial schedule solution. Simulated annealing [6] accepts worse solutions
(to avoid getting caught in local optima) with a probability: P = e ~*, where
AP=f(s*)-f(s) and the parameter T represents the temperature, analogous to the
temperature in the process of annealing. The temperature is reduced according to a
cooling rate which allows a wider exploration of the solution space at the beginning,
avoiding getting trapped in a local optimum. Applied to grid scheduling, this
technique has provided the balance between search time and measured results [7] [8].

2.2 Great Deluge Algorithm

The Great Deluge (also known as Degraded Ceiling) was introduced by Dueck [5] as
an alternative to Simulated Annealing. This uses a Boundary condition rather than a
probability measure with which to accept worse solutions. The Boundary is initially
set slightly higher than the initial solution cost, and reduced gradually through the
improvement process. New solutions are only accepted if they improve on the current
cost evaluation or are within the boundary value. This has been applied successfully
in other NP-hard solution space applications such as timetabling [9] and
Telecommunications [10], and has proved more effective in obtaining a better quality
solution within experimental time constraints. [11] describes a modification of the
Great Deluge algorithm for Multi-criteria decision making.

Given this, it is proposed to build on the prediction models already employed in [7]
to compare the results from an extended Great Deluge scheduler (described in the
next section) against Simulated Annealing. A simple Hill-climbing approach is
included to provide an idea of the scale of improvement in the new approach. The
application used within the experiment is a compute-intensive bin-packing algorithm
(SPAL) used in the optimisation of office and teaching space planning based on
pedagogic and resource constraints for an expanding or new-build educational
institution [12]. It was originally adapted for the GrADS (Grid Application
Development Software) [13] and has been analysed to build a predictive performance
model in which to estimate the computation time during experimentation. The
simulator will also use the Globus Metacomputing Directory Service (MDS) [14] with
the Network Weather Service (NWS) [15] to obtain resource availability information
and processor load, memory and communication for each machine.

2.3 Extended Great Deluge with Reheat

The standard Great Deluge algorithm has been extended to allow a reheat, similar to
that employed with simulated annealing in timetabling [16]. The aim of this approach
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is to both improve the speed at which an optimal solution can be found and at the
same time utilise the benefits of this technique in avoiding the trap of local optima. In
order to reduce the amount of time taken, relatively simple neighbourhood moves are
employed.

Generally, the Great Deluge or Simulated Annealing processes will terminate when
a lack of improvement has been observed for a specified amount of time, as the most
optimal solution will have been reached. Rather than terminating, the Extended GD
will employ the reheat to widen the boundary condition to allow worse moves to be
applied to the current solution. Cooling will continue and the boundary will be
reduced at a rate according to the remaining length of the run. The algorithm for the
Extended Great Deluge is presented in Figure 1.

The initial solution construction is handled with an Adaptive (Squeaky-Wheel)
ordering heuristic [17] technique. This utilises a weighted order list of the events to be
scheduled based on the individual penalties incurred during each iteration of
construction. The adaptive heuristic does not attempt to improve the solution itself,
but simply continues until a feasible solution is found.

Choose virtual machine size
Set the initial schedule s using a construction heuristic - random
selection from machines of chosen size;
Calculate initial cost function f(s) based on Performance Model
Set Initial Boundary Level B, = f(s)
Set initial decay Rate AB based on Cooling Parameter
While stopping criteria not met do
Apply neighbourhood Heuristic S* on S
Calculate f(s*)
If f(s*) <= f(s) or (f(s*) <= B Then
Accept s = s*
Lower Boundary B = B - AB
If no improvement in given time T Then
Reset Boundary Level B, = f(s)
Set new decay rate AB based on Secondary
Cooling Parameter

Fig. 1. Extended Great Deluge Algorithm

The first parameter used within the Extended Great Deluge is the initial decay rate,
which will dictate how fast the Boundary is reduced and ultimately the condition for
accepting worse moves is narrowed. The approach outlined in this paper uses a Decay
Rate proportional to 50% of the entire run. This will force the algorithm to attempt to
reach the optimal solution by, at the very most, half-way through the process.
Generally, a continuous lack of improvement will occur before this is reached, at
which time the re-heat mechanism is activated. The ‘wait’ parameter which dictates
when to activate the re-heat mechanism due to lack of improvement can be specified
in terms of percentage or number of total moves in the process. Through
experimentation with a number of data set instances a general value for this parameter
can be established. Figure 2 illustrates the process of initial decay, ‘wait’ time and
subsequent re-heat.

After reheat the Boundary ceiling is once again set to be greater than the current
best evaluation by a similar percentage to that applied in the initial boundary setting.
The subsequent decay is set to a ‘quicker’ rate than with the initial decay, in order to
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increase the speed of the exploration of neighbouring solutions for improvement. The
general setting chosen for the algorithm outlined is set to 25% of the remaining time,
with the improvement wait time remaining unchanged.

Extended Great Deluge vs Standard

------ Standard Boundary

1. Point at w hich non-improvement Initial Boundary

moves no longer allow ed .
9 Evaluation

08 Tl Reheat Boundary
> /.
= RN .
S o6 e
[ el Reheat and Further
o e Improvement

0.4

0.2

0 T T T
0 n/2 n
Evaluations

Fig. 2. Boundary behaviour of extended algorithm compared to Standard Great Deluge

The neighbourhood structures employed in the process are deliberately kept
simple, to avoid the scheduler repeatedly getting stuck in local optima.
Neighbourhood heuristics are deliberately kept simple to maximise performance of
the algorithm and include adding / removing selected resources and swapping the
order of tasks and resources.

3 Experimentation and Results

The SPAL application is intended to provide decision support and advice on projected
plans for expansion or reduction of estate, changes to activities (in this case an
educational institution) or cost / income requirements. The application will analyse all
existing and historical data and provide an exhaustive set of projections and
validations to justify and support major strategic change-decisions in the planning
process. Initial ‘quality’ criteria and targets are introduced to the application, which
then undertakes analysis of existing statistics, processes and models within the
institution. This forms the basis for a required projection model which is used to then
begin the process of creating valid projections for schedules, space and resource
requirements and curriculum activity. Figure 3 illustrates the process from initial
requirement specification to termination.

The process is detailed as follows:

Phase A — Analysis of existing data:

1. Estate planning requirements — analysis of existing plans, direct / indirect
costs

2. General Constraints and Utilisation Targets — analysis of historical
timetabling trends and schedule patterns
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Fig. 3. Processes involved in SPAL analyser

3. Staffing and resource requirements — plans, inventory, human resource
details and costs

4. Curriculum expansion — analysis of existing curriculum and enrolment

patterns

General FTE (Full-Time Equivalent) statistics, pro-rata income and costs

6. Research, Commercial and Administration activities, including resource
usage, costs and income

Phase B — Projection Model

e

7. Profiling of delivery and estate requirements based on expansion of student
numbers, extended curriculum, increased / reduced estate, cost projections or
projected cost reductions

Phase C — Projections and Validation of Assumptions

8. Creation and validation of scenarios based on initial requirements, including
timetable and allocation, estate projections and curriculum structures

Phase D — Decision Process

9. Multi-objective decision process based on overall set criteria, including full
comparison to set targets and trade-off with measures of quality between
dominant pareto-front solutions
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10. Feedback of decisions to projection model (step 7) - analysis repeats for
given process time

The quality measurement used for the final strategy model or feedback to further
iterations of the process is a multi-objective trade-off between a number of pareto
points. [18] provides further explanation of the multi-objective process and its
applications.

The experiments were run using the dynamic information obtained using MDS
and NWS and the Performance Model to estimate execution time and hence provide
a basis for driving the Great Deluge algorithm in optimising the schedule solution. A
set of 8 benchmark data instances and constraints were used in the SPAL application,
each of which have a differing level of complexity based on the amount of
constraints involved. A total of 10 iterations were used for each instance (listed in
order of difficulty), with average computation times presented in Figure 4. This is
compared against two similar runs — one with standard Hill Climbing, the other using
Simulated Annealing. In order to provide accurate comparison between techniques,
the same random seed was used for each method, therefore the solution quality
measurements did not differ between each. A standard cluster size of 10 virtual
machines was used.

2400

2200

2000

1800

1600

—e— Great Deluge
—=— Simulated Annealing
Hill-Climbing

1400

Computation Time (s)

1200

1000

Data Set

Fig. 4. Great Deluge vs Simulated Annealing and Hill Climbing

As can be seen, the Great Deluge generally performs better over Simulated
Annealing, although in several cases there is very little difference between each. The
most obvious occurrence of this is in Data Sets 2 and 8, where the ratio between
amount of constraints and the size of problem is almost 1:1 for both, which may
explain the lack of significant improvement. The experiments were also run using
different cluster sizes of virtual machine to determine the effects of a decrease or
increase in predicted communication load. In general, the Great Deluge algorithm
achieved better results than Simulated Annealing. With more, smaller sized resources
the difference between the two are greater for the smaller data sets (1 - 3), therefore
the Great Deluge is most effective when potential resource usage and communication
is higher.
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Figure 5a gives a breakdown of the first (least complex) data set, with runs over 2,
4, 8 and 16 processors. As can be seen, the amount of improvement over different
cluster sizes depends on the characteristics of the data set. The eighth data set used is
one which represents a much more complex set of requirements and data model. The
difference actually decreases as extra processors are introduced, as shown in Figure 5b.
The main reason for this stems from the fact that the smaller data sets are generally less
constrained by their nature, with a much larger potential search space. Therefore an
increased amount of potential solutions with which to compare in order to maintain our
pareto set of non-dominated solutions requires more inter-processor communication.
As cluster size increases, communication requirements also increase and potential
gains can be reduced accordingly.
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Fig. 5. Performance of Methods for differing cluster sizes

4 Conclusions and Future Work

In this paper, we set out to improve on current research into task scheduling for
distributed applications running on the Computational Grid. The work extends current
investigations into using directed searches to achieve a schedule of resource
allocation, optimising on computation and communication time. Measurements are
based on a predictive performance model of computation on the grid, but show that
the current approach improves on previous similar techniques in this area. Although
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Simulated Annealing is more effective than standard hill climbing algorithms in
escaping from local optima, the Great Deluge is more successful given the limited
time in which an effective scheduling solution must be achieved. Investigation will
continue to directly compare the results from the scheduling algorithm against other
reported benchmark results in the current literature. A full appraisal of the
performance model will also be performed to determine how close the simulated
results are to real distributed applications on the Grid. There are also many parameters
used within the Great Deluge algorithm, such as cooling / reheat frequency. Full
analysis of the limits of these parameters and how they affect solution quality will be
carried out.
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Abstract. T-system is a tool for parallel computing developed at the
PSI RAS. The most recent implementation is available on both Linux
and Windows platforms. The paper is dedicated to one of important
T-system aspects — ability to change parallelism granule size at run-
time. The technique is available, primarily, for recursive programs, but
it’s possible to extent it to non-recursive ones as well. In the latter case,
we employ C++ template “traits” for program transformation. The tech-
nique is shown to reduce overhead incurred by runtime support library
dramatically.

Keywords: T-system, OpenTS, parallel programming, C++, computa-
tional clusters, parallel computing.

1 Introduction

The building of snow castle is a favorite winter-time game of Russian children.
One has to use large snowballs to build one (or two, or three) walls and, may be,
a tower. Then the castle is ready to protect it’s builders from others in snowball
game. If weather is appropriate (just below zero Celsius plus a major snowfall),
snow castles mushroom along recreation areas in residential city blocks. One,
who ever seen a snow castle know, that it’s constructed of large snowballs, not
small ones, the size is to be like ones to build a snowman, or even larger. It’s
just too boring to build snow castle out of small snowballs, while small ones can
be used to fill gaps between major ones, level walls and correct imperfectness.
And it’s not possible to build a snow castle treating snowflakes individually.

As well, the proper choice of granule size is very important for the parallel
computation to be effective. If the granules are too large, there may be not
enough granules to load all available CPUs. With large granules the cost of
scheduling error is larger too: cohesion, caused by assigning tasks to wrong CPU,
will last longer. At the same time, if granules are too small, the overhead incurred
by runtime system may be too large. In this paper we describe the granule size
control techniques, applicable for the context of the T-system approach. In T-
system, a potential granule is called “T-Function” and is, actually, a C-functions

V. Malyshkin (Ed.): PaCT 2007, LNCS 4671, pp. 293 2007.
© Springer-Verlag Berlin Heidelberg 2007
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that can be computed in parallel. That creates a possible conflict of goals: the
“functions” in C/C++ program are to structure source code and make program
easier to read, while in T-system they serve as granules of parallelism, which size
should be large enough to pay back runtime system overhead. So, the dynamic
granules size — aggregation of multiple function calls in single granule — may
be very important to improve ease of parallel programming with the T-system.

2 Related Work

The ability to dynamically adjust size and number of parallelism granules can
be enabled by either well-defined program structure or rigorous approach, based
on functional programming and graph reduction. The Open MP [I] may be con-
sidered as the most widely used implementation of the first approach: number
of threads created is in particular section is defined equal to number of CPUs
available. However, Open MP is mostly applied to loop parallelization, when
loop iterations have approximately equal CPU instructions. In more sophis-
ticated cases, graph partitioning is widely used in high-performance scientific
calculations involving meshes [2].

Much more general approaches exist in the realm of parallel functional pro-
gramming. “Task inlining” [3], “lazy task creation” [4] and “leapfrogging” [5] has
been devised almost two decades ago for Mul-T [3] and Multilisp[6]. In princi-
ple, all these techniques are applicable in context of any futures-based system,
like it has been recently shown for Java-based system in [7]. A lot of work has
been done on granularity control in Glasgow Parallel Haskell both in terms of
CPU and memory resources [8/9]. However, the application of these approaches
in high-performance computing requires very tight limits on overhead, added
by the mechanism. For the parallel programming environment to be useful, it
should not only provide good speedup when running parallel programs, but allow
low-level optimization as well. It’s well known, that good optimizing compiler
may improve speed of application by 100-300% and this requires only applying
some optimization switches during compilation. For the majority of platforms,
good optimizing compilers are available for C/C++ and Fortran, but not other
programming languages. It may also important to allow compiler apply loop
optimization techniques, like loop unrolling, vectorization, skewing etc [10], to
load CPU pipelines and multiple execution units. The T-system design addresses
these issues: we use C++ as a basic language, and allow low-level optimization in
parallelism granules, at the same time, C++4 inlining, in principle, should allow
compiler to optimize loops including “aggregated” granules (see below).

In this paper we focus on implementation of granules aggregation in the con-
text of T-system [I1]. T-system provides programming model, which extends
C++ language to express parallelism, and runtime support library to enable
program execution on multi-cores, SMPs, computational clusters. The T-system
enables writing much more compact programs model than traditional Message-
passing interface (MPI) libraries. There are many C++ extensions available,
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designed to provide high-level programming tools [I2]. It’s interesting to note,
that even original C++4 design goals was to support parallelism, but it has been
decided later to rely on libraries with that aspect [I3]. Rather novel approach
relies upon C++ templates to “extend” C++ language for parallelism [T4/T5JT6].
Due to size limitations of this manuscript, we would like to refrain from com-
prehensive overview of C++ language extensions. However, we must notice dis-
tinctive features of T-system approach:

— “Functional-based” approach to parallelisation (see below)

Mutliple assigment support for global variables (in T++ language, see below)
— Custom ligtweight thread library (in Open TS)

Distributed garbage collector

The ability to aggregate granules, specified by a programmer is a distinctive
feature as well. Combined with the availability on both Windows and Linux
Platform makes T-system convenient tool to a wide community of potential
users.

3 OpenTS: T-System Implementation

Open TS is the most recent full-scale implementation of T-system approach
[11]. OpenTS provides a T++ — a language for parallel programming, which is
a seamless extension of C++ language with only 7 keywords:

— tfun — a function attribute which should be placed just before the function
declaration. A function with the “tfun” attribute is named “T-function”,
and runtime support system can compute such functions is parallel — in
separate threads of execution.

— tval — a variable type attribute which enables variables to contain a non-
ready value. The variable can be cast to the “original” C++-type variable,
which makes the thread of execution suspend until the value becomes ready.

— tptr — a T++ analogue of C++ pointers which can hold references to a
non-ready value.

— tout — a function parameter attribute used to specify parameters whose
values are produced by the function. This is a T++ analog of the “by-
reference” parameter passing in C++.

— tdrop — a T++ -specific macro which makes a variable value ready. It may
be very helpful in optimization when it’s necessary to make non-ready values
ready before the producer function finishes.

— tct — an explicit T-context specification. This keyword is used for specifi-
cation of additional attributes of T-entities.

Generally, Open C++ [I7] reflection is used for conversion of the T++ pro-
grams to C++ with calls to Open TS runtime support library. The simplest
sample program — Fibonacci numbers calculation is presented below.
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tfun int fib(int n)

{
if (n<2) return 1;
return (fib(n-1)+fib(n-2));
}
tfun int main (int argc, char *argv[])
{
int n = atoi(argv[1]);
printf ("Fibonacci %d is %d\n",n, (int)fib(n));
return O;
}

Casting (int)fib(n) is necessary to make main thread to wait for other threads
to complete. Open TS runtime support library relies on MPI for communica-
tion in cluster environment, while addtional options are available (PVM, and
TCP/IP when MPI is not applicable). Open TS features custom lightweight
thread library, which is capable to make up to millions of context switches on
a modest CPU. Another important Open TS capability is automatic garbage
collection of non-ready values. By the end of 2006, the Windows port has been
finished. The “cross-platform” version is available for download at URL http://
WWW.opents.net.

4 Granule Aggregation in Recursive Programs

Sometimes, even bantamweight threads are too heavy: the program may be most
naturally expressed in terms of functions which take only few CPU instructions
to compute. The Fibonacci example above is program of that kind: most of
CPU time is spent on thread and non-ready values management by the runtime
system, not on summation of integers. One may require programmer to coarsen
parallelism grains supplied to system — the simplest solution. Consider the
following modification of original Fibonacci code:

int cfib (int n) {
returnn < 2 ? n : cfib(n-1) + cfib(n-2);

}

tfun int fib (unsigned n)
{
if (n < 32) {
return cfib(n);
} else {
return fib(n-1) + fib(n-2);
}
}

tfun int main (int argc, char* argvl[])


http://www.opents.net
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int n;

if (argec < 2) {

fprintf (stderr,"Usage: %s <number>\n", argv[0]);
return -1;

}

n = atoi(argv[1]);

printf ("fib(%d) = %d\n", n, (int)fib(n));

return O;

The whole source is obscured a bit, moreover, the summation is replicated
in two pieces of program — making in harder to support. The alternative for
OpenTS is an implementation of technique, similar to “inline” of MultiLisp [6].
In that case, when a user program is calling a T-function “fib”, runtime system
may decide don’t create any new T-threads, but, instead, evaluate a function,
calling it’s as ordinary C-function. That reduces parallelism: the runtime system
will not be able to make some threads run in parallel. At the same time, it
removes much overhead from runtime execution, since there is no need to create
extra task object, schedule it and so forth. The benefit in terms of execution
time reduction on one CPU is observable for Fibonacci:

Table 1. Exectuion times for calculating 41-st Fibonacci number

Program Number of threads Execution time
Fib(41) 535828592 7108.952 sec
Fib(41)-aggregate 8192 5.603 sec
Fib-cilk-5.4.3 n/a 19.7 sec

Here and below, measurements hes been done on dual Athlon MP 1800+ sys-
tem with 1Gbyte of RAM, only one CPU was used. Program has been built
with GNU C++ compiler version 3.2.2 and -O3 optimization flag. Here we ap-
plied a simple heuristic: calls, with recursion level deeper than the threshold
(namely, 17), are implemented as C-call, not thread-creating calls. For compar-
ison, we present also running time for calculation of the 41-st Fibonacci num-
ber with Cilk version 5.4.3, which is approximately 19 seconds. The Cilk [20]
is a multi-threading programming environment for symmetric multi-processors
(SMPs) and multi-core processors, which won HPC Challenge class 2 (most pro-
ductivity) [2I] award on Supercomputing conference [22] in the year 2006.

The recurtion depth heuristic can be applied for a more sophisticated program:
calculating the 7 number with the numerical integration method (it’s concept
similar to sum-tree test of [4]):

#include <math.h>
#include <stdio.h>
#include <stdlib.h>
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tfun double isum(double begin,
double finish,
double d) {
double dl1 = finish - begin;
double mid = (begin + finish) / 2;
if (fabs(dl) > d)
return isum(begin, mid, d) +
isum(mid, finish, d);
return (double)f(mid) * dl;
}
tfun double f(double x) {
return 4/ (1+x*x);
}
tfun int main(int argc, char* argv[ ]) {
unsigned long h;
double a, b, d, sum;

if (argc < 2) {return 0;}

a=0; b=1; h = atol(argv[i]);

d fabs(b - a) / h;

sum = isum(a, b, d);

printf ("PI is approximately %15.151f\n", sum);
return O;

3

One may notice, that only minor changes were necessary to make this program to
run in parallel with the Open TS. Without granules aggregation, the overhead,
introduced by the T-system would be very large, comparing it with few CPU
instructions, which are necessary to calculate the “isum” function. To make this
program efficient in that case, it would be necessary to create a loop inside the
“isum” function, calculating the “f” multiple times. The T-system runtime with
support of recursive granule aggregation is much more forgiving: it even allows
placing “tfun” keyword for “f” function which is not practical to calculate in
parallel on either cluster or SMP system. Consider the run time measurements:
Only subtle differences are observable, one the scale of hundredth of second.

Table 2. Exectuion times for calculating 7, 100000000 points

Program Number of threads  Execution time
Pi — no aggregation 402653184 5589.667
Pi (tfun f) 8192 11.670 sec
Pi (no tfun) 8192 11.543 sec
Pi — C version 1 8.774 sec

C version is produced, removing all T+4 keywords from the source code by
preprocessor, which result in sequential program.
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5 Granules Aggregation in “Map” Parallel Programming
Template

The “Map” high-level function is widely known concept in functional program-
ming [I9]. The “Map” takes two arguments: input set and function, which has
to be applied to each element of the input set, producing the output set. Since
the operation on elements of the input set are independent from each over, par-
allelization of “Map” is straightforward. In C++, the high-level function can be
implemented with the help of template functions. In C++ Standard Template
Library(STL) it’s a “transform” template, taking input, output iterators and
function. In many cases, “Map” may be substitute for “for” loops. It is also may
be beneficial to use “Map” instead of loop, since loop parallelization in plain
T++ requires at least two loops instead of one: C++ code:

int do_something(int);

int res[NMAX]
for (int i=0;i<NMAX;++i)
res[i]=do_something(x[i]);

The equivalent T++ code looks like: T++ code:

tfun int do_something(int x);

tval int tres[i];

for (int i=0;i<NMAX;++1i)
tres[i]=do_something(x[i]);

for (int i=0;i<NMAX;++i)
res[i]=tres[i]

We have implemented the “Map” template with the C++ language and T-Sim
C++ template library. It is based on ”futures” [6] approach to parallelization,
thus it’s compatible with OpenTS in many aspects. Details of this library will
be presented elsewhere. For the sake of implementation simplicity, user should
supply the “functoid” [I8] object to the template. The “Map” based code for an
example above may look like the following:

int do_something(int);

Functoid<do_something> f;
MapD (x,x+NMAX,res,f);

The condition of speedup on parallel machine for this program is that the func-
tion do_something must constitute large enough chunk of work. But, in general
case, it may not be sufficient to pay back amount of time, spent by runtime
support library on handling the task and data transmission. That general case
may be the simplest for the programmer to implement. However, our “Map”
template is capable aggregating individual operations, producing larger grains
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and reducing the runtime overhead. Currently, programmer should supply an
extra parameter to the template, “trait” for granule aggregation. Consider the
following fragment for aggregation by the compile-time specified number:

MapA<FixedAggregation<100> >(x,x+NMAX,res,f);

The “Map” template produces granules by splitting large “transform” into lesser
ones, which constitutes library-supplied grains of parallelism. It should be noted,
that, since aggregation is done at compile time, individual do_something calls
may be inlined by compiler inside the granule loop. This enables all toolset of
optimizations, that are available for loops in modern C++ compilers.

6 Future Work

It’s clear, that for the T-system, runtime overhead may be incurred not only
from the task and thread management, but from the variable mechanism as
well. Consider the following naive program to calculate N-th prime number:

// n -- desired prime number
// j -- current number
// i -- number of primes found <=j

tfun long nprimes (int n, long j, tval long i) {
tval long tmp;
tval long ni;
tmp = nprimes (n,++j,ni); // start the

bool is = is_prime(++j); //verify, if the number is prime

if (n==1i) return j; // Runtime environment should cancel
// subsequent "nprimes" calls started,

else {
if (is) {
ni = ++i; // increment the number of primes found
return tmp; // return the result of subsequent calls
}
else {
ni = i; // no change, connect non-ready
return tmp;
}
}

3

For this program to be executed effectively in parallel, runtime system should
provide “lazy” task evaluation strategy, as well as an ability to cancel tasks,
which result are not necessary. The first is existing, and the latter is a prospective
feature of OpenTS. In principle, the overhead of thread management may be
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kept low with the help of “inlining” technique [3]. However, management of non-
ready variables ni and tmp may claim more CPU cycles than useful is_prime,
especially, in OpenTS, where grabage collector is present. One of future work
directions may be investigation of dynamic specialization mechanism for non-
ready variables.

7 Conclusion

Implemntation of granules aggregation technique improves a lot ease of use for
parallel programming tool. “The program mer takes on the burden of identifying
what can be computed safely in parallel, leaving the decision of exactly how the
division will take place to the run-time system.” [3] The runtime support library
may vary the “weight” of tasks in wide limits, so it capable to adapt program
to wide variety of parallel computers that exist today: multi-core, SMPs, com-
putational clusters with different kind of interconnects. At the same time, pro-
grammer may write very simple code, separating the computation code from the
code, managing computational process (scheduling, aggregation and so forth).
However, development of adaptive mechanisms, capable to measure individual
granule weight and aggregate them accordingly, is a subject of future work, as
well as attempt to provide lightweight non-ready variables.
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Abstract. Traditionally, checkpointing techniques have been used to
secure the execution of sequential and parallel programs. This article
shows that checkpointing techniques can also be used to automatically
generate a parallel program from a sequential program, this program
being executed on any kind of distributed parallel system. The article
also presents how this new technique have been included inside the usual
compilation chain to provide a distributed implementation of OpenMP.
Finally, some performance measurements are discussed.

1 Introduction

Radical changes in the way of taking up parallel computing has operated during
the past years, with the introduction of cluster computing [I], grid computing [2],
peer-to-peer computing [3]... However, if platforms have evolved, development
tools remain the same. For example, HPF [], PVM [5], MPI [6] and more re-
cently OpenMP [7] have been the main tools to specify parallel code in programs
(especially when supercomputers were the main issue for parallel computing),
and they are still used in programs for cluster and grid architectures.

Many works [89] have been done in order to automatically extract parallel
opportunities from sequential programs in order to avoid developers from hav-
ing to deal with a specific parallel library, but most methods have difficulties to
identify these parallel opportunities outside nested loops. Recent research in this
field [TOUTT], based on pattern-maching techniques, allows to substitute part of a
sequential program by an equivalent parallel subprogram. However, this promis-
ing technique must be associated an as-large-as-possible database of sequential
algorithm models and the parallel implementation for any target architectures
for each of them.

At the same time, the number of problems that can be solved using parallel
machines is getting larger everyday, and applications which require weeks (or
months, or even more...) calculation time are more and more common. Thus,
checkpointing techniques [I2I13T4] have been developed to generate snapshots of
applications in order to be able to resume the execution from these snapshots in
case of problem instead of restarting the execution from the beginning. Solutions
have been developed to resume the execution from a checkpoint on the same
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node or on another node, or to migrate a program in execution from one node
to another, this program being composed of a single process or a set of processes
executing in parallel.

This article adresses a different problem. Instead of securing a parallel ap-
plication using checkpointing techniques, checkpointing techniques are used to
introduce parallel computing inside sequential programs, i.e. to allow the par-
allel execution of parts of a program for which it is known these parts can be
executed concurrently. This technique is called CAPE which stands for Check-
pointing Aided Parallel Execution. It is important to note that CAPE does not
detect if parts of a program can be executed in parallel. We consider it is the job
of the developer (or another piece of software) to indicate what can be executed
in parallel. CAPE consists in transforming an original sequential program into
a parallel program to be executed on a distributed parallel system. As OpenMP
already provides a set of compilation directives to specify parallel opportunities,
we decided to use the same in order to avoid users from learning yet another
API. As a result, our method provides a distributed implementation of OpenMP
in a very simple manner.

The article is organized as follows. First, we present CAPE, our method to
make a parallel program from a sequential program. Then, we show that the
result of the execution of the generated parallel program is equivalent to the
execution of the original sequential program. The next section presents how we
have developed a distributed implementation of OpenMP on top of CAPE. Sec-
tion [ provides performance results we have measured on one of our clusters and
the last section draws a comparison between CAPE and other existing solutions.

2 CAPE

CAPE, which stands for Checkpointing Aided Parallel Execution, consists in
modifying a sequential program (for which parts are recognized as being ex-
ecutable in parallel) so that instead of executing each part the one after the
other one on a single node, parts are automatically spread over a set of nodes
to be executed in parallel. Lots of work have been done to distribute processes
over a set of nodes. Thus, in the following, we consider that another application
(like Globus [I5/16], Condor [I7/I8] or XtremWeb [19/20]) is available to start
processes on remote nodes and return the result of the remote execution on the
original node. Conveniently, this application is called the “dispatcher”.

The behaviour of the dispatcher is as follows. The set of available nodes is
managed so that each time a process has to be restarted on a remote node,
the next node in the set is removed and associated to the process; when the
process finishes, results are made available and the node returns to the set of
available nodes, ready to run another process. Also note that in the following,
it is considered that intermediate files (like images or delta files) are stored on
a shared filesystem that can be created with NFS typically. Considering that
filesystems are independent is not a key issue as it just requires to copy some
files from one location to another.
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The main purpose of CAPE consists in managing process images. In the fol-
lowing, the image of a process is the set of information that needs to be saved
in order to be able to restart the execution of the process at the location in the
program where the snapshot was taken without any loss of information. CAPE
is based on a set of six primitives:

— create ( filename ) stores in file filename the image of the current pro-
cess. There are two ways to return from this function: the first one is after
the creation of file filename in the calling process; the second one is after
resuming the execution from the image stored in file filename. This func-
tion is very similar to the fork system call. The calling process is similar to
the parent process with fork and the process resuming the execution from
the image is similar to the child process with fork. However, create allows
to resume the execution from the image more than once; there is no such
equivalence with the fork system call. The value returned by this function
has a similar meaning as those of the fork system call. In case of error, the
function returns -1. In case of success, the returned value is 0 if the current
execution is the result of resuming its execution from the image and a strictly
positive value in the other case. Unlike the fork system call, this value is
not the PID of the process resuming the execution from the image stored in
the file and has no specific meaning.

— diff ( first, second, delta ) stores in file delta the list of modifica-
tions to perform on file first in order to obtain file second.

— merge ( base, delta ) applies on file base the list of modifications from
file delta.

— restart ( filename ) resumes the execution of the process which image
was previously stored in file filename. Note that, in case of success, this
function does not return as the image of the target process has been changed.
The way processes are restarted from images depends upon the checkpointer.
For example, ckpt version 1.3 [I2] requires an extra executable file (called
restart) to load the content of the snapshot before resuming the execution.
With ckpt version 1.4, the snapshot generated by ckpt is an executable file
and can be restarted direclty.

— copy ( source, target ) copies the content of file source to file target.

— wait for ( filename ) waits for any merges required to update file file-
name to complete.

The description of the primitives highlights that the size of images is one
of the key issues for an efficient implementation with CAPE: the smaller, the
better. There is no real limitation on the size of images; the absolute limitation
is the size of the virtual address space like any other processes.

Let P, and P, be two parts of a sequential program that can be executed
concurrently. Fig. [I] presents the typical code one should write using OpenMP
and Fig. 2] presents the code to substitute to run P; and P» in parallel with
CAPE. Error cases (especially when saving the current process image) are not
represented.
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# pragma omp parallel sections

{
# pragma omp section
P
# pragma omp section
P

}

Fig. 1. Example of OpenMP code for parallel sections

parent = create ( original )
if ( parent )
copy ( original, target )
ask the dispatcher to restart ( original )
on a distant node
P,
parent = create ( after; )
if ( parent )
diff ( original, afteri, delta; )
merge ( target, delta; )
wait for ( target )
restart ( target )
else
P
parent = create ( afters )
if ( parent )
diff ( original, afters, deltas )
merge ( target, deltas )

Fig. 2. General template for CAPE

The first step consists in creating an “original” image used to resume the
execution on a distant node, calculate the delta for each part executed in parallel
and build the “target” image to resume the sequential execution at the end.

The second step consists in executing parts and generating deltas. Thus, the
local node asks the dispatcher to resume the execution of the “original” image on
a distant node. Parts are executed, two “after” images are generated to produce
two “delta” files; then, these “delta” files are merged to the “target” image;
all these operations are executed concurrently. The main difficulty here is to
make sure that both the current frame in the execution stack and the set of
processor registers are consistent. However, this can be easily achieved using a
good checkpointer.

The last step consists in making sure all “delta” files have been included in the
“target” image and then restarting the “target” image in the original process.
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3 Proof of Concept

In order to prove that our solution is correct, one must show that when executing
P, and P», modified or not by CAPE, the result is the same. That is, the set of
updated variables (and the associated values) from the original program is the
same for both executions. Two assumptions have to be made.

The first assumption is that the implementation of functions related to image
management do not involve onboard effects on the running program. In fact,
functions dedicated to image management shall be understood as a transparent
set of services provided to the application, and executing a program with or
without CAPE must provide the same result. This assumption is not irrealistic
as some checkpointers can be dynamicly linked to a program and creating an
image or resuming the execution from an image can be performed from outside
the program, thus having the program unchanged.

The second assumption is that P, and P, satisfy Bernstein’s conditions. Let I;
be the set of variables read when executing part P; and O; be the set of variables
written when executing part P;. Note that in this context, a “variable” shall be
understood in the most general way, i.e. as a “memory location”. According to
Bernstein’s conditions, both P, and P» can be executed concurrently if and only
if the following condition is satisfied: Iy N Oy = O1 NI = O; N Oz = (). This
assumption means that no variable must be shared by the different parts except
for reading only. In this case, “delta” files generated by CAPE refers to different
memory location. When the “target” image is being built, there is no conflict
between “delta” files and the result is the same as when the program is executed
sequentially. This limitation is acceptable for many applications. However, others
are requesting the use of shared variables. Fortunately, taking them into account
is not a key issue as several solutions have been developed already. For example,
each shared variable can be encapsulated using a mutual exclusion mechanism;
this way, a single value for the shared variable is seen and updated by all threads,
and optimizations like the use of caches can allow to get better performance. For
the reconstruction of the “target” image, shared variables should be dealt with
differently in order not to take their value from “delta” files but from the mutual
exclusion area.

4 Distributed Implementation of OpenMP Using CAPE

In order to validate the concepts associated with CAPE, we are developing a
distributed implementation of OpenMP. The current implementation is based
on top of ckpt version 1.3 [12]. It has been necessary to slightly patch the
original version of ckpt so as to be able to make the difference between the
execution following the storage of the image of the current process in a file and
the execution which is the result of resuming the execution from an image. No
other checkpointer has been tried yet. However, we believe it shall be easy to
implement this solution on top of any checkpointer as long as functions presented
in Sec. [2 are implemented.
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dompcc (the Distributed OpenMP compiler we developed) is built on top of
gcc version 3.2.2. It consists in adding an extra stage in the usual compilation
chain for C programs. As shown on Fig.[3l the extra compilation stage (sc, which
stands for Specific Compiler) has been added after the C preprocessor (cpp) and
before the stage of compilation itself (cc).

Usual compilation chain

dompcc
extra stage|

Fig. 3. The compilation chain for dompcc

Including the extra compilation stage at this location in the compilation chain
allows to take benefits of the result of the C preprocessor (file inclusions, macros,
conditionals) and thus to work on a complete C program free of lines beginning
with a pound sign (except lines beginning by # pragma omp used to identify
OpenMP directives). After transforming the original program using sc, the gen-
erated .c file is processed by the C preprocessor again in order to return in
the usual compilation chain at the stage where the usual compilation chain was
rerouted.

It is important to note that, as dompcc is based on gcc, options of gcc are
available for dompcc. For example, if this implementation has to be included in
a larger application, it is possible to use dompcc instead of gcc for compilation.
This way, paths to header files and libraries are set correctly and others if any
for larger applications can be added conveniently. Once compiled, the executable
file is autonomous and can be run directly.

At present, not all OpenMP constructs have been implemented and only the
parallel sections and parallel for constructs are available. The decision
to focus on these two constructs first is based on the fact that they represent the
main cases for parallel applications. However, considering there is no technology
lock for the implementation of the other constructs, we expect to be able to
provide them very soon.
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5 Performances

The performance have been measured on a platform composed of a set of eight
Pentium-III running at 800 MHz with 1.2 GB of memory on each node and
operated by Linux RedHat version 3.2.2-5 (using Linux kernel 2.4.20-8). The
interconnexion network on this platform is Ethernet 100 Mbit/s or Myrinet 2000.
However, as our implementation is intended to run on any distributed parallel
system, we used only the Ethernet network so as to be as generic as possible.
In order to measure performance of OpenMP over CAPE, we used a matrix-
matrix product. The size of matrices is given as the number of elements (“Me”
for millions of elements) for each matrix (i.e. 840x840, 1680x 1680, 2520x 2520
and 3360x3360 respectively). Matrices are dense and each value in the result
matrix is the sum of the scalar products of the corresponding lines and rows.
Note that one optimization have been implemented for both CAPE and MPI
matrix-matrix product: the grain of parallelism is not a single column but a set
of columns (ie. the total number of columns divided by the number of processes).

8 5000 -
11.3Me —— OpenMP over CAPE - 11.3 Me ——
71 63Me e ] MPI - 113 Me
2.8 Me = 4000 OpenMP over CAPE — 6.3 Me
6 0.7Me = 1 MPI - 6.3 Me =
g 5 3000
3 = 2000
2
1000 ~
! & ) b *
0 0 ‘ ; 2
1 2 3 4 5 6 7 8 2 3 4 5 6 7 8
number of nodes number of nodes
(a) Speedup for our implementation (b) Comparison OpenMP/CAPE - MPI

Fig. 4. Performance evaluation

Fig. presents the speedup for various matrix size. Performance measure-
ments show that the larger the size of the matrix, the higher the speedup. In
fact, as the complexity of the matrix-matrix product is O(n?), the larger the
matrices, the less important both the network latency to transfer images (which
complexity is O(n?)) and the time to determine the set of updated variables
(which complexity is also O(n?)). As a result, performance measurements show
that, with the current implementation, this technique is well-adapted to coarse-
grain parallel loops. Moreover, performance show that the larger the size of the
grain of parallelism, the better the speed up.

The comparison with an equivalent MPI program is interesting. Fig. |4(b)|
presents execution times for matrix-matrix products with both CAPE and MPI.
The MPI program was written for the experiment and satisfies the same re-
quirements as for CAPE (for the complexity essentially). Performance measure-
ments have been done on the same platform with similar experimental conditions
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(especially average load for CPUs). MPI is mpich version 1.2.5.10 with driver
ch p4. Fig. shows that, even if the execution time with MPI is always faster
than the execution time with CAPE, the difference between the execution of
the MPI program and the program automatically generated by CAPE from the
sequential version is not very large. Moreover, both OpenMP over CAPE and
MPI implementations are providing a linear speed up.

In fact, at present, the main part of the overhead when using CAPE is in the
image management. According to Fig. Bl every time an image is generated, it is
written on the disk; then, “after” images are compared to the “original” image
and the difference is also stored on the disk. A significant improvement could be
achieved while using an incremental checkpointer that would directly generates
“delta” files instead of “after” images, avoiding at the same time the cost to
evaluate the difference with the “original” image.

6 Related Works

Other works have presented solutions to provide a distributed implementation of
OpenMP [21]. Considering that OpenMP has been designed for shared-memory
parallel architectures, the first solution consisted in executing OpenMP pro-
grams on top of a distributed shared memory based machine [22]. More recently,
other solutions have emerged, all aiming at transforming OpenMP code to other
parallel libraries, like Global Arrays [23] or MPI [24].

The execution of OpenMP programs on top of a distributed shared memory is
quite straightforward as no specific development is required except making sure
the distributed shared memory behaves the same way as a real shared memory.
Unfortunately, at present, distributed shared memory systems have scalability
issues and several projects (like XtremOS [25]) are aiming at providing large-
scale distributed shared memory or single-system images.

Implementing OpenMP directives on top of a pre-existing message-passing
library involves lots of problems regarding the management of variables. For
example, the determination of the list of variables updated by a thread may
be very complex. This is obvious when variables are specified using either the
private or the shared directive, but it becomes harder when no directive is
provided or when a variable is accessed through indirections (eg. through a
pointer).

The implementation with CAPE allows OpenMP programs to be better scal-
able as traffic and connectivity between nodes is limited. Moreover, there is no
limitations on the detection of memory areas that have been updated as they
are automatically taken into account.

7 Conclusion

This article presented how to transform a sequential program into a parallel
program using checkpointing techniques. We showed that CAPE is consistent,
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i.e. executing a program tranformed using CAPE and executing the same pro-
gram sequentially provides the same result. Moreover, CAPE provides three
main advantages. First, there is no need to learn yet another parallel program-
ming environment or methodology as the specification of parallel opportunities
in sequential programs is performed using OpenMP directives. Second, CAPE
inherently introduces safety in the execution of programs as tools for checkpoint-
ing are used to run concurrent parts of programs in parallel. Third, more than
one node is used only when necessary, i.e. when a part of the program requires
only one node to execute (for example if this part is intrinsincly sequential), only
one node is used for execution. As performance measurements show, the only
drawback of the current implementation is that the checkpointer we used for
experiments generates very large images. We are investigating to significantly
reduce the overhead involved by the management of these images.

Then, we presented the distributed implementation of OpenMP we have de-
veloped using CAPE. Performance measurements show that it is interesting to
execute coarse-grain parallel applications and that the larger the size of the
grain, the higher the speed up. Performance measurements also showed that the
execution time for large matrices with our implementation is quite similar to the
execution time when using MPI. Investigations show that the difference between
both execution times is mainly due to the overhead involved by the manage-
ment of images and we proposed a solution to investigate in order to bypass the
problem.

References

1. Buyya, R.: High Performance Cluster Computing: Architectures and Systems,
vol. 1. Prentice-Hall, Englewood Cliffs (1999)

2. Foster, 1., Kesselman, C., Tuecke, S.: The Anatomy of the Grid: Enabling Scalable
Virtual Organizations. The International Journal of High Performance Computing
Applications 15(3), 200-222 (2001)

3. Leuf, B.: Peer to Peer. In: Collaboration and Sharing over the Internet, Addison-
Wesley, London (2002)

4. Loveman, D.B.: High Performance Fortran. IEEE Parallel & Distributed Technol-
ogy: Systems & Applications 1(1), 25-42 (1993)

5. Geist, A., Beguelin, A., Dongarra, J., Jiang, W., Manchek, R., Sunderam, V.S.:
Parallel Virtual Machine: A Users’ Guide and Tutorial for Network Parallel Com-
puting (Scientific and Engineering Computation). Scientific and Engineering Com-
putation Series. MIT Press, Cambridge (1994)

6. Snir, M., Otto, S., Huss-Lederman, S., Walker, D., Dongarra, J.: MPI: The Com-
plete Reference (The MPI Core), 2nd edn. Scientific and Engineering Computation
Series. MIT Press, Cambridge (1998)

7. OpenMP Architecture Review Board: OpenMP Application Program Interface,
Version 2.5 Public Draft (November 2004)

8. Allen, J.R., Callahan, D., Kennedy, K.: Automatic Decomposition of Scientific Pro-
grams for Parallel Execution. In: Proceedings of the 14th ACM SIGACT-SIGPLAN
symposium on Principles of programming languages, Munich, West Germany, pp.
63-76. ACM Press, New York (1987)



312

9.

10.

11.

12.
13.

14.

15.

16.
17.

18.
19.

20.
21.

22.

23.

24.

25.

E. Renault

Feautrier, P.: Automatic parallelization in the polytope model. In: The Data Par-
allel Programming Model: Foundations, HPF Realization, and Scientific Applica-
tions. In: Perrin, G.-R., Darte, A. (eds.) The Data Parallel Programming Model.
LNCS, vol. 1132, pp. 79-103. Springer, Heidelberg (1996)

Barthou, D., Feautrier, P., Redon, X.: On the Equivalence of Two Systems of
Affine Recurrence Equations. In: Monien, B., Feldmann, R.L. (eds.) Euro-Par 2002.
LNCS, vol. 2400, pp. 309-313. Springer, Heidelberg (2002)

Alias, C., Barthou, D.: On the Recognition of Algorithm Templates. In: Knoop,
J., Zimmermann, W. (eds.) Proceedings of the 2nd International Workshop on
Compiler Optimization meets Compiler Verification, Warsaw, Poland, pp. 51-65
(April 2003)

Web page: Ckpt (2005) http://www.cs.wisc.edu/~zandy/ckpt/

Osman, S., Subhraveti, D., Su, G., Nieh, J.: The Design and Implementation of
Zap: A System for Migrating Computing Environments. In: Proceedings of the 5th
USENIX Symposium on Operating Systems Design and Implementation, Boston,
MA, pp. 361-376 (December 2002)

Plank, J.S.: An Overview of Checkpointing in Uniprocessor and Distributed Sys-
tems, Focusing on Implementation and Performance. Technical Report UT-CS-97-
372, Department of Computer Science, University of Tennessee (July 1997)
Foster, 1., Kesselman, C.: Globus: A Metacomputing Infrastructure Toolkit. The
International Journal of Supercomputer Applications and High Performance Com-
puting 11(2), 115-128 (1997)

Web page: Globus (2007) http://www.globus.org/

Litzkow, M., Livny, M., Mutka, M.: Condor - A Hunter of Idle Workstations. In:
The 8th International Conference on Distributed Computing Systems, San Jose,
CA, pp. 104-111. IEEE Computer Society Press, Los Alamitos (1988)

Web page: Condor (2007) http://www.cs.wisc.edu/condor/

Fedak, G., Germain, C., Néri, V., Cappello, F.: XtremWeb: A Generic Global
Computing System. In: Buyya, R., Mohay, G., Roe, P. (eds.) Proceedings First
IEEE/ACM International Symposium on Cluster Computing and the Grid, Bris-
bane, Australia, pp. 582-587. IEEE Computer Society Press, Los Alamitos (2001)
Web page: XTremWeb (2006) http://www.xtremweb.org/

Merlin, J.: Distributed OpenMP: extensions to OpenMP for SMP clusters. In: 2nd
European Workshop on OpenMP (EWOMP’00), Edinburgh, UK (September 2000)
Karlsson, S., Lee, S.W., Brorsson, M., Sartaj, S., Prasanna, V.K., Uday, S.: A fully
compliant OpenMP implementation on software distributed shared memory. In:
Sahni, S.K., Prasanna, V.K., Shukla, U. (eds.) HiPC 2002. LNCS, vol. 2552, pp.
195-206. Springer, Heidelberg (2002)

Huang, L., Chapman, B., Liu, Z.: Towards a more efficient implementation of
OpenMP for clusters via translation to global arrays. Parallel Computing 31(10-
12), 1114-1139 (2005)

Basumallik, A., Eigenmann, R.: Towards automatic translation of OpenMP to
MPI. In: Proceedings of the 19th annual international conference on Supercom-
puting, Cambridge, MA, pp. 189-198. ACM Press, New York (2005)

Consortium, X.: Linux-XOS specification. XtreemOS Integrated Project Deliver-
able D2.1.1 (November 2006)


http://www.cs.wisc.edu/~zandy/ckpt/
http://www.globus.org/
http://www.cs.wisc.edu/condor/
http://www.xtremweb.org/

Multicriteria Scheduling Strategies
in Scalable Computing Systems

Victor Toporkov

Computer Science Department, Moscow Power Engineering Institute,
ul. Krasnokazarmennaya 14, Moscow, 111250 Russia
Phone: +7(495)3627145; Fax: +7(495)3625506
ToporkovVVe@mpei.ru

Abstract. An approach to generation and optimization of scheduling and
resource allocation strategies in scalable computing systems is proposed. The
approach allows the decomposition of the problem of multicriteria strategy
synthesis for the totality of parameterized models of programs with the use of
partial and vector quality criteria including, for instance, a cost function and
load balancing factors.

Keywords: scheduling, resource allocation, strategy, scalability, quality criteria.

1 Introduction

The need for special resource management mechanisms in distributed computing
systems arose a long time ago and is well-recognized [1]. In some cases, complex sets
of interrelated tasks (jobs) require co-scheduling [2] and resource co-allocation [3] in
several processing nodes. Each node may be in an autonomous administrative domain
and be represented by a multi-processor unit managed by a local batch system, e.g.
CODINE, LL, LSF, NQE, Condor, PBS etc. Analysis of the resource co-allocation
problem in distributed systems, including Grid, has shown that efficient management
of job processing can be implemented on the basis of strategies that include
combinations of different scheduling algorithms and heuristics [4, 5], various factors
and critera (management policies, workload etc.) [3, 6]. In a number of papers [3-7],
the authors conclude that it is necessary to use multifactor and multicriteria strategies.
However, in practice only one of the possible resource allocation algorithms is used,
and the set of criteria is convolved into a scalar productivity function [3]. In [6], a
method for strategy generation in real-time computer systems is proposed.

In this paper, the method proposed before in [6] is developed and refined as
follows. The problem of multicriteria strategy synthesis is considered for different
parameterized graphs of programs. In the case of a single program model, it may
occur that a schedule does not exist. One possible reason is that there are no free
processors because of failures in the system. Therefore, it is impossible to resolve the
collisions of parallel tasks [7] that compete for the same processor node. Hence, it is
necessary to have strategies for program models with different levels of parallelism
and task details.

V. Malyshkin (Ed.): PaCT 2007, LNCS 4671, pp. 313 2007.
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2 Assumptions and Statement of the Problem

By TO* , we denote the set of program models. Each of these models is associated with

some totality of partially ordered tasks 7 = {Tl, T2,...,Tn} . The relation of the partial
order on T is specified by a directed acyclic graph whose set of vertices corresponds
to tasks of processing and memory access in subset P 7 and to tasks of data
exchange in subset D c T . The set of arcs of the graph represents the informational

and logical relations between the tasks. Fig. 1 shows some examples of information
graphs in models with different degrees of parallelism and task details.

D3y Py D23y 4s) Pis  Dusys

- P ®
©

Fig. 1. Information graphs of programs with different degrees of parallelism and task details

The nonshaded vertices correspond to data processing, and the shaded ones
correspond to data transmission. The graph of the program is parameterized by a

priori estimates, namely, the running time tg oftask 7; €T, i=1,...,n, on the jth

type of processor resource, j=1,...,J; the amount v; of computations etc. The

parameters of processing tasks are given in Table 1, which corresponds to the graphs
shown in Figs. la and 1b. When task aggregating, as shown in Fig. 1b and lc, the
values of the corresponding parameters of subtasks are summarized. The duration of
all of the data exchanges for the graph in Fig. 1a is equal to one time unit, while data
exchanges D1(23) and Dys)¢ in the graphs in Figs. 1b and lc need two time units and

data exchange D(23)( 45) needs four time units. In the resource allocation for tasks in

T on a time interval [O,t*] a resource type is determined by the allocation u; . We
have u; = j if task p; € P is assigned to a so-called basic processor resource whose
level is bounded and depends on the parallelizing degree, the cost of the jth type

resource, and some other factors [6]. If there occurs a collision of parallel tasks [7] in
P, which compete for the same resource of type j, then, taking into account the

architecture scalability, we introduce a resource of type j° e{l,...,] } (whose

characteristics are not worse than those of the basic resource) and assign u; = j°. We

represent a variant of admissible resource allocation in a quality criterion w(r) by a
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vector r = (tl,...,tn,ul,...,un) ,and ¢; is the running time of task 7; € 7. We estimate

the efficiency of the resource allocation by the vector W(r)z(wl(r),...,wL(r)),

where w;(r), [ =1,..., L, is a partial criterion.

Table 1. Estimates of parameters of tasks

Parameters Processing tasks

P1| P2 P3| Pa| Ps| Ps
Running time on the processor 1 2 3 1 2 1 2
Running time on the processor 2 4 6121424
Running time on the processor 3 6 |9 |13[6]3]6
Running time on the processor 4 8 |12 4 181148
Amount of computations 20 [ 30 { 10 | 20 | 10 | 20

An example of the efficiency criterion is a cost function of the form
n n 0
CFzz,lci(ti,u,-) =EJVU /rﬂ, 210, (1)

where #; is the time of execution of task p; on a processor of the j th type, n is the

number of processing tasks, and |"| denotes the smallest integer not less than a given
number.
Suppose that the active (binding) constraints

t:,—thO,t;—Zth =20, g,he{l,...,n}, 2)
h

are specified for individual tasks and jobs of the program, where 7,.1, are the

execution times for tasks T, 7 € T; and t;,t; are limiting times of execution of
task 7, and a job that includes the task 7, .

Let S be a strategy, i.e., a set of alternatives such that each alternative r e S
corresponds to an admissible resource allocation under the constraints (2). The vector
criterion W(r) generates a binary relation F (e.g., the Pareto-relation) for

comparison of alternatives on S . We refer to the set of alternatives optimal with
respect to F' as an F -optimal strategy of resource allocation. It is required to find an

F -optimal strategy for all models of the set 72)* .

3 Strategy Synthesis by the Totality of Criteria and Models

When searching for the F -optimal strategy on the basis of the parallel scheme [7],
the synthesis may be decomposed by the totality of basic schemes, each one providing

a conditionally optimal strategy by the corresponding partial criterion w;(r).
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Example 1. Suppose conditionally optimal strategies of process allocation should be
constructed by the basic scheme [7] for the information graph in Fig. 1a. The limiting

time ¢ =20 is specified for the execution of all these tasks. Let the vector criterion
include the cost function CF (1) and the loading factors UPj ,j=1,...,.4, of the basic

processors. The collisions between competing tasks are resolved at the expense of
nonallocated basic processors such that their inclusion in the set of resources is
accompanied by the minimal value of the penalty cost function on the analogy of (1),

_ _ .0 .0 .
where Vi = vij" ) L = tij° , J € {1 J } . Strategies are constructed for the upper and

lower bounds of the maximal interval of the variation of ¢;. Strategies conditionally
optimal by criteria CF, UP;, UP,, UP;, and UP, are represented in Table 2 by the

variants No. 1-3; 4-7; 8 and 9; 10 and 11; and 12-14, respectively. The collisions
between tasks p, and ps in variants 2, 13 are resolved by allocating task p, to a

processor of type 3 and task ps to a processor of type 4.

Table 2. Scheduling strategies for the graph in Fig. 1a

No. Running time Allocation Criterion
tl l2 f3 l4 l5 fﬁ 13} Uy Uz| Uyl Us| Ug CF UP[ UP2 UP’; UP4
1 2 3 3 2 2 10 1 1 3 1 2 4 41 0,35 | 0,10 [ 0,15 | 0,50
2 2 3 3 10 [ 10 2 1 1 3 3 4 1 37 0,35 0 0,65 | 0,50
3 10 3 3 2 2 2 4 1 3 1 2 1 41 0,35 | 0,10 { 0,15 | 0,50
4 2 3 3 2 2 10 1 1 3 1 2 1 41 0,85 0,10 0,15 0
5 2 3 3 10 [ 10 2 1 1 3 4 1 1 38 0,85 0 0,15 | 0,50
6 2 11 | 11 2 2 2 1 4 1 1 2 1 39 0,85 | 0,10 0 0,55
7 10 3 3 2 2 2 1 1 3 1 2 1 41 0,85 0,10 0,15 0
8 2 11 11 2 2 2 1 4 2 1 2 1 39 0,30 0,65 0 0,55
9 10 3 3 2 2 2 2 1 2 1 2 1 41 0,35 | 0,75 0 0
10 2 11 11 2 2 2 1 3 4 1 2 1 41 0,30 0,10 0,55 0,55
11 10 3 3 2 2 2 3 1 3 1 2 1 41 0,35 | 0,10 | 0,60 0
12 2 3 3 2 2 10 1 1 3 1 2 4 41 0,35 | 0,10 { 0,15 | 0,50
13 2 3 3 10 [ 10 2 1 1 3 3 4 1 39 0,35 0 0,65 | 0,50
14 10 3 3 2 2 2 4 1 3 1 2 1 41 0,35 | 0,10 [ 0,15 | 0,50

Applying a family of parallel schemes, we synthesize strategies conditionally

optimal by the corresponding partial criterion w;(r) for all models from TJ .

Example 2. Consider the models which are presented by the graphs in Figs. 1a and
Ic. For the graph in Fig. 1a, the initial conditions are the same as in Example 1. For
the graph in Fig. 1c, the strategy is constructed on the whole interval of f; variation.

We must construct the F -optimal strategy, where F is the union of G;, [ =1,...,L,
and Gj is generated by one of the criteria CF, UPj,...,UP,. The results of the

resource allocation for the graph in Fig. 1c are presented in Table 3 by the variants
No. 1-6.

The F -optimal strategy coincides with the strategy presented in Tables 2 and 3 up
to the equivalence relation.
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Table 3. Scheduling strategies for the graph in Fig. 1c

No. Running time Allocation Criterion
to| | tas| te | i | up3| wss| us | CF | UP | UP, | UP3 | UP,
1 2| 8|64 | 1| 1] 1] 1] 2 1 0 0 0
2 4 | 8 315 1 1 1 1 24 1 0 0 0
3 6 |46 ]| 4 1 1 1 1 24 1 0 0 0
4 8 | 4] 3 5 1 1 1 1 27 1 0 0 0
5 10 43 3 1 1 1 1 29 1 0 0 0
6 11 4 3 2 1 1 1 1 32 1 0 0 0

4 Conclusions

In this paper, we propose the approach for the problem of multicriteria scheduling
strategy synthesis in computing systems with a scalable architecture.

First, this approach allows us to obtain a strategy, which is conditionally optimal
by a partial criterion. Second, the strategy synthesis may be decomposed by the
totality of partial criteria. Finally, the general decomposition allows us to generate
scheduling strategies by a vector criterion for different models of the same program.
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Abstract. This paper provides a detailed investigation of latency penal-
ties caused by repeated memory writes to nearby memory cells from dif-
ferent threads in parallel programs. When such writes map to the same
corresponding cache lines in multiple processors, one can observe the so
called false sharing effect. This effect can unnecessarily hamper parallel
code due to the line granularity based cache hierarchy, which is common
on contemporary processor architectures. In this contribution, a bench-
mark allowing for quantitative estimates about the consequences of the
false sharing effect, is presented. Results show that multicore architec-
tures with shared cache can reduce unwanted effects of false sharing.

Keywords: Multicore, CMP, False Sharing, Cache.

1 Introduction

Within the scope of MMI (Munich Multicore Initiative, which was founded
by Lehrstuhl fiir Rechnertechnik und Rechnerorganisation / Parallelrechnerar-
chitektur (Prof. Dr. A. Bode) at Technische Universitat Miinchen, there is re-
search going on about positive effects of shared caches in the latest multicore
architectures. These are found for example in recent Intel processors based on
the Intel Core microarchitecture. The processors consist of two or four cores,
using shared cache memory for two cores, respectively [1].

Multicore architectures provide a large number of design alternatives with
regard to cache hierarchies. Within this context, an interesting topic is the effect
of shared or distributed cache memory on the performance of parallel programs.
In general, shared cache memory has an advantage if cores need to access the
same data, or, if a parallel application requires a lot of synchronization and
communication effort.

This paper deals with an effect which can increase synchronization efforts for
parallel applications due to inefficient programming: false sharing. False shar-
ing occurs if two threads running on two different processors repeatedly access
independent data which are physically located at addresses close to each other.

! http://mmi.in.tum.de

V. Malyshkin (Ed.): PaCT 2007, LNCS 4671, pp. 318 2007.
© Springer-Verlag Berlin Heidelberg 2007



Latencies of Conflicting Writes on Contemporary Multicore Architectures 319

Although the data accesses are independent, the hardware might need to per-
form synchronization, as cache architectures work on blocks of data (a typical
granularity in contemporary architectures being 64 bytes). This effect can signif-
icantly slow down program execution [2]. However, the detection of false sharing
requires detailed analysis with appropriate programming tools, thus, optimiza-
tions aiming at preventing false sharing effects are often omitted.

The next section will explain in detail under which circumstances false shar-
ing effects can occur. Section [] deals with related work, section [ describes a
benchmark program capable of making negative false sharing effects visible and
detecting advantages of contemporary processor architectures related to false
shari