

Lecture Notes in Computer Science 4671
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Victor Malyshkin (Ed.)

Parallel Computing
Technologies

9th International Conference, PaCT 2007
Pereslavl-Zalessky, Russia, September 3-7, 2007
Proceedings

13

Volume Editor

Victor Malyshkin
Russian Academy of Sciences
Institute of Computational Mathematics and Mathematical Geophysics
Supercomputer Software Department
pr.Lavrentieva 6, ICM MG RAS, 630090 Novosibirsk, Russia
E-mail: malysh@ssd.sscc.ru

Library of Congress Control Number: 2007931744

CR Subject Classification (1998): D, F.1-2, C, I.6

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-73939-4 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-73939-5 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12099672 06/3180 5 4 3 2 1 0

Preface

PaCT-2007 (Parallel Computing Technologies) was a four-day conference held in
Pereslavl-Zalessky, September 3–7, 2007. This was the ninth international confer-
ence in the PaCT series. The conferences are held in Russia every odd year. The
first conference, PaCT-91, was held in Novosibirsk (Academgorodok), September
7–11, 1991. The next PaCT conferences were held in Obninsk (near Moscow),
August 30 - September 4, 1993, in St.Petersburg, September 12-15, 1995, in
Yaroslavl, September 9–12 1997, in Pushkin (near St.Petersburg), September
6–10, 1999, in Academgorodok (Novosibirsk), September 3-7, 2001, in Nizhni
Novgorod, September 15–19, 2003, in Krasnoyarsk, September 5–9, 2005. Since
1995 all the PaCT proceedings have been published by Springer in the LNCS
series.

PaCT-2007 was jointly organized by the Institute of Computational Mathe-
matics and Mathematical Geophysics of the Russian Academy of Sciences (RAS)
and the Program Systems Institute of the RAS (Pereslavl-Zalessky).

The purpose of the conference was to bring together scientists working on
theory, architecture, software, hardware and the solution of large-scale problems
in order to provide integrated discussions on parallel computing technologies.

The conference attracted about 100 participants from around the world. Au-
thors from 25 countries submitted 98 papers. Of those, 37 papers were selected
for the conference as regular papers; there were also 2 invited papers. In addition
there were a number of posters presented. All the papers were internationally
reviewed by at least three referees.

A demo session was organized for the participants, and different tools were
submitted for a demonstration and tutorial. One of them was the Open TS: Dy-
namic Parallelization System for Multicore CPUs, SMPs, Clusters and GRIDs.

In conjunction with PaCT-2007, the Russian – Taiwan symposium on Meth-
ods and Tools of Parallel Programming of Multicomputers was held in Pereslavl-
Zalessky, September 2–3, 2007. The symposium was organized by the Institute
of Computational Mathematics and Mathematical Geophysics of RAS (Novosi-
birsk, Russia), the Institute of Program Systems RAS (Pereslavl-Zalessky) and
the Chung Hua University (Taiwan). The symposium attracted 22 papers and 4
tools demonstrations and tutorials. Of those, 16 were selected for the symposium
as regular papers; there was also 1 invited paper.

Many thanks to our sponsors: the Russian Academy of Sciences, the Russian
Fund for Basic Research, National Scientific Council (Taiwan), IBM, Microsoft,
Intel, and T-Platforms for their financial support.

June 2007 Victor Malyshkin

Organization

PaCT-2007 was organized by the Supercomputer Software Department, Institute
of Computational Mathematics and Mathematical Geophysics SB RAS (Novosi-
birsk) in cooperation with the Program Systems Institute of RAS (Pereslavl-
Zalessky).

Conference Chair Victor Malyshkin (Russian Academy of Sciences)
Conference Co-chair Sergei Abramov (Russian Academy of Sciences)
Organizing Committee V. Malyshkin Co-chairman (Novosibirsk)

S. Abramov Co-chairman (Pereslavl-Zalessky)
O. Bandman Publication Chair (Novosibirsk)
Yu. Fomina Secretary (Pereslavl-Zalessky)
S. Nechaev Secretary (Novosibirsk)
V. Yumaguzhina Vice-Chair (Pereslavl-Zalessky)

Program Committee

V. Malyshkin Russian Academy of Sciences, Russia
S. Abramov Russian Academy of Sciences, Russia
S. Bandini University of Milano - Bicocca, Italy
O. Bandman Russian Academy of Sciences, Russia
T. Casavant University of Iowa, USA
A. Chambarel University of Avignon, France
P. Degano State University of Pisa, Italy
B. Goossens University Paris 7 Denis Diderot, France
S. Gorlatch Technical University of Berlin, Germany
Yu. Karpov State Technical University, St.Petersburg,

Russia
V. Kasyanov Russian Academy of Sciences, Russia
K.-C. Li Providence University, Taiwan
T. Ludwig University of Heidelberg, Germany
G. Mauri Università degli Studi di Milano - Bicocca,

Italy
D. Petcu Western University of Timisoara, Romania
M. Raynal IRISA, Rennes, France
B. Roux CNRS-Universites d’Aix-Marseille, France
P. Sloot University of Amsterdam. The Netherlands
V. Sokolov Yaroslavl State University
C. Trinitis LRR, Munich, Germany
M. Valero Barcelona Supercomputer Center, Spain
I. Virbitskaite Russian Academy of Sciences, Russia
V. Vshivkov Russian Academy of Sciences, Russia
S. El Yacoubi University of Perpignan, France

Organization VII

MTPP Organizers

Steering Co-chairs

Victor E. Malyshkin, Russian Academy of Sciences, Russia
Ching-Hsien Hsu, Chung Hua University, Taiwan

International Advisory Board

Chung-Ta King, National Tsing Hua University, Taiwan
Hai Jin, Huazhong University of Science and Technology, China
Laurence T. Yang, St.Francis Xavier Univ. Canada
Ce-Kuen Shieh, National Cheng Kung University, Taiwan
B.Glinskii, Russian Academy of Sciences, Russia
V.Kas’yanov, Russian Academy of Sciences, Russia
V.Gergel, University of Nizhni Novgorod, Russia

General Co-chairs

Yeh-Ching Chung, National Tsing Hua University, Taiwan
Sergey Abramov, Institite of Program Systems RAS, Russia

Program Co-chairs

Kuan-Ching Li, Providence University, Taiwan
Arutyun Avetisyan,Russian Academy of Sciences, Russia

Local Arrangements Chair

Valeria Yumaguzhina, University of Pereslavl-Zalessky, Russia

Publication Chair

Olga Bandman, Russian Academy of Sciences, Russia

Program Committee

Pangfeng Liu, National Taiwan University, Taiwan
Jan-Jan Wu, Academia Sinica, Taiwan
Tsung-Chuan Huang, National Sun Yat-Sen University, Taiwan
Jong Hyuk Park, Hanwha S&C Co., Ltd., Korea
Jingling Xue, University of New South Wales, Australia
Cho-Li Wang, Hong Kong University, Hong Kong
Jenq-Kuen Lee, National Tsing Hua University, Taiwan

VIII Organization

Chien-Min Wang, Academia Sinica, Taiwen
Weijia Jia, City University of HongKong, China
John Morris, University of Auckland, New Zealand
Jiannong Cao, Hong Kong Polytechnic University, Hong Kong
Satoshi Matsuoka, Tokyo Institute of Technology, Japan
Yuri Karpov, State Technical University of Saint Petersburg, Russia
O. Bandman, Russian Academy of Sciences, Russia
M. Valero, Barcelona Supercomputer Center, Spain
T. Ludwig, Ruprecht-Karls-Universität Heidelberg, Germany
B. Glinskii, Russian Academy of Sciences, Russia
V. Kas’yanov, Russian Academy of Sciences, Russia
Yong-Kee Jun, Gyeongsang National University, South Korea

Referees

M. Aldinucci
R. Andonov
R. Arapbaev
S. Arykov
A. Avetisyan
E. Badouel
T. Bair
S. Bandini
O. Bandman
T. Casavant
D. Chaly
H-Ya. Chang
Ye-Ch. Chung
P. Degano
M. D. Marino
P. Dortman
F. Gadducci
A. Glebovsky
M. Gluhankov
B. Goossens
S. Gorlatch
M. Gorodnichev
N. Gribovskaya
A. Grishin
R. Grossi
R. Guanciale
Zh. Hu.
K-Ch. Huang

G. Italiano
Y.-K. Jun
Yu. Karpov
V. Kas’yanov
K. Kedzierski
S. Kireev
E. Kouzmin
N. Kuchin
V. Kuzin
K-C Li
Ch.-Ch. Lin
P. Liu
J. Llosa
T. Ludwig
V. Malyshkin
N. Malyshkin
S. Manzoni
V. Marjanovic
V. Markova
G. Mauri
Yu. Medvedev
J. Mueller
S. Nechaev
M. Ostapkevich
D. Parello
D. Petcu
S. Piskunov
K. Pyjov

M. Raynal
B. Roux
F.-X. Roux
M. Schellmann
D. Shkurko
P. Sloot
P. Sobe
V. Sokolov
S. Sorokin
A Stasenko
V. Subotic
D. Tack
E. Timofeev
P. Trifonov
C. Trinitis
M. Valero
I. Virbitskaite
V. Vshivkov
J. Walters
Ch.-M. Wang
H.-H. Wang
T.-H. Weng
J.-J. Wu
R. Yahyapour
Ch.-T. Yang
G. Zabinyako

Table of Contents

Models and Languages

Looking for a Definition of Dynamic Distributed Systems 1
Roberto Baldoni, Marin Bertier, Michel Raynal, and
Sara Tucci-Piergiovanni

Adaptive Workflow Nets for Grid Computing . 15
Carmen Bratosin, Kees van Hee, and Natalia Sidorova

A Stochastic Semantics for BioAmbients . 22
Linda Brodo, Pierpaolo Degano, and Corrado Priami

A Categorical Observation of Timed Testing Equivalence 35
Natalya Gribovskaya and Irina Virbitskaite

From Unreliable Objects to Reliable Objects: The Case of Atomic
Registers and Consensus . 47

Rachid Guerraoui and Michel Raynal

A Functional Programming System SFP: Sisal 3.1 Language Structures
Decomposition . 62

Victor N. Kasyanov and Alexander P. Stasenko

Towards a Computing Model for Open Distributed Systems 74
Achour Mostefaoui

Enhancing Online Computer Games for Grids . 80
Jens Müller and Sergei Gorlatch

Applications

Optimized Parallel Approach for 3D Modelling of Forest Fire
Behaviour . 96

Gilbert Accary, Oleg Bessonov, Dominique Fougère,
Sofiane Meradji, and Dominique Morvan

A High-Level Toolkit for Development of Distributed Scientific
Applications . 103

Alexander Afanasiev, Oleg Sukhoroslov, and Mikhail Posypkin

Orthogonal Organized Finite State Machine Application to Sensor
Acquired Information . 111

Brian J. d’Auriol, John Kim, Sungyoung Lee, and Young-Koo Lee

X Table of Contents

Parallel Broadband Finite Element Time Domain Algorithm
Implemented to Dispersive Electromagnetic Problem 119

Boguslaw Butrylo

Strategies for Development of a Parallel Program for Protoplanetary
Disc Simulation . 128

Sergei Kireev, Elvira Kuksheva, Aleksey Snytnikov,
Nikolay Snytnikov, and Vitaly Vshivkov

Generation of SMACA and Its Application in Web Services 140
Anirban Kundu, Ruma Dutta, and Debajyoti Mukhopadhyay

Enhancing Fault-Tolerance of Large-Scale MPI Scientific
Applications . 153

G. Rodŕıguez, P. González, M.J. Mart́ın, and J. Touriño

Study of 3D Dynamics of Gravitating Systems Using Supercomputers:
Methods and Applications . 162

Nikolay Snytnikov, Vitaly Vshivkov, and Valery Snytnikov

Transient Mechanical Wave Propagation in Semi-infinite Porous
Media Using a Finite Element Approach with Domain Decomposition
Technology . 174

Andrey Terekhov, Arnaud Mesgouez, and Gaelle Lefeuve-Mesgouez

The Location of the Gene Regions Under Selective Pressure: Plato
Algorithm Parallelization . 184

Yuri Vyatkin, Konstantin Gunbin, Alexey Snytnikov, and
Dmitry Afonnikov

Techniques for Parallel Programming Supporting

Object Serialization and Remote Exception Pattern for Distributed
C++/MPI Application . 188

Karol Bańczyk, Tomasz Boiński, and Henryk Krawczyk

Improving Job Scheduling Performance with Dynamic Replication
Strategy in Data Grids . 194

Nguyen Dang Nhan, Soon Wook Hwang, and Sang Boem Lim

Address-Free All-to-All Routing in Sparse Torus . 200
Risto Honkanen, Ville Leppänen, and Martti Penttonen

On the Parallel Technologies of Conjugate and Semi-conjugate Gradient
Methods for Solving Very Large Sparse SLAEs . 206

Valery P. Ilin and Dasha V. Knysh

Table of Contents XI

TRES-CORE: Content-Based Retrieval Based on the Balanced Tree in
Peer to Peer Systems . 215

Hai Jin and Jie Xu

Efficient Race Verification for Debugging Programs with OpenMP
Directives . 230

Young-Joo Kim, Mun-Hye Kang, Ok-Kyoon Ha, and Yong-Kee Jun

Adaptive Scheduling and Resource Assessment in GRID 240
Veniamin Krasnotcshekov and Alexander Vakhitov

Dynamic Load Balancing of Black-Box Applications with a Resource
Selection Mechanism on Heterogeneous Resources of the Grid 245

Valeria V. Krzhizhanovskaya and Vladimir V. Korkhov

A Novel Algorithm of Optimal Matrix Partitioning for Parallel Dense
Factorization on Heterogeneous Processors . 261

Alexey Lastovetsky and Ravi Reddy

Parallel Pseudorandom Number Generator for Large-Scale Monte Carlo
Simulations . 276

Mikhail Marchenko

Dynamic Job Scheduling on the Grid Environment Using the Great
Deluge Algorithm . 283

Paul McMullan and Barry McCollum

Parallelism Granules Aggregation with the T-System 293
Alexander Moskovsky, Vladimir Roganov, and Sergei Abramov

Toward a Distributed Implementation of OpenMP Using CAPE 303
Éric Renault

Multicriteria Scheduling Strategies in Scalable Computing Systems 313
Victor Toporkov

Latencies of Conflicting Writes on Contemporary Multicore
Architectures . 318

Josef Weidendorfer, Michael Ott, Tobias Klug, and Carsten Trinitis

A Novel Self-Similar (S2) Traffic Filter to Enhance E-Business Success
by Improving Internet Communication Channel Fault Tolerance 328

Allan K.Y. Wong, Wilfred W.K. Lin, Tharam S. Dillon, and
Jackei H.K. Wong

Accelerating the Singular Value Decomposition of Rectangular Matrices
with the CSX600 and the Integrable SVD . 340

Yusaku Yamamoto, Takeshi Fukaya, Takashi Uneyama,
Masami Takata, Kinji Kimura, Masashi Iwasaki, and
Yoshimasa Nakamura

XII Table of Contents

Parallel Dynamic SPT Update Algorithm in OSPF 346
Yuanbo Zhu, Mingwei Xu, and Qian Wu

Cellular Automata

Pedestrian and Crowd Dynamics Simulation: Testing SCA on
Paradigmatic Cases of Emerging Coordination in Negative Interaction
Conditions . 360

Stefania Bandini, Mizar Luca Federici, Sara Manzoni, and
Giuseppe Vizzari

Coarse-Grained Parallelization of Cellular-Automata Simulation
Algorithms . 370

Olga Bandman

Cellular Automata Models for Complex Matter . 385
Dominique Désérable, Pascal Dupont, Mustapha Hellou, and
Siham Kamali-Bernard

Hysteresis in Oscillatory Behaviour in CO Oxidation Reaction over
Pd(110) Revealed by Asynchronous Cellular Automata Simulation 401

Vladimir Elokhin, Andrey Matveev, Vladimir Gorodetskii, and
Evgenii Latkin

CAOS: A Domain-Specific Language for the Parallel Simulation of
Cellular Automata . 410

Clemens Grelck, Frank Penczek, and Kai Trojahner

Parallel Hardware Architecture to Simulate Movable Creatures in the
CA Model . 418

Mathias Halbach and Rolf Hoffmann

Comparison of Evolving Uniform, Non-uniform Cellular Automaton,
and Genetic Programming for Centroid Detection with Hardware
Agents . 432

Marcus Komann, Andreas Mainka, and Dietmar Fey

Associative Version of Italiano’s Decremental Algorithm for the
Transitive Closure Problem . 442

Anna Nepomniaschaya

Support for Fine-Grained Synchronization in Shared-Memory
Multiprocessors . 453

Vladimir Vlassov, Oscar Sierra Merino, Csaba Andras Moritz, and
Konstantin Popov

Self-organised Criticality in a Model of the Rat Somatosensory
Cortex . 468

Grzegorz M. Wojcik, Wieslaw A. Kaminski, and Piotr Matejanka

Table of Contents XIII

Control of Fuzzy Cellular Automata: The Case of Rule 90 477
Samira El Yacoubi and Angelo B. Mingarelli

Methods and Tools of Parallel Programming of
Multicomputers

Intensive Atmospheric Vortices Modeling Using High Performance
Cluster Systems . 487

Arutyun I. Avetisyan, Varvara V. Babkova,
Sergey S. Gaissaryan, and Alexander Yu. Gubar

Dynamic Strategy of Placement of the Replicas in Data Grid 496
Ghalem Belalem and Farouk Bouhraoua

ISO: Comprehensive Techniques Toward Efficient GEN BLOCK
Redistribution with Multidimensional Arrays . 507

Shih-Chang Chen and Ching-Hsien Hsu

A New Memory Slowdown Model for the Characterization of
Computing Systems . 516

Rodrigo Fernandes de Mello, Luciano José Senger,
Kuan-Ching Li, and Laurence Tianruo Yang

SCRF – A Hybrid Register File Architecture . 525
Jer-Yu Hsu, Yan-Zu Wu, Xuan-Yi Lin, and Yeh-Ching Chung

Model Based Performance Evaluation for MPI Programs 537
Victor Ivannikov, Serguei Gaissaryan, Arutyun Avetisyan, and
Vartan Padaryan

Runtime System for Parallel Execution of Fragmented Subroutines 544
K.V. Kalgin, V.E. Malyshkin, S.P. Nechaev, and G.A. Tschukin

Application of Simulation Approaches to Creation of Decision Support
System for IT Service Management . 553

Yuri G. Karpov, Rostislav I. Ivanovsky, and Kirill A. Sotnikov

Using Analytical Models to Load Balancing in a Heterogeneous
Network of Computers . 559

Jean M. Laine and Edson T. Midorikawa

Block-Based Allocation Algorithms for FLASH Memory in Embedded
Systems . 569

Pangfeng Liu, Chung-Hao Chuang, and Jan-Jan Wu

Variable Reassignment in the T++ Parallel Programming Language 579
Alexander Moskovsky, Vladimir Roganov, Sergei Abramov, and
Anton Kuznetsov

XIV Table of Contents

Parallel Construction of Moving Adaptive Meshes Based on
Self-organization . 589

Olga Nechaeva and Mikhail Bessmeltsev

Data Transfer in Advance on Cluster . 599
Nilton Cézar de Paula, Gisele da Silva Craveiro, and
Liria Matsumoto Sato

A Trust-Oriented Heuristic Scheduling Algorithm for Grid
Computing . 608

Mingjun Sun, Guosun Zeng, Lulai Yuan, and Wei Wang

3-Points Relationship Based Parallel Algorithm for Minimum
Ultrametric Tree Construction . 615

Kun-Ming Yu, Jiayi Zhou, Chun-Yuan Lin, and Chuan Yi Tang

Load Balancing Approach Parallel Algorithm for Frequent Pattern
Mining . 623

Kun-Ming Yu, Jiayi Zhou, and Wei Chen Hsiao

Author Index . 633

Looking for a Definition of
Dynamic Distributed Systems�

R. Baldoni1, M. Bertier2, M. Raynal2, and S. Tucci-Piergiovanni1

1 IRISA, Campus de Beaulieu, 35042 Rennes, France
2 Computer Science Department, University La Sapienza, Roma, Italy

{marin.bertier,raynal}@irisa.fr,
{baldoni,sara.tucci}@dis.uniroma1.it

Abstract. This paper is a position paper on the nature of dynamic systems. While
there is an agreement on the definition of what a static distributed system is, there
is no agreed definition on what a dynamic distributed system is. This paper is a
first step in that direction. To that end, it emphasizes two orthogonal dimensions
that are present in any dynamic distributed system, namely the varying and possi-
bly very large number of entities that currently define the system, and the fact that
each of these entities knows only a few other entities (its neighbors) and possibly
will never be able to know the whole system it is a member of. To illustrate the
kind of issues one has to cope with in dynamic systems, the paper considers, as
a “canonical” problem, a simple data aggregation problem. It shows the type of
dynamic systems in which that problem can be solved and the ones in which it
cannot be solved. The aim of the paper is to give the reader an idea of the sub-
tleties and difficulties encountered when one wants to understand the nature of
dynamic distributed systems.

1 Introduction

The nature of distributed computing. Distributed computing arises when the problem
to solve involves several entities such that each entity has only a partial knowledge of
the many parameters involved in the problem. According to the context, these entities
are usually called processes, nodes, sites, sensors, actors, peers, agents, etc. The en-
tities communicate and exchange data through a communication medium (usually an
underlying network).

While parallelism and real-time can be respectively characterized by the words ”ef-
ficiency” and ”on time computing”, distributed computing can be characterized by the
word ”uncertainty”. This uncertainty is created by asynchrony, failures, unstable behav-
iors, non-monotonicity, system dynamism, mobility, low computing capability, scalabil-
ity requirements, etc. Mastering one form or another of uncertainty is pervasive in all
distributed computing problems. So, a fundamental issue of distributed computing con-
sists in finding concepts and mechanisms that are general and powerful enough to allow
reducing (or even eliminating) the underlying uncertainty.

� This work has been done in the context of the European Network of Excellence ReSIST (Re-
silience for Survivability in IST).

V. Malyshkin (Ed.): PaCT 2007, LNCS 4671, pp. 1–14, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

2 R. Baldoni et al.

Static reliable asynchronous distributed systems. A distributed system (the software
and hardware layer on top of which the distributed applications are executed) can be
characterized by behavioral properties and structural properties. These properties define
a computation model.

The static reliable asynchronous model is the most popular one. Static means that the
number of entities is fixed. Reliable means that neither the entities nor the communica-
tion medium suffer failures. Asynchronous means that there is no particular assumption
on the speed of the processes, or on message transfer delays. Moreover, the underlying
network is usually considered as fully connected: any entity can send messages to, or
receive messages from, any other entity (this means that the message routing is hidden
at the abstraction level offered by this distributed computing model).

An important result associated with this distributed computing model is the deter-
mination of a consistent global state (sometimes called a snapshot). It has been shown
[5] that the “best” that can be done is the computation of a global state (of the upper
layer distributed application) with the following consistency guarantees: the computed
global state is such that (1) the application could have passed through it, but (2) has
not necessarily passed through it. There is no way to know whether or not the actual
execution passed through that global state. This is one of the fundamental facets of the
uncertainty encountered in static distributed systems.

Static unreliable asynchronous distributed systems. The simplest static unreliable asyn-
chronous model is characterized by the fact that processes may crash. The most famous
result for this model is the impossibility to solve the consensus problem as soon as a
process may crash [6] (the consensus problem is a coordination - -or agreement- - prob-
lem. It consists in designing a deterministic protocol in which all the processes that do
not crash reach a common decision based on their initial opinions). The impossibility
to solve this problem comes from the net effect of asynchrony and failures. One way to
solve consensus despite asynchrony and failures consists in enriching the asynchronous
model with appropriate devices called failure detectors [3,10] (so, the resulting com-
puting model is no longer fully asynchronous).

Fortunately, problems simpler than consensus can be solved in this model. Let us
consider the reliable broadcast problem [8] as an example. This problem consists in
providing the processes with a broadcast primitive such that all the processes that do not
crash deliver all the messages that are broadcast (while the faulty processes are allowed
to deliver only a subset of these messages). Let a correct process be a process that never
crash. This problem can easily be solved as soon as any two correct processes remain
forever connected through a path made up of reliable channels and correct processes.

So, when we proceed from the static reliable asynchronous distributed computing
model to its unreliable counterpart, there are problems that can still be solved, while
other problems become impossible to solve if asynchrony is not restricted (e.g., by
using failure detectors, or considering their “ultimate” endpoint, namely, a synchronous
system).

Dynamic distributed systems. Since a recent past, there are a lot of papers (mainly in the
peer-to-peer literature) that propose protocols for what they call dynamic systems. These
protocols share the following: the entities can join and leave the system at will. This

Looking for a Definition of Dynamic Distributed Systems 3

dynamicity dimension constitutes a new attribute of the uncertainty that characterizes
distributed computing. Unfortunately, (to our knowledge) there is no clear definition
of what a dynamic system is. This paper is a first step in that direction. To that end,
it proposes to investigate two dimensions of dynamicity. The first is on the number of
entities that compose the system: is there an upper bound that is known? How many
entities can coexist at any given time? etc. The second dimension is “geographical”.
More precisely, it is related to the fact that it is not possible to provide the entities with
an abstraction offering a logical point-to-point bidirectional link to each pair of entities.
So, this dimension is on the notion of entity neighborhood (locality) and the fact that
the processes can or cannot know an upper bound on the network diameter.

Content of the paper. The paper is made up of 4 sections. Section 2 proposes parameters
that should be taken into account when one wants to precisely define a dynamic system
model. Considering a very simple dynamic system, Section 3 investigates what can
be computed in this model. To that end a simple aggregation problem is used as a
“canonical” problem. Section 4 provides a few concluding remarks.

The spirit of the paper is more the spirit of a position paper with a pedagogical flavor
than the spirit of a traditional research paper. We do think that a precise definition of
what a dynamic distributed system is (or maybe what families of dynamic distributed
systems are) is hardly needed. This paper is a very first endeavor towards this goal.

2 Elements for Defining a Dynamic Distributed System

Informally, a dynamic system is a continually running system in which an arbitrarily
large number of processes are part of the system during each interval of time and, at any
time, any process can directly interact with only an arbitrary small part of the system.
This section proposes and investigates two attributes that should be part of the definition
of any dynamic distributed system.

2.1 Modeling the Dynamic Size of the System in Terms of Number of Entities

In a dynamic system, entities may join and leave the system at will. Consequently, at
any point on time, the system is composed of all processes (entities) that have joined and
have not yet left the system. We call system run (or simply a run) a total order on the join
and leave events (issued by the processes) that respect their real time occurrence order.

In order to model entities continuously arriving to and departing from the system, we
assume the infinite arrival model (as defined in [9]), where, in each run, infinitely many
processes P = {. . . , pi, pj, pk . . .} may join the system. However, several models can
be defined, that differ in the assumptions on the number of processes that can concur-
rently be part of the system [7,9]. Using the notation introduced in [1], the following
infinite arrival models can be defined:

– M b: The number of processes concurrently inside the system is bounded by a con-
stant b in all runs.

– Mn: The number of processes concurrently inside the system is bounded in each
run, but may be unbounded when we consider the union of all the runs.

4 R. Baldoni et al.

– M : The number of processes that join the system in a single run may grow to
infinity as the time passes.

In the first model, the maximum number of processes in each run is bounded by a
constant b that is the same for all the runs. When it is known, that constant can be used
by the protocols defined for that system.

In the second model, the maximum number of processes in each run is bounded, but
that bound may vary from one run to another. It follows that no protocol can rely on
such a bound as a protocol does not know in advance the particular run that will be
produced.

In the third model, the number of processes concurrently inside the system is finite
when we consider any finite time interval, but may be infinite in an infinite interval of
time. This means that the only way for a system to have an infinite number of processes
is the passage of time.

2.2 Modeling the Dynamic Size of the System in Terms of Geography

The previous models [7,9] implicitly assume that, at any time, the communication net-
work is fully connected: any process knows any other process that is concurrently in the
system, and can send it - -or receive from it- - messages directly through a point-to-point
channel.

Our aim is here to relax this (sometimes unrealistic) assumption, and take into ac-
count the fact that, at any time, each process has only a partial view of the system, i.e.,
it can directly interact with only a subset of the processes that are present in the sys-
tem (this part is called its neighborhood). So, we consider the following geographical
attributes for the definition of a dynamic distributed system.

– At any time, the system can be represented by a graph G = (P,E), where P is
the set of processes currently in the system and E is a set of pairs (pi, pj) that
describe a symmetric neighborhood relation connecting some pairs of processes.
(pi, pj) ∈ E means that there is a bidirectional reliable channel connecting pi and
pj .

– The dynamicity of the system, i.e., the arrivals and departures of processes, is mod-
eled through additions and removals of vertices and edges in the graph.
• The addition of a process pi to a graph G brings to another graph G′ obtained

from G by including pi and a certain number of new edges (pi, pj) where the
pj are the processes to which pi is directly connected.

• The removal of a process pi to a graph G brings to another graph G′ obtained
fromG by suppressing the vertex pi and all the edges involving pi.

• Some new edges can be added to the graph, and existing edges can be sup-
pressed from the graph. Each such addition/deletion brings the graph G into
another graphG′.

– Let {Gn}run denote the sequence of graphs through which the system passes dur-
ing a given run. Each Gn ∈ {Gn}run is a connected graph the diameter of which
can be greater than one for all runs.

As we have seen, an infinite arrival model allows capturing a dynamicity dimension
of dynamic distributed systems. Making different assumptions on the diameters of the

Looking for a Definition of Dynamic Distributed Systems 5

graphs in the sequences {Gn}run allows capturing another dynamicity dimension re-
lated to the “geography” of the system. More specifically, we consider the following
possible attributes. In the following {Dn}run denotes the set of the diameters of the
graphs {Gn}run.

– Bounded and known diameter. In this case the diameter is always bounded by b,
i.e., for each Dn ∈ {Dn}run we have Dn ≤ b for all the runs, and that bound is
known by the protocols designed for that model.

– Bounded and unknown diameter. In this case all the diameters {Dn}run are finite
in each run, but the union of {Dn}run for all runs can be unbounded. In that case,
as an algorithm cannot know in which run it is working, it follows that the maximal
diameter remains unknown to the protocol. So, in that model, a protocol has no
information on the diameter.

– Unbounded diameter. In this case, the diameter is possibly growing indefinitely in
a run, i.e., the limit of {Dn}run can go to infinity.

2.3 Dynamic Models Definition

A model is denoted as MN,D where N is on the number of processes and D is on
the graph diameter, both parameters can assume the value b, n,∞ to indicate respec-
tively a number of entities/diameter never exceeding a known bound, a number of en-
tities/diameter never exceeding an unknown bound and a number of entities/diameter
possibly growing indefinitely (in the following, if a parameter may indifferently assume
any value, we denote that as ∗). Possible models are M b,b, Mn,b, M∞,b (1), Mn,n,
M∞,n andM∞,∞.

Note that the previous models characterize only the dynamicity of the system without
considering other more classical aspects such as the level of synchrony or the type of
failures. Clearly, any of these models can be refined further by specifying these addi-
tional model attributes as usually done in static systems.

To be able to establish the impact of geographical assumptions on a problem solving
in dynamic distributed systems, we only consider, in this paper, synchronous systems
or asynchronous system completed with perfect failure detectors. In other words, we
assume that a node can have reliable information about nodes in its neighborhood.

3 An illustrating Example: One-Time Query

3.1 The One-Time Query Problem

To illustrate and investigate the previous attributes of a dynamic distributed system, we
consider the One-Time Query problem as defined in [2]. This problem can informally
be defined as follows. A process (node) issues a query in order to aggregate data that
are distributed among a set of processes (nodes). The issuing process does not know (i)
if there exist nodes holding a value matched by the query, (ii) where these nodes are,
(iii) how many they are. However, the query has to complete in a meaningful way in
spite of the uncertainty in which the querying node works.

1 An instance of the model M∞,b is M∞ of [1] where the diameter is implicitly set to 1.

6 R. Baldoni et al.

The One-Time Query problem, as stated in [2] requires that the query, issued by a
node pi aggregates at least all the values held by the nodes that are in the system and
are connected to pi during the whole duration of the query (query time interval).

Unfortunately, this specification has been intended for a model slightly different from
the more general model proposed in the previous section. In fact, the system is intended
to be monotonous in the sense that it can be represented by a graph G defined at the
beginning of the computation (query) and from which edges can be removed as time
passes, but to which no new edges can be added as time passes. Differently, in the
previous models, the system is dynamic in the sense that nodes/edges additions and
nodes/edges deletions are allowed. As we are about to see, while the One-Time Query
problem -as defined above- cannot be solved in a dynamic system, a weaker version of
it can be. It is also important to notice (as we will show later) that this weaker version
cannot be solved inM∞,∞.

One-Time Query specification. The specification that follows is due to [2]. Let query(Q)
denote the operation a process invoke to aggregate the set of values V = {v1, v2, . . .}
present in the system and that match the query. The aim for the process that issues the
query is to compute v = Q(V). Given that setting, the problem is defined by the fol-
lowing properties (this means that any protocol solving the problem has to satisfy these
properties):

– Termination: query(Q) completes in a finite time.
– Validity: The set V of data obtained for computing query(Q) includes at least the

values held by processes that are member of the system during the whole query
time interval.

3.2 The WILDFIRE Algorithm

In [2] the following algorithm (called WILDFIRE) to solve the problem is proposed.
This algorithm relies on the following assumptions:

– synchronous channels with a known upper bound δ,
– a known upper bound on the network diameter D.

Algorithm description. The principle of this algorithm is simple. Each process which
receives a so-called query-update message updates its current value to a new one, com-
puted by aggregating the current value and the received value, then it spreads the new
value to its neighbors.

The initiator of the query just sends its initial value to its neighbors in a query-update
message and waits for at least 2 ∗D ∗ δ time before returning its value.D ∗ δ is the time
required to inform all nodes in the network about the query, and the same duration is
required to transmit values to the initiator.

As the initiator, all nodes which receive a query-update message for the first time,
initiate a timeout and when this timeout expires, they stop to process all new query-
update messages.

In [2], the authors propose to reduce the number of messages exchanged by sending
a query-update message only when there is new information: (i) if the remote value

Looking for a Definition of Dynamic Distributed Systems 7

doesn’t change the local value, then the node doesn’t send any message (except for the
first reception of the query-update message), (ii) if the aggregate value is equal to the
remote one, then the node transmits the new value to its neighbors except the sender of
the remote value.

INITIALIZATION

1 active ← false;
2 v ← initial value;

LAUNCH(Q)
3 active ← true;
4 d ← D; % D is the upper bound on the network diameter. %
5 send [QUERY-UPDATE (Q, d − 1, v)] to neighbors;
6 set timeout T ← 2d ∗ δ;
7 when (T elapses) do
8 active ← false;
9 return (v);

RECEPTION

10 when (receive [QUERY-UPDATE(Q, d, rv)] from pj) do
11 if (¬active)
12 then set timeout T ← 2d ∗ δ; % We consider negligible process step’s executions w.r.t. message delays. %
13 if (T not yet elapsed)
14 then temp ← aggregate(v, rv);
15 if (temp! = v or ¬active)
16 then active ← true; v ← temp;
17 send [QUERY-UPDATE,(Q, d − 1, v)] to neighbors − pj ;
18 if (v! = rv)
19 then send [QUERY-UPDATE,(Q, d − 1, v)] to pj

Fig. 1. The WILDFIRE Algorithm

3.3 The One-Time Query Problem for Dynamic Models

One-Time Query problem solvability. The WILDFIRE algorithm solves the one-time
query problem in a monotonous network but does not solve it in a dynamic network (in
none of the models presented in the previous section, neither inM∗,b). More generally,
the one-time query specification introduced so far is too strong, and cannot be satisfied
by any algorithm if the network graph can change by adding edges during the query
completion 2. However, if an edge is added during a query, the following bad scenario
can happen.

Description on a bad scenario. Let us consider the querying process pA and a process
pE (i) inside the system when the query starts and (ii) connected to pA through a given
path. Let us suppose that an edge joining pA and pE is added after the query started and
remains up until the query ends. Let us also suppose that the path previously connecting
pA and pE is removed (due to a crash of some process in the path) before the query ends.
Formally, pA is always connected to pB throughout the entire duration of the query (as
herein assumed by all dynamic models), but its value could not be retrieved as described
in Figure 2 where tq is the time the query starts.

2 The addition of edges during the query completion is reasonable as the query takes an arbitrary
long time spanning the entire graph and in order to maintain connectivity edges addition may
be needed in spite of edges removals occurring at arbitrary times.

8 R. Baldoni et al.

A

B C

ED

(a) time=tq; A.neighbors={B,C}

A

B C

ED

(b) time:tq1>tq; B,C forward
the query

A

B C

ED

(c) time: tq2>tq1; E,D send
their value back

A

B C

ED

(d) time tq3>tq2; the message is still
in transit towards C and a new link

is added: A.neighbors={B,C,E}

A

B C

ED

(e) time: tq4>tq3; the message is still
in transit towards C, and two links

are removed by the crash of C. The
message is lost

Fig. 2. Bug Example

The problem lies in the fact that the process pE replies to the query but the mes-
sage containing the reply is exchanged through a path that is removed before the query
completes, and is consequently lost before it reaches the querying process.

Then, to retrieve this value, pE should be forced to send again the reply back (this
can be done by assuming a detection of the path removal that triggers a new sending
on the new path). However, by the nature of the infinite arrival model, the substitution
of a path with a new one during the query could happen infinitely often in all dynamic
models in which the diameter is not bounded by one (see Fig. 3). In all these models
the query may never complete violating termination.

One-Time Query specification for dynamic models. The specification of the one-time
query problem in case of a dynamic model is here refined bringing to the definition
of the Dynamic One-Time Query Specification. This new specification states that the
values to include in the query computation are at least those coming from nodes that
belong to the graphG defined at time the query starts, and remain connected, during the
whole query interval, to the querying process through a subgraph of G. More formally,
the Dynamic One-Time Query specification satisfies the following two properties:

– Termination: query(Q) completes in a finite time.
– Dynamic Validity: For each run, query(Q) will compute the result including in
V at least the values held by each process that, during the whole query interval,
remains connected to the querying process through a subgraph of the graph G that
represents the network at the time the query is started.

Looking for a Definition of Dynamic Distributed Systems 9

A

D

A

C C'

D

A

C C'

D

A

C

D

(c) reply lost

A

C'' C'

D

(a) reply sent on the path ACD

(d) reply sent on the path AC'D

(b) addition of the process C'

C'

(e) addition of the process C''

A

C'' C'

D

(f) reply lost

Fig. 3. Bad Pattern of Graphs Changing

It is important to note (and easy to see) that the dynamic one-time query specification
is satisfied by the WILDFIRE algorithm in the modelM∗,b with b > 1. In the following
we will explore if there exist solutions without assuming a known upper bound on the
diameter.

3.4 The DEPTHSEARCH Algorithm

The algorithm that follows (called DEPTHSEARCH) solves the one-time query problem
as defined just previously. That protocol relies on the following assumptions.

– asynchronous model enriched with a perfect failure detector (the faulty processes
are deleted from the set neighborhood),

– unique process identifiers,
– a finite diameter of the network (not known in advance).

Algorithm description. This algorithm works in a different way than WILDFIRE. In
WILDFIRE, many query-update messages are exchanged all over the network at the
same time. In the DEPTHSEARCH algorithm only one message (query or reply) is trans-
mitted at one time. The only case, in which two different queries co-exist, is the conse-
quence of a disconnection between two nodes, but in any case only one query is taken
into account.

This algorithm manages several sets:

– The set values that contains all values currently collected,
– The set replied that contains the identifiers of the nodes that have provided their

value,

10 R. Baldoni et al.

– querying contains the identifiers of the nodes that have sent a querying message
and are waiting for replies from their neighborhood. These nodes (except the query
initiator) are also nodes that have to provide their value to some other querying
process.

This algorithm works similarly to a depth-first tree traversal algorithm (it traverses
the nodes that compose the system). When a node pi receives a query message, it checks
if some of its neighbors have not yet received the query message yet by checking the
querying and replied set. If some of them have not yet received a query message, then
pi sends to the first of them (say pj) a query message and waits until it receives a reply
from pj .

When the node pi receives a reply message from pj , or if pj is no more in the pi’s
neighborhood (pi is failed or is disconnected), the node pi sends a query message to the
next neighbor that has not yet received a query message. When all pi’s neighgbors have
received a query message or are no longer in the pi’s neighborhood, then pi sends back
a reply message with the values and replied set updated or, if pi is the query initiator, it
returns the set of values.

INITIALIZATION

1 querying ← ∅; % set of processes forwarding the query %;
2 replied ← ∅; % set of processes replied to the query %;
3 targets ← ∅; % set of processes to query by the local process %;
4 values ← {local value}; % set of processes to query by the local process %;
5 neighborhood % set of correct neighbors provided and updated by the perfect failure detector %

REQUEST(Q)
6 targets ← neighborhood; % This line freezes the neighbor set %;
7 querying ← querying ∪ {local id};
8 for each i := 1 to |targets|
9 if (targets[i] 	∈ {querying} ∪ {replied})

10 then send [QUERY,(Q, querying, replied)] to n[i];
11 wait until (receive [REPLY,r values, r replied] from n[i] ∨ n[i] 	∈ neighborhood);
12 if (n[i] ∈ neighborhood)
13 then values ← values ∪ r values;
14 replied ← replied ∪ r replied

LAUNCH(Q)
15 REQUEST(Q);
16 return (values)

RECEPTION

17 when (receive [QUERY,(Q, r querying, r replied)] from pj) do
18 querying ← r querying;
19 replied ← r replied;
20 REQUEST(Q);
21 replied ← replied ∪ {local id};
22 send [REPLY,(values, replied)] to pj ;

Fig. 4. The DEPTHSEARCH Algorithm

Algorithm illustration. To illustrate the protocol behaviour, let us consider the com-
putation related to a query initiated by a node pA in the network shown in Figure 5.
In this scenario pA starts to query the first process in the pA.targets = (B,C,D)
set, pB does the same with its pB.targets = (A,C,E) set where pB.querying =

Looking for a Definition of Dynamic Distributed Systems 11

A

B C D

E

Fig. 5. Graph Representing the Network during the A’s Query

pA.querying = {A}. Then pB queries pC , piggybacking the list of querying processes,
that now is {A,B}. Then, pC does not query anyone and gives back a reply to pB ,
with a list of replied processes equal to {C}. At this point, pB queries pE . Let us
consider the case in which the edge (pB, pE) breaks, then pB ends and becomes part
of replied giving back to pA the value come from pB , vb, and the value from pC , vc.
Then, pA avoids to query pC as part of replied and queries directly pD, piggybacking
the list of pA.querying still containing only A and the list of replied equal to {B,C}.
Then pD avoids to query pC and it queries only pE . pE receives the query with the
following information: querying processes {A,D}, replied processes {B,C}. Then, the
process pE terminates the querying phase and sends back a reply to pD containing vE .
pD terminates the querying phase also as its pending list is empty (targets-querying-
replied) and sends back the reply containing vE , vD. pA terminates the querying phase,
computes the result on the values of all nodes, and returns.

DEPTHSEARCH correctness proof. In the following we formally prove that the DEPTH-
SEARCH algorithm solves the dynamic one time query problem in any model with a
bounded but unknown diameter (Theorem 1). In particular, Lemma 1 proves that the
DEPTHSEARCH algorithm satisfies Dynamic Validity while Lemma 2 proves that the
algorithm satisfies Termination.

Lemma 1 (Dynamic Validity). DEPTHSEARCH satisfies the Dynamic Validity prop-
erty in theM∞,n model.

Proof. (Sketch) LetG be the graph representing the network when the query starts and
let us consider the maximal connected subgraph G′ of G at the time the query ends
which includes the query initiator pA. Let us assume by contradiction that when the
query ends, pA does not comprise in its values set the value of one node pX in the
graphG′.

Since pX belongs to G′, then there exists a non-empty set of paths (generally non-
independent) which connect pA and pX belonging to G′ (and G). Without loss of gen-
erality let us suppose that there exists only one of such paths P = {pA, ..., pX}.

Let us first observe that when a process pi receives a query q, the query has actually
traversed a sequence of processes which are in the querying state and always comprising
the initiator pA. Let us call this sequence as the query path for the received query. By

12 R. Baldoni et al.

construction (line 9) no process in the sequence is in the replied set of any process of
the sequence. Then, if pi replies back to the query, its value starts to flow back on the
query path, and each processes which receives it, stores pi in the replied set and the
pi’s local value in the values set. On the other hand, if the query path breaks, then the
flowing of the value towards pA could block. All nodes which did not receive the value
back are a prefix of the broken query path and are still in their querying phase (a node is
in the querying phase at least the time its succesor in the path is in the querying phase).
None of these processes have pi in the replied set then, a new query path reaching pi

with this prefix is still possible. Moreover, even disconnected nodes which have pi in
the replied set, will renew this set excluding pi when they receive a new query (line 19)
from one of the querying nodes of this prefix.

Let us now consider the case of pX . pX will have the path P connecting it to pA

which is up for the whole time interval. However, it could receive a query from another
query path which breaks before pA gets the value of pX . This could happen more than
once, depending on the graphG topology and changes while the algorithm work. With-
out loss of generality let us suppose that only two paths connect pA to pi, i.e. P and a
path F which shares with P a non-empty prefix pfx , and the F is the first explored by
the algorithm. Let us also suppose that the path F breaks leaving nodes of pfx without
the value of pX . In this case the last node of pfx , let’s say pl, once revealed the discon-
nection explores another path with the same prefix pfx . Without loss of generality we
can now suppose it will explore P . In fact we can assume that all other explored paths
before P could complete correclty bringing then the pl to query its successor in P (by
the accuracy property of the failure detector no nodes in the path P can be excluded),
this successor does the same as each process between pl and pX , leading then to query
pX . By contradiction we assumed that pX was not in the pA values when pA stops to
be querying, however when pA stops to be querying the value of pX has been surely
flowed on the path P leading to a contradiction. �Lemma 1

Lemma 2. The DEPTHSEARCH algorithm satisfies Termination in the modelM∞,n.

Proof. The only statement blocks the protocol is the wait statement at line 11. Let us
call as querying process a process which sent the query message to some node and is
waiting for a reply, i.e. a process blocked at statement 11. By the completeness property
of the failure detector no querying process can block due to a failure of a node in its
neighborhood. Then, let us suppose that no failures happen during the query interval,
this also implies that the graph representing the network when the query starts can only
grow during this time. By the pseudo-code, a querying node waits a reply from each
neighbor which was in the neighborhood when the query is received (line 6). Then,
even if in the model M∞,n, a node could have an always growing neighborhood, the
neighborhood to wait from never grows, i.e. each querying node pi has to wait a reply
from a bounded number of neighbors ni. Starting from pA (the initiator) the query
message starts to flow in the graph involving the first neighbor of pA, which in turn
involves its first neighbor and so on. Let us denote as {p11, p21, p31...} the sequence of
processes in which pi

1 is the first neighbor of the process pi−1
1 . A first observation on

the diameter of the graph which is bounded as the model implies, leads to conclude
that this sequence is bounded when all these processes are one different to the other.

Looking for a Definition of Dynamic Distributed Systems 13

On the other hand, since the querying set, sent along with the query, includes all the
sequence {p11, ...pi−1

1 } when arrives at pi
1, the query stops to flow when (i) either the

last process is reached (in the case it contains all different processes) (ii) the first time a
process is repeated in the sequence (which means that the sequence contained a loop).
Let us denote as pi

1 this last node, it will reply back by letting the process pi−1
1 to query

its second neighbor. A second observation about the arbitrary order of neighbors in the
neighborhoods which make indistinguishable a sequence of processes through where a
query flows from another leads to assume ni = 1 for each pi without lossing generality.
This means that each querying process starting from pi−1

1 will unblock pi−2
1 by replying

back its value. All querying processes in the system will eventually unblock preserving
Termination. �Lemma 2

Theorem 1. The DEPTHSEARCH algorithm solves the dynamic one time query prob-
lem in the modelM∞,n.

Proof. It immediately follows from Lemma 1 and Lemma 2. �Theorem 1

3.5 Impossibility of Solving the Dynamic One-Time Query Problem in M∞,∞

This proof is simple. It is based on the race among the message that arrives at a process
pi just a moment before a new process pi+1 joins linking to pi. The race is infinite as a
diameter always growing makes possible stretching the path by one infinitely often.

Theorem 2. The dynamic one-time query problem cannot be solved in the model
M∞,∞.

Proof. Let us suppose by contradiction that given any operation query(), (i) query()
will take a finite time Δ, (ii) the operation gathers values from all processes inside the
graph for the whole time duration and which are connected to the querying process
through the graph defined at the time the query starts or its subgraphs.

Let consider a process pi invoking a query() operation at some point of time tq .
Let us suppose that a time t0 (initial time) the network graph consists of a finite path
of processes denoted as {pi, . . . pk}. Then, let us suppose that this path infinitely grows
along the time, without loss of generality, let us suppose that the path length is increased
by 1, by adding a process pi

h, each δ time interval. Then after t0 +nδ the graph consists
of the path {pi . . . pk, p

1
h, p

2
h . . . p

n
h}.

Let us now consider a run R in which tq = kδ + t0. In this case all processes
{pi . . . pk, p

1
h, p

2
h . . . p

k
h} must necessarily receive the query message in order to be in-

volved in the query() operation as the specification requires. This also implies that the
process pk−1

h must send the query message to pk
h. By construction pk

h belongs to pk−1
h ’s

neighborhood before the time tr in which pk−1
h receives the query message.

Now we consider a run R′ with the same scenario as R but with tq = (k − 1)δ + t0
and the time at which pk−1

h receives the query message is again tr where tr > kδ + t0;
As pk−1

h cannot determine tq, thenR andR′ are indistinguishable for pk−1
h . This means

that in R′, pk−1
h will relay the message to pk

h.

14 R. Baldoni et al.

This implies that, each process receiving a query message must relay it to the neigh-
borhood defined at the time the query message has been received. Each query() opera-
tion can terminate only when a reply has been gathered by all these processes.

Then, consider a run in which each process pi
h receives the query message at time

tir > (i+ 1)δ. The number of processes will receive the query message will be infinite
andΔ is infinite as well, getting a contradiction. �Theorem 2

4 Conclusion

The aim of this position paper was the investigation of two attributes that character-
ize dynamic distributed systems, namely the varying size of the system (according to
process joins and departures), and its “geography” captured by the notion of process
neighborhood. In order to illustrate these notions, the paper has considered the One-
Time query problem as a benchmark problem. It has been shown that (1) the traditional
definition of this problem has to be weakened in order the problem can be solved in
some dynamic models, and (2) it cannot be solved in all dynamic models. The quest for
a general definition of what a “dynamic distributed system” is (a definition on which
the distributed system and network communities could agree) still remains a holy grail
quest.

References

1. Aguilera, M.K.: A Pleasant Stroll Through the Land of Infinitely Many Creatures. ACM
SIGACT News, Distributed Computing Column 35(2), 36–59 (2004)

2. Bawa, M., Gionis, A., Garcia-Molina, H., Motwani, R.: The Price of Validity in Dynamic
Networks. In: Proc. ACM Int’l Conference on Management of Data (SIGMOD), pp. 515–
526. ACM Press, New York (2004)

3. Chandra, T., Toueg, S.: Unreliable Failure Detectors for Reliable Distributed Systems. Jour-
nal of the ACM 43(2), 225–267 (1996)

4. Chandra, T., Hadzilacos, V., Toueg, S.: The Weakest Failure Detector for Solving Consensus.
Journal of the ACM 43(4), 685–722 (1996)

5. Chandy, K.M., Lamport, L.: Distributed Snapshots: Determining Global States of Distributed
Systems. ACM Trans. on Computer Systems 3(1), 63–75 (1985)

6. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of Distributed Consensus with One
Faulty Process. Journal of the ACM 32(2), 374–382 (1985)

7. Gafni, E., Merritt, M., Taubenfeld, G.: The concurrency hierarchy, and algorithms for un-
bounded concurrency. In: Proc. 20th ACM Symposium on Principles of Distributed Com-
puting (PODC ’01), pp. 161–16 (2001)

8. Hadzilacos, V., Toueg, S.: Reliable Broadcast and Related Problems. In: Distributed Systems,
pp. 97–145. ACM Press, New York (1993)

9. Merritt, M., Taubenfeld, G.: Computing with Infinitely Many Processes. In: Herlihy, M.P.
(ed.) DISC 2000. LNCS, vol. 1914, pp. 164–178. Springer, Heidelberg (2000)

10. Raynal, M.: A Short Introduction to Failure Detectors for Asynchronous Distributed Sys-
tems. ACM SIGACT News, Distr. Computing Column 36(1), 53–70 (2005)

Adaptive Workflow Nets for Grid Computing�

Carmen Bratosin, Kees van Hee, and Natalia Sidorova

Department of Mathematics and Computer Science
Eindhoven University of Technology

P.O. Box 513, 5600 MB Eindhoven, The Netherlands
c.c.bratosin@tue.nl, k.m.v.hee@tue.nl, n.sidorova@tue.nl

Abstract. Existing grid applications commonly use workflows for the
orchestration of grid services. Existing workflow models however suf-
fer from the lack of adaptivity. In this paper we define Adaptive Grid
Workflow nets (AGWF nets) appropriate for modeling grid workflows
and allowing changes in the process structure as a response to trigger-
ing events/exceptions. Moreover, a recursion is allowed, which makes the
model especially appropriate for a number of grid applications. We show
that soundness can be verified for AGWF nets.

Keywords: workflows, Petri nets, grid computing, coordination, mod-
eling, verification.

1 Introduction

The notion of workflow appeared first in the world of enterprize information
systems, where the execution of business processes is divided over several com-
ponents, each with its own task. One of these components is a workflow engine
that takes care of the control flow only. This separation of concerns is very fruitful
and allows designers to prove (partial) correctness of the designed system.

Almost all the existing grid applications currently also use the idea of workflow
to model processes. From the grid point of view, a workflow is a mean for the
automation of processes, which involves the orchestration of a set of grid services,
agents and actors that must be combined together to solve a problem or to define
a new service [5]. The most common model used for grid workflows is the Directed
Acyclic Graph (DAG). Although DAGs are intuitive for process descriptions,
their modeling power has limitations (e.g. they does not support loop patterns
and does not allow dynamic process changes driven by events happened in the
system).

In [6], we introduced Adaptive Workflow Nets (AWF nets), an extension of
workflow Petri nets [2,3] with the nesting concept [10]. AWF nets allow to in-
clude dynamic process changes and a fault handling mechanism into a model
without forcing the user to get into implementation details. In this paper we

� This research is supported by the GLANCE NWO project “Workflow Management
for Large Parallel and Distributed Applications”.

V. Malyshkin (Ed.): PaCT 2007, LNCS 4671, pp. 15–21, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

16 C. Bratosin, K. van Hee, and N. Sidorova

define Adaptive Grid Workflow nets (AGWF nets), a subclass of AWF nets ap-
propriate for modeling grid workflows. AGWF nets allow changes in the process
structure as a response to triggering events/exceptions (adaptivity). They make
use of a pattern library, which easies reusability. Exception transitions are used
as a solution to the robustness problem. Moreover, a (restricted form of) re-
cursion is allowed, which makes it especially appropriate for a number of grid
applications.

An important correctness property of workflow nets is soundness [2,3], which
means that each computation can always terminate without leaving garbage1.
In this paper we show that soundness can be checked for AGWF nets.

Related work. The advantages of the use of colored Petri nets for modeling grid
workflows are considered in [9]. Tokens represent there real data and the net
is used to model the interactions between different software resources. Similar
graph representations can be found in [4,11]. Neither one however considers
flexibility and adaptivity aspects.

The rest of the paper is organized as follows. In Section 2 we give basic
definitions. In Section 3 we introduce the notion of adaptive grid workflow nets
and formulate the soundness criterium for them. In Section 4 we discuss the
obtained results and indicate directions for future work.

2 Preliminaries

N denotes the set of natural numbers. A bag (multiset) M over a set P is a
mapping M : P → N. The set of all bags over P is also denoted by N

P . We
use + and − for the sum and the difference of two bags and =, <,>,≤,≥ for
comparisons of bags, which are defined in the standard way. We overload the set
notation, writing ∅ for the empty bag and ∈ for the element inclusion. We write
e.g. M = 2[p] + [q] for a bag M with M(p) = 2, M(q) = 1 and M(r) = 0 for all
r ∈ P \ {p, q}.

A Petri net is a tuple N = 〈P, T, F, l〉, where: (1) P and T are two disjoint
non-empty finite sets of places and transitions respectively, elements of the set
P ∪T are called nodes of N ; (2) F ⊆ (P ×T)∪(T ×P) is a flow relation between
places and transitions and conversely; (3) l is a labeling function for transitions
mapping each t ∈ T to some label l(t) ∈ Σ, where Σ is a finite set of labels.

Let N = 〈P, T, F, l〉 be a Petri net and T ′ ⊆ T . The projection N|T ′ of N on
T ′ is the net 〈P, T ′, F ′, l′〉, where F ′ = {(x, y)|(x, y) ∈ F ∧ x, y �∈ T \ T ′} and
l′ : T ′ → Σ with l′(t) = l(t) for all t ∈ T ′.

Markings are states (configurations) of a net interpreted as bags over P . A
marked net is a tuple (N,M), where N is a net and M is its marking.

Given a node n ∈ (P ∪ T), the preset •n and the postset n• of t are the sets
{n′|(n′, n) ∈ F} and {n′′|(n, n′′) ∈ F} respectively. We will say that a node n

1 Note that soundness differs from the halting problem, which is the property that a
computation will always terminate.

Adaptive Workflow Nets for Grid Computing 17

is a source node iff •n = ∅ and n is a sink node iff n• = ∅. A path of a net is a
sequence 〈x0, . . . , xn〉 of nodes such that ∀i : 1 ≤ i ≤ n : xi−1 ∈ •xi.

We define the firing relation −→ asM+•t
t−→M+t• for any markingM and

transition t. M t−→ is an abbreviation of ∃M ′ :: M t−→ M ′. For σ = t1 . . . tn,
we write M σ−→M ′ iff M t1−→ · · · tn−→ M ′. Next, M ∗−→M ′ iff ∃σ :: M σ−→ M ′

and R(N,M) denotes {M ′ |M ∗−→M ′}, the markings of N reachable from M .
A workflow net is a Petri net with one initial (source) place i and one final

(sink) place f and every place and transition of the net being on a directed path
from the initial to the final place. The initial marking of a workflow net is [i]
and the (desired) final marking is [f].

3 Adaptive Grid Workflow Nets

In this section we define Adaptive Grid Workflow nets (AGWF-nets) and for-
mulate the soundness criterium for them. We start with introducing a notion of
Extended Workflow nets (EWF-nets), which form the basis for AGWF-nets.

Extended Workflow nets [6,7] are an extension of Workflow nets [2,3] that
simplifies the modeling of exceptions by making a clear distinction between nor-
mal termination and termination caused by an exception. When an exception
occurs, it is observed by some upper layer, which handles it. The execution of
the EWF net is then terminated.

We consider a partition of the set of transitions T = Te ∪ Tn, where Te is the
set of exception transitions and Tn is the set of non-exception transitions. The
set Σ of labels is partitioned into Σe ∪Σn accordingly.

Definition 1 (Extended workflow net). A net N = 〈P, Te ∪ Tn, F, l〉 is an
extended workflow net (EWF net) iff (1) the net N|Tn

is a workflow net; (2) for
all t ∈ Te, t• = ∅, •t �= ∅, and •t ⊆ P \ {f}; (3) for all t ∈ Te, l(t) ∈ Σe, and for
all t ∈ Tn, l(t) ∈ Σn.

As usual, the state of the net is given by its marking. The initial marking consists
of a single token on the initial place. The only change in the semantics w.r.t.
the standard semantics of Petri nets is that exception transitions terminate the
execution of the net.

We allow standard algebraic operations on EWF nets: Two (unmarked) nets
can be combined to produce a new net by means of sequential (·) and parallel (‖)
composition and choice (+). Parallel composition can also be applied to marked
nets, and sequential composition to a marked net and an unmarked net.

Adaptive workflow nets. In [6], we introduced a class of nets, called adaptive
workflow nets (AWF nets), allowing more flexibility and adaptivity than existing
workflow systems. By adaptivity we understand an ability to modify processes in
a structured way as response to some triggering events, for instance by extending
a process with a subprocess. In [7] we considered a non-recursive subclass of AWF
nets from [6] that is well-suited for modeling business workflows and showed how

18 C. Bratosin, K. van Hee, and N. Sidorova

to verify their soundness using abstractions. Recursion is however essential for
a number of grid applications. Here we describe a recursive subclass of adaptive
workflow systems appropriate for grid applications for which soundness is still
decidable.

Let Var = {v, . . . } be a finite set of variable names and Con a finite set of
constant names. We assume a given library of process descriptions to be used
as basic building blocks for constructing more complex processes by using net
expressions. A net expression e and a token expression te are inductively defined
as: e := c | e + e | e||e | e.e, te := b | ce and ce := v | ce||ce | ce.e | init(e),
where v ∈ Var , c ∈ Con . The sets of all net expressions and token expressions
are denoted by Expr and CExpr , respectively. The expressions in Expr will be
interpreted as adaptive workflow nets while the expressions in CExpr denote
either black tokens (b) or marked adaptive workflow nets. Given an expression
e ∈ CExpr , the set of variables appearing in it is denoted Var(e) and the set of
constants in it is denoted by Con(e).

Firings of the adaptive net can depend on firings in the net tokens, which
is modelled by the guards of transitions expressed in the guard language G. A
guard g is defined as g := � | final(v) | e(v), where v ∈ Var and e ∈ Σe. A guard
final(v) is called termination guard and e(v) ∈ G is called an exception guard. The
set of all guards is denoted by G. Intuitively, the guard � of a transition t means
that the firing of t does not depend on the internal states of the net tokens, e(v)
means that the firing of t is conditioned by the firing of an exception transition
with label e in the token net v, whereas final(v) means that it is conditioned by
the token net v having reached the final marking [(f, b)].

We define now nested workflow nets as extended EWF nets.

Definition 2 (Adaptive workflow net). A Adaptive Workflow net N is a
tuple 〈P, T, F, E , g, l〉, where 〈P, T, F, l〉 is an EWF net called system net and the
extensions E , g are defined by:

– E : F → CExpr are arc expressions such that
1. All input arcs for transitions are mapped either to the black token or to

variables, i.e. for every (p, t) ∈ F , E(p, t) ∈ Var ∪ {b};
2. Every two variables on two different input arcs of a transition are dis-

tinct, i.e. for all (p, t), (p′, t) ∈ F with p �= p′, Var(E(p, t)) ∩ Var
(E(p′, t)) = ∅;

3. Every variable on the outgoing arc of a transition also occurs in the
expression of some incoming arc of this transition, i.e. for all (t, p) ∈ F ,
v ∈ Var(E(t, p)) implies v ∈ Var(E(p′, t)) for some (p′, t) ∈ F ;

4. All outgoing arcs of the initial place and incoming arcs of the final place
are mapped to the black token, i.e. for all t ∈ i•, E(i, t) = b and for all
t ∈ •f , E(t, f) = b.

– g is a function that maps transitions from T to expressions from G such that
the variable of a guard g(t) (t ∈ T) appears in the expression of some incom-
ing arc of t and does not appear in any outgoing arc of t, i.e. Var(g(t)) ⊆⋃

p∈•t Var(E(p, t)) and Var(g(t)) ∩
⋃

p∈t• Var(E(t, p)) = ∅.

Adaptive Workflow Nets for Grid Computing 19

For the sake of brevity, we define the semantics of AWF nets at an informal level.
An adaptive workflow net can be seeing as a special colored EWF net (the system
net), whose tokens can be either (marked) adaptive workflow nets themselves,
called token nets, or black tokens. Transitions with true as a guard may fire
if there are enough tokens on their input places, like in classical Petri nets. A
transition t guarded by final(x) may fire if there are enough tokens on its input
places and the place connected to t by the arc with variable x contains a token
net that has reached its final state [(f, b)]. This token will then be consumed
from p during the firing. A transition t guarded by e(x) may fire if there are
enough tokens on its input places and some transition with label e is enabled
in a token net contained in the place connected to t by the arc with variable
x. Again, it is this token that will be used in the transition firing. Note that
since we require that the output arc expressions do not contain variables from
the transition guard, the net token x gets destroyed. The output token nets are
computed according to the corresponding arc expressions where variables are
substituted by the token nets from the input places, participating in the firing.

Soundness. Soundness is an important property of adaptive workflow nets stat-
ing that at any moment of system run there is a chance to terminate properly
by reaching the final marking, also when no exception occurs in token nets.
We define soundness for adaptive nets as proper termination of every reach-
able marking by firing only non-exceptional transitions without synchronizing
on exceptions:

Definition 3 (Soundness for AWF nets). An AWF net N is called sound
iff N is quasi-live, and for all M such that [(i, b)] σ−→ M , for some transition

sequence σ ∈ T ∗
n , there exists σ′ such that M σ′

−→ [(f, b)], and for all t from σ′,
t ∈ Tn and g(t) ∈ {final(v),�}.

In [7] we defined a non-recursive subclass of AWF-nets for which soundness can
be algorithmically checked:

1. N1 and M1 are the sets of all EWF nets and marked EWF nets, respectively;
2. 〈P, T, F, E , g, l〉 ∈ Nk+1, for k ≥ 1, iff for all a ∈ F and c ∈ Con(E(a)),
�(c) ∈ Nk. A marking M of N ∈ Nk+1 is a multiset over P × (Mk ∪ {b}).
Mk+1

def= {(N,M)|N = 〈P, T, F, E , g, l〉 ∈ Nk+1 ∧ M ∈ N
P×(Mk∪{b})} is

called the set of marked nets of level at most k.

Note that Nj ⊆ Nj+1 and Mj ⊆Mj+1, for all j ≥ 1.
Since we want to have at least a restricted form of recursion for grid ap-

plications and still have an analyzable class of models, we introduce a form of
well-foundedness for the recursion in Adaptive Grid Workflow nets.

Let N be a given AGWF net. We define the net collection Coll (N) of N as
the union of the set of constants (nets) used on the arc expressions of N and
the net collections of these constant nets. The net collection of an AGWF net

20 C. Bratosin, K. van Hee, and N. Sidorova

can be computed by using standard fixed point algorithms. By inspecting the
net collection, one can easily check whether a net belongs to ∪j∈NMj .

Definition 4 (Adaptive Grid Workflow net). An Adaptive Grid Workflow
net (AGFW net) is an AWF net such that every net from Coll(N) allows a
firing sequence [(i, b)] σ−→ [(f, b)] such that for any transition t from σ, we have
g(t) ∈ {final(v),�} and for any (t, p) ∈ F , Con(Expr (t, p)) ⊆ ∪j∈NMj.

Note that the property required is checked at the level of EWF-nets, i.e. classical
Petri nets, and not at the nested level. Intuitively, we require that there is at
least one execution with bounded nesting allowed in every net involved in the
process.

Now we show that soundness can be checked for AGWF nets. To reduce the
verification of soundness to a finite problem, we introduce the abstraction α
that replaces every token net in the AGWF net by a colored token with the
set of exceptions of the net token as its color. An adaptive workflow net is thus
abstracted by a colored EWF net whose color set is finite since the number of
exceptions is finite. The guards of the type final(v) are replaced by � in the
abstract net, and the guards e(v) are replaced by the guards e ∈ α(v). Parallel
and sequential composition, as well as choice, are abstracted to the union of the
sets of exceptions, and constants in the arc expressions are substituted by their
sets of exceptions. Now we can formulate our main result:

Theorem 5 (Soundness check). An AGWF net N is sound iff for every net
N ′ ∈ Coll(N) the following properties hold: (1) α(N ′) is quasi-live, and (2)
for all abstract markings Mα reachable by firings of non-exception transitions

in α(N ′), i.e. [(i, b)] σ−→ Mα with σ ∈ T ∗
n , we have Mα

σ′
−→ [(f, b)], where

gα(t) = � for all t ∈ σ′.

4 Conclusion

In this paper, we introduced adaptive grid workflow nets. Exceptions transition
are used to model faults (e.g. failure of a job). The idea of nested nets is used
to make models adaptable. A library of workflow nets is used to increase the
reusability and achieve separation of concerns in process modeling. We showed
that an important correctness property called soundness can be verified on this
class of nets by using abstraction techniques. We conjecture that another im-
portant property of adaptive workflow systems called circumspectness2 is also
decidable for AGWF nets.

Our next step is to extend the workflow engine YASPER [8] for handling
AGWF nets, and extend the existing translation of classical workflow nets to WS
BPEL [1] for our model by incorporating the nesting mechanism and patterns
for standard exception handling mechanisms.
2 Circumspectness ensures that whenever an exception happens, the upper layer net

is able to handle it.

Adaptive Workflow Nets for Grid Computing 21

References

1. Web Services Business Process Execution Language Version 2.0. WS-BPEL TC
OASIS (2005) http://www.oasis-open.org/committees/download.php/11601/

2. van der Aalst, W.M.P.: The Application of Petri Nets to Workflow Management.
The Journal of Circuits, Systems and Computers 8(1), 21–66 (1998)

3. van der Aalst, W.M.P., van Hee, K.M.: Workflow Management: Models, Methods,
and Systems. MIT Press, Cambridge (2002)

4. Deelman, E., Blythe, J., Gil, Y., Kesselman, C., Mehta, G., Patil, S., Su, M.-
H., Vahi, K., Livny, M.: Pegasus: Mapping scientific workflows onto the Grid.
In: Dikaiakos, M.D. (ed.) AxGrids 2004. LNCS, vol. 3165, pp. 11–20. Springer,
Heidelberg (2004)

5. Fox, G.C., Gannon, D.: Workflow in Grid Systems. Concurrency and Computation:
Practice and Experience 18(10), 1009–1019 (2006)

6. van Hee, K., Lomazova, I.A., Oanea, O., Serebrenik, A., Sidorova, N., Voorhoeve,
M.: Nested nets for adaptive systems. In: Donatelli, S., Thiagarajan, P.S. (eds.)
ICATPN 2006. LNCS, vol. 4024, pp. 241–260. Springer, Heidelberg (2006)

7. van Hee, K., Lomazova, I.A., Oanea, O., Serebrenik, A., Sidorova, N., Voorhoeve,
M.: Checking properties of adaptive workflow nets. In: CS&P 2006 - Concurrency
2006, Specification and Programming, 27-29 September 2006, Germany, pp. 92–103
(2006) (An extended version is to appear in Fundamenta Informaticae)

8. van Hee, K., Oanea, O., Post, R., Somers, L., van der Werf, J.M.E.M.: Yasper: a
tool for workflow modeling and analysis. In: ACSD, pp. 279–282. IEEE Computer
Society, Los Alamitos (2006)

9. Hoheisel, A.: User tools and languages for graph-based Grid workflows. Concur-
rency and Computation: Practice and Experience 18(10), 1101–1113 (2006)

10. Lomazova, I.A.: Modeling dynamic objects in distributed systems with Nested
Petri nets. Fundamenta Informaticae 51(1-2), 121–133 (2002)

11. Oinn, T.M., Addis, M., Ferris, J., Marvin, D., Senger, M., Greenwood, R.M.,
Carver, T., Glover, K., Pocock, M.R., Wipat, A., Li, P.: Taverna: a tool for the
composition and enactment of bioinformatics workflows. Bioinformatics 20(17),
3045–3054 (2004)

http://www.oasis-open.org/committees/download.php/11601/

A Stochastic Semantics for BioAmbients

Linda Brodo1, Pierpaolo Degano2, and Corrado Priami3

1 Dipartimento di Scienze dei Linguaggi - via Tempio 9, I-07100 Sassari, Italia
brodo@uniss.it

2 Dipartimento di Informatica - Largo Pontecorvo 3, I-56127 Pisa, Italia
degano@di.unipi.it

3 The Microsoft Research - University of Trento Centre for Computational and
Systems Biology - Piazza Manci 17, I-38100 Povo (Tn), Italia

priami@cosbi.eu

Abstract. We consider BioAmbients, a calculus for specifying biological
entities and for simulating and analysing their behaviour. We extend
BioAmbients to take quantitative information into account by defining
a stochastic semantics, based on a simulation stochastic algorithm, to
determine the actual rate of transitions.

Keywords: Process Calculi, Stochastic Operational Semantics, Systems
Biology.

1 Introduction

The classical research in Biology has followed a reductionistic approach by fo-
cusing on the understanding of the activities of single molecules. A model of
a complete biological system is then obtained by simply putting together its
components. This methodology lacks in expressive power because the whole is
more complex that the simple sum of individuals. Then, there has been a shift
from the description of components towards the specification of their overall
behaviour and interactions. This was made evident during the Human Genome
Project 1: an enormous quantity of biological data have been collected and still
there are no satisfactory simulators of the dynamics of even a few genes. A new
branch of Biology is now emerging called Systems Biology [13]. Its main chal-
lenges are to develop theoretical and technological tools for modeling, analysing
and predicting biological system behaviour.

The main mathematical models for describing living matter rely on the clas-
sical ordinary or stochastic differential equations. However, these systems of
equations rapidly grow very complex, are hardly computable and extensible, of-
ten become difficult to solve hence sometimes do not offer satisfactory analysis
tools. Recently, Regev, Silverman and Shapiro [22] brought out the similari-
ties between distributed, concurrent, mobile computer systems and biological
systems, e.g. metabolic or gene regulatory networks and signalling pathways.
1 Started 1990 and ended in 2003 (http://www.ornl.gov/sci/techresources/

Human Genome/home.shtml).

V. Malyshkin (Ed.): PaCT 2007, LNCS 4671, pp. 22–34, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A Stochastic Semantics for BioAmbients 23

Biological systems are made up of millions of biological components that are ac-
tive simultaneously and that can interact to cooperate towards a common goal.
Furthermore, the interactions between components are mainly binary and can
occur only if the partners are correctly located (e.g. they are near enough, no
membrane is dividing them, the affinity or propensity to interactions is suffi-
ciently high). Finally, the actual interactions may change the future behaviour
of the whole system even though they occur locally. All these features describe
distributed, mobile concurrent computer systems as well, except maybe for those
artificial systems having a smaller number of components. There are various pro-
cess calculi, e.g. [15,12,16,5] that specify the form and the dynamic behaviour
of concurrent systems, and that allow for mechanically analysing them. In this
paper we focus on the BioAmbient calculus [1], a variant of the Mobile Ambi-
ents [5]. It has been specifically introduced for describing biological interactions
within, or across, molecular compartments: processes represent cells, compart-
ments model membranes, and localized communications and movements specify
biological reactions.

Our main contribution (Sect. 3) is the definition of a stochastic semantics for
this calculus to represent the effects of chemical and physical parameters, e.g.
concentration of molecules, on the dynamics of living matters. Our stochastic
semantics enables us to closely simulate the experiments that biologists carry on
in vivo on in vitro. Several computations are run representing each one a single
virtual experiment that simulate the behaviour of the biological system in hand.
The computations are inspected to collect the relevant information about, e.g.
the occurrences of selected communication or synchronizations, i.e. of reactions.
The classical statistical analysis then applies. This methodology is known as
transient analysis, and reflects the way biologists carry on their experiments.
Another approach, typical of computer scientists, consists of deriving Markov
chains and study the probability distribution in the steady states. We follow
this one and exemplify our proposal through the analysis of a simple enzyme-
substrate complex. Our example shows how the behaviour in silico is regulated
by stochastic rates that are dynamically computed after each synchronization
(Sect. 4).

There are many approaches for studying the behaviour of biological systems
based on process calculi, in some cases new calculi with biologically inspired
primitives have been introduced [17,9,4,19]. The first stochastic calculi applied
for modelling biological systems was the stochastic π-calculus [18]. It has been
used to model and perform transient analyses on some interesting biological sys-
tems [14,7,22], using simulation tools developed for the biological domain [6,20].
The relevance of the quantitative analyses in the study of biological models is
arising and many works apply stochastic semantics both for simulations [10,3,11]
and steady states analyses [2]. To the best of our knowledge, ours is the first
stochastic semantics for Ambient-like calculi that apply the Gillespie’s algorithm
in a context with explicit biological compartments and steady state analysis.

24 L. Brodo, P. Degano, and C. Priami

2 Background

BioAmbients [1] (hereafter BioA, for short) are a variant of Mobile Ambients [5]
which we assume the reader is familiar with. Each BioA process models a cell
and the ambient constructor represents a cellular membrane, possibly nested.

A BioA process evolves when a pair of its sub-processes interact synchronously,
representing a reaction between the involved cells. There are two kinds of inter-
actions. The first is typical of calculi of communicating processes: it uses input
and output prefixes for sending and receiving messages. The second kind of
interactions involves membranes and capabilities that act on them. Such inter-
actions consist of synchronizations between capabilities and the corresponding
co-capabilities. For example, two sub-processes, enclosed each one in a membrane
and lying side to side, may fuse in a single one by merging their membrane if the
first one offers the capability merge+ and the second one the capability merge−,
both on the same channel a. Formally, the process [merge+a.P]|[merge−a.Q]
can evolve to the process [P |Q]. (Note that membranes have no names and that
the merge capability makes the open capability useless).

BioA processes describe the behaviour of the molecules, and a specific molecule
is characterized by the communication prefixes and the capabilities offered by
its sub-processes. The syntax of BioA follows.

Definition 1. Given a countable infinite set of names ranged over by n,m,p, . . .
the set of BioA processes is described by the following BNF-like specification:

Processes
P, Q ::= 0 Inaction(empty)

| (ν n)P Restriction
| P |Q Composition
| A(x̃) Agent Identifier
| [P] Ambient(membrane)
| π.P Communication prefix
| M.P Capability prefix
|
∑

i∈I πi.Pi Comm Choice
|
∑

i∈I Mi.Pi Capability Choice

Capabilities
M, N ::= enter n Synch entry

| accept n Accept
| exit n Exit
| expel n Expel
| merge+ n Merge with
| merge− n Merge into

Actions
π ::= $n!{m} Output

$n?{m} Input

Directions
$::= local Intra−ambient

| s2s Inter−siblings
| p2c Parent to child
| c2p Child to parent

As said above, the activities of BioA processes can only be synchronizations on
input/output prefixes or on capabilities. The semantics of BioA is given by the
reduction rules in Table 2 up to the standard congruence rules in Table 2.

We assume the classical definitions of the functions fn(P) and bn(P), for
computing the free names and the bound names of P : bound names are defined
by the restriction operator and by input prefixes; free names are the ones which
are not bound. The first three rules in Table 2 define the activities on ambients.

A Stochastic Semantics for BioAmbients 25

The next four axioms prescribe how communications may occur according to the
four different kinds of synchronizations. The last four rules are the usual axioms
of the reduction semantics.

More in detail, the process 0 can perform no activities. The restriction oper-
ator (νn)P creates a new bound name n whose scope is P . The parallel com-
position of two processes P |Q interleaves the execution of the activities of P
with those of Q. The two processes can also synchronize. When the synchro-
nization is acting on membranes, the involved capability and the corresponding
co-capability must share a channel and must be in a certain structural relation-
ship (see also the example above for merging). The capability enter n allows
a membrane to enter another one, if this is aside and offers the co-capability
accept n on the same channel n. An exit n allows a nested membrane to leave
its containing membrane, if this offers the corresponding co-capability expel n.
The synchronizations on input/output prefixes allow a message to be sent from
the sender to the receiver, along a channel n. Moreover, prefixes are equipped
with a direction that specifies the relative position for the two corresponding
prefixes to interact. Some constraints must hold on the position of the mem-
branes enclosing the relevant prefixes. Indeed, if the two (processes firing the)
prefixes exhibit direction local, then they must be within the same membrane
(rule Local in Table 2). If the two prefixes have direction sibling, then they must
lie in two different sibling membranes (rule Sibling in Table 2). When the output
prefix has direction p2c and lies in one-level higher nested membrane enclosing
the input prefix, input must have direction c2p (rule ComOut in Table 2), and
symmetrically when exchanging input with output (rule ComIn in Table 2).

We find here convenient to adopt agent identifier A(x̃), instead of replication.
Each identifier has a unique equation of the form A(x̃) = P ; x̃ stands for the tuple
x1, . . . , xn where all the names are different and are the only names that occur
free in P . The ambient constructor [P] creates a computational environment
modeling a membrane in which P runs. Even though membranes have no names,
sometimes in the examples we shall give them one for clarity.

Table 1. Congruence rules for BioAmbients

Par Commut P |Q ≡ Q|P
Par Assoc P |(Q|R) ≡ (P |Q)|R
Choice π

∑
i∈I πi.Pi ≡

∑
i∈I πρ(i).Pρ(i), with any permutation ρ

Choice M
∑

i∈I Mi.Pi ≡
∑

i∈I Mρ(i).Pρ(i), with any permutation ρ
Par Zero P |0 ≡ P
Res Zero (ν x)0 ≡ 0
Res Res (ν n)(ν m)P ≡ (ν m)(ν n)P
Res Par (ν n)(P |Q) ≡ P |(ν n)Q n /∈ fn(P)
Res Amb (ν n)[P] ≡ [(ν n)P]
Ide A(ỹ) ≡ P{ỹ/x̃}, if A(x̃) = P
α−conv P ≡ Q if P is obtained by α-converting Q

26 L. Brodo, P. Degano, and C. Priami

Table 2. Transition system for BioAmbients

In [(T + enter n.P)|Q]|[(T ′ + accept n.R)|S] → [[P |Q]|(R|S)]
Out [[(T + exit n.P)|Q]|(T ′ + expel n.R)|S)] → [P |Q]|[R|S]
Merge [(T + merge+ n.P)|Q]|[(T ′ + merge− n.R)|S] → [(P |Q)|(R|S)]

Local (T + local n!{m}.P)|(local n?{p}.Q + T ′) → P |Q{p ← m}
Com Out (T + p2c n!{m}.P)|[(c2p n?{p}.Q + T ′)|R] → P |[Q{p ← m}|R]
Com In [(T + c2p n!{m}.P)|R]|(p2c n?{p}.Q + T ′) → [P |R]|Q{p ← m}
Sibling [(T + s2s n!{m}.P)|R]|[(s2s n?{p}.Q + T ′)|S] → [P |R]|[Q{p ← m}|S]

Res
P → Q

(ν n)P → (ν n)Q
Amb

P → Q

[P] → [Q]
Par

P → Q

P |R → Q|R

Cong
P ≡ P ′, P → Q, Q ≡ Q′

P ′ → Q′

The processes
∑

i∈I πi.Pi and
∑

i∈I Mi.Pi non-deterministically behave as the
(guarded) summand πi.Pi, and Mi.Pi respectively, for some i ∈ I.

2.1 The Gillespie’s Algorithm

We shall use the Gillespie’s formulas to compute the rate at which a reaction
occurs in a biological complex. We briefly recall them. Suppose to have a bi-
ological complex containing some molecules. Let c be the basal rate constant
that governs the rate at which two molecules interact. This only depends on
the physical properties of the two interacting molecules of the biological system,
assuming temperature, pressure and volume be constant. There are two forms
of molecular interactions. Symmetric molecular interactions are interactions be-
tween pairs of molecules of the same type. In this case, let N be the number of
the molecules of the selected type (as volume is constant, this number equals
concentration). The rate of a symmetric interaction is computed by the following
formula: c× 1

2 (N1× (N1− 1)). Asymmetric interactions occur between different
types of molecules. In this case, the computation of the rate takes into account
the number of the molecules of the first type, N1, and the one of the second
type, N2, and is: c×N1×N2. In the next section we will also make use of a third
number N3, introduced in [6], to record combinations of corresponding prefixes
in summation processes, as they can not generate any synchronizations.

2.2 Stochastic Process Calculi

Our semantics associates stochastic rates to transitions which are the parame-
ters of exponential probability functions enjoying the forgetful property. Thus,
the execution probability of each transition does not depend on the previous
transitions. Instead, the dynamical computation of the stochastic rates keeps
track of the variation of concentration of molecules. Then, we can simulate the

A Stochastic Semantics for BioAmbients 27

stochastic behaviour of a process to perform transient analysis, by repeatedly
running a specification and collecting statistical data, e.g. on the usage of en-
zymes. Also, we can build the stochastic transition system of the derivatives of
the process for deriving the Continuous Time Markov Chain (CTMC) associated
to the process, for studying the behaviour of biological systems in their steady
state. We follow this line here, under the standard hypothesis that processes are
finitary and cyclic, in order to generate a non singular and homogeneous matrix.
By applying standard mathematical techniques we derive then the stationary
probability of the system which specifies the probability of the system to be in
one of the states of the transition system, at a given instant. Further analyses of
the behaviour of the system can be done by the reward techniques [8], which, for
example, allow us to compute the throughput of a specific activity. This measure
gives the time the system takes to complete a selected interaction with respect
to the overall execution time.

3 Stochastic BioAmbients

As usual, we associate a rate with each communication prefix π and with each
capability M that became (π, r) and (M, r), respectively. For all prefixes we
assume as given the parameter r, which represents the basal rate c discussed in
Sect. 2.1. The rate at which a transition takes place is then computed through
the Gillespie’s formulas. Recall that the volume is constant, so concentration can
be measured by counting the number of molecules as distinct prefixes present in
the whole system.

Following [1], we make three assumptions on our processes for modeling sym-
metric and asymmetric molecular interactions. We distinguish a set of chan-
nel names H for characterizing symmetric interactions, as these channels can
only be used in prefixes with direction local. Because of symmetry, summation∑

i(πi, ri).Pi, offering a local prefix on H channel, also offers the corresponding
co-action. We also prevent a process

∑
i(πi, ri).Pi from offering the same prefix

twice. The above holds for processes offering capabilities
∑

i(Mi, ri).Pi, as well.
Table 3 depicts the BioA stochastic semantics up to the congruences in

Table 2. The actual transition relation is P
(n,r′)−−−→s Q, in the lower part of

the table, and its definition uses the auxiliary relation P
(x,y),(r,N1,N2,N3)−−−−−−−−−−−−→l Q.

In the left part of these labels, the x and the y stand for both direction and action
of the prefixes involved in the communications. For brevity, we sometimes write
only n, the channel name involved in the interaction, and this is always the case
when capabilities are fired. The other part of the label is the tuple (r,N1, N2, N3)
that accumulates the number of prefixes that could have generated a synchro-
nization equal to the fired one. This information is eventually used to compute

the rate in the second part of the label of the actual transitions P
(n,r′)−−−→s Q,

the first part records the channel name involved in the interaction, i.e. the kind

28 L. Brodo, P. Degano, and C. Priami

Table 3. Stochastic transition system for BioAmbients

S In

[(T + (enter n, r).P)|Q]|[(T ′ + (accept n, r).R)|S]
(n,n),(r,N1,N2,0)−−−−−−−−−−−→l [[P |Q]|(R|S)]

with N1 = Inenter n(((enter n, r)|Q), r) and N2 = Outaccept n(((accept n, r)|S), r)

S Out

[[(T + (exit n, r).P)|Q]|(T ′ + (expel n, r).R)|S)]
(n,n),(r,N1,N2,0)−−−−−−−−−−−→l [P |Q]|[R|S]

with N1 = Inexit n(((exit n, r)|Q), r) and N2 = Outexpel n(((expel n, r)|S), r)

S Merge

[(T + (merge+ n, r).P)|Q]|[(T ′ + (merge− n, r).R)|S]
(n,n),(r,N1,N2,0)−−−−−−−−−−−→l [(P |Q)|(R|S)]

with N1 = Inmerge+ n(((merge+ n, r)|Q), r) and N2 = Outmerge− n(((merge− n, r)|S), r)

S Local

(T + (local n!{m}, r).P)|((local n?{p}, r).Q + T ′)
(local n!{m},local n?{p}),(r,N1,N2,N3)−−−−−−−−−−−−−−−−−−−−−−−−−→l P |Q{p ← m}

with (r, N1, N2) =

j
(r, 1, 1) n /∈ H
(r
2 , 2, (2 − 1)) n ∈ H

N3 = Mixlocal n!{m}(((T + (local n!{m}, r).0) | ((local n?{p}, r).0 + T ′)), r)

S ComOut

(T + (p2c n!{m}, r).P)|[((c2p n?{p}, r).Q + T ′)|R]
(p2c n!{m},n),(r,1,N2,0)−−−−−−−−−−−−−−−−→l P |[Q{p ← m}|R]

with N2 = Inc2p n?{p}(((c2p n?{p}, r)|R), r)

S Com In

[(T + (c2p n!{m}, r).P)|R]|((p2c n?{p}, r).Q + T ′)
(n,p2c n?{p}),(r,N1,1,0)−−−−−−−−−−−−−−−→l [P |R]|Q{p ← m}

with N1 = Outc2p n!{m}(((c2p n!{m}, r)|R, r))

S Sibling

[(T + (s2s n!{m}, r).P)|R]|[((s2s n?{p}, r).Q + T ′)|S]
(n,n),(r,N1,N2,0)−−−−−−−−−−−→l [P |R]|[Q{p ← m}|S]

with N1 = Outs2s n!{m}(((s2s n!{m}, r)|R), r)) and N2 = Ins2s n?{p}(((s2s n?{p}, r)|S), r)

S Res
P

(x,y),(r,N1,N2,N3)−−−−−−−−−−−−→l Q

(ν n)P
(x,y),(r,N1,N2,N3)−−−−−−−−−−−−→l (ν n)Q

S Amb
P

(x,y),(r,N1,N2,N3)−−−−−−−−−−−−→l Q

[P]
(n,n),(r,N1,N2,N3)−−−−−−−−−−−−→l [Q]

,

8<
:

x = x′n
or
x = $nx′′

S Par
P

(x,y),(r,N1,N2,N3)−−−−−−−−−−−−→l Q

P |R (x,y),(r,N′
1,N′

2,N′
3)−−−−−−−−−−−−→l Q|R

,

8>><
>>:

N ′
1 = N1 + Outx(R, r)

N ′
2 = N2 + Iny(R, r)

N ′
3 =

j
N3 + Mixx(R, r) , if x = local n!π
0 , otherwise

S Cong
P ≡ P ′ P ′ (x,y),(r,N1,N2,N3)−−−−−−−−−−−−→l Q′ Q′ ≡ Q

P
(n,r×(N1×N2−N3))−−−−−−−−−−−−−→s Q

,

j
x = x′n
y = y′n

of biological reaction modelled. Some comments on the rules are in order. The
main point here is determining the quantities N1, N2 and N3. To do that we
follow [6] and we use three auxiliary functions In, Out and Mix that search
within a membrane the processes modelling the same molecules, i.e. a process of-
fering prefixes with the same channel and basal rate. Actually we have a family of

A Stochastic Semantics for BioAmbients 29

such functions Inα, Outα andMixα for capabilities and directions α ∈ {enter n,
exit n, merge+ n, local n?{p}, p2c n?{p}, c2p n?{p}, s2s n?{p}} and for the cor-
responding co-actions α ∈ { accept n, expel n,merge− n, local n!{m}, p2c n!{m},
c2p n!{m}, s2s n!{m}}. We give the definitions of Inα andMixα, as Outα is sim-
ilarly defined by replacing any occurrence of Inα with Outα and α with α. We
induce on the structure of BioA processes and take a basal rate r as an addi-
tional parameter.

Inα(0, r) = Inα([P], r) = 0

Inα((ν n)P, r) =

⎧
⎨

⎩

Inα(P, r) , if n �= fn(α)

0 , otherwise
Inα(A(ỹ), r) = Inα(P{ỹ/x̃}, r), if A(x̃) = P
Inα(

∑
i∈I(πi, ri).Pi, r) = #{(πi, ri) | i ∈ I, πi = α, and ri = r}

Inα(
∑

i∈I(Mi, ri).Pi, r) = #{(Mi, ri) | i ∈ I, M = α and ri = r}
Inα(P1|P2, r) = Inα(P1, r) + Inα(P2, r)

As in [6], functionMixα computes the number of combinations of corresponding
prefixes in summation processes, as they can not generate any synchronizations.
This number is then subtracted from the global computation of synchroniza-
tions, see rule S Cong in Table 3. Mixα is defined by mean of Inα and Outα:

Mixα(P, r) =
∑n

i=0(Inα(Si, r) ∗Outα(Si, r)), where P =
∏n

i=0 Si.

Actually, function Mixα is only applied in rule S Local, because in the other
cases compartmentalization limits the scope of prefixes that can generate simi-
lar synchronizations. The rule S In needs not to record the involved channel and
direction, because another (enter n, r), or (accept n, r), can only appear within
Q, or S respectively — indeed summations never offer the same prefix twice.
The same reason justifies the quantities N1, N2, and N3. The rule uses the
Gillespie’s formula for asymmetric interactions in the computation of the tran-
sition rate. Similarly for rules S Out and S Merge. Rule S Local records that
the communication channel was n and the direction was local. Also, it verifies
if the interaction is symmetric or asymmetric, by checking if n ∈ H. Then, the
Gillespie’s formula is applied, with N1 = 2 and N2 = 1 and r divided by two,
in the first case, and the with N1 = N2 = 1, in the second case. As we said
before, this is the only rule where N3 is computed, as it is not necessarily equal
to zero. Rule S Com Out uses the asymmetric Gillespie’s formula. Note that we
can only have a single process offering an output on a same channel, so N1 is 1.
Symmetrically for rule S Com In. Computing the label in rule S Sibling is just
as in the case of rule S Merge. Rules S Res and S Amb are trivial, except for
the last one substitutes the pair (n, n) for (x, y) because the transition modelling
the interaction is wrapped into a membrane. Rule S Par updates the numbers
N1, N2, and N3 in the Gillespie’s formulas. Note that the information (x, y) is
crucial here because Iny and Outx will always return 0 when x or y stand for
the prefix channel name n. Also, note that output always occurs on the right
hand side because the processes involved in −→l can only be rearranged, through

30 L. Brodo, P. Degano, and C. Priami

S Cong, as last step of the deduction of transitions. In fact, the last rule applies
the congruence rules and computes the actual transition, by determining its rate
through the Gillespie’s formula with basal rate r and quantities N1, N2, and N3

computed so far.
The property below says that the stochastic BioA transition system conser-

vatively extends the standard one (Table 2). Its proof is by trivial induction on

the depth of the derivation of Ps
(n,r′)−−−→s P

′
s, noting that the rules in Table 3

require the rates of the prefixes involved in an interaction to be the same.

Property 1. Given a BioA process P , let Ps be P where each prefix π or M

becames (π, r) or (M, r) for suitable rate r. Then Ps
(n,r′)−−−→s P

′
s implies P → P ′.

The last property claims that the transition rate computed in Table 3 is based
on a correct computation of synchronizations:

Property 2. If P
(n,r∗(N1∗N2−N3))−−−−−−−−−−−−→� P

′, then P can exactly perform N1 ∗ N2 −
N3 different synchronizations of the same type and with the same rate, i. e.

P
(n,r∗(N1∗N2−N3))−−−−−−−−−−−−→� P

′
i , with i ∈ [1, N1 ∗N2 −N3].

The proof is structured by cases on the transition rules and by induction on the
lenght of the derivation.

4 An Example

Our example is taken from [21]. We consider the interactions of a simple com-
plex, composed by an enzyme and two molecules, forming its substrate. These are
graphically represented as separated ambients within which we write the names

accept e_s_bind

accept e_s_bind

enter e_s_bind

enter e_s_bind

mol

mol

enz

Fig. 1a

enz

mol

molexit unbind

enter e_s_bind
accept e_s_bind

exit react

allow unbind allow react

Fig. 1b

enz

mol

mol

exit unbind

exit unbind

exit react

exit react

s2s

allow unbind allow unbind

allow unbind
allow unbind

Fig. 1c

enz

molexit unbind
exit react

molenter e_p_bind
allow e_p_bind

allow unbindallow unbind

Fig. 1d

mol

enz

enter e_p_bind mol

enter e_s_bind

allow e_p_bind

allow e_s_bind

Fig. 1e

Fig. 1. BioAmbient model of the reversible bi-substrate reactions

A Stochastic Semantics for BioAmbients 31

mol and enz for readability. The interactions of the two molecules can only hap-
pen if both are inside an enzyme that acts as catalyser. We model the bindings
between the molecules and the enzyme as two successive enter e s bind made by
the two copies of mol that interact through the corresponding co-capabilities of
enz (Fig. 1a). When the complex is formed, the two molecules can communicate
along the channel c (Fig. 1c). Then, they can exit either via exit react or via
exit unbound (Fig. 1d), coupled with the corresponding co-capabilities offered
by enz. The whole BioA enzyme-substrate model is given below. For brevity,
we detail the parameters of constant only in their definitions and we omit them
otherwise (e.g. we write X(. . .) when calling constant X). Also, here we use the
enz and mol, as ambient names, which are however ignored by the semantics.

System = mol[S(c, a, e s bind, e p bind, unbind, react)] |
mol[S(c, a, e s bind, e p bind, unbind, react)] |
enz[E(e p bind, e s bind, unbind, react) | E(e p bind, e s bind, unbind, react)])

where
S(c, a, e s bind, e p bind, unbind, react) = (enter e s bind, rs).P (. . .)
P (c, a, e s bind, e p bind, unbind, react) =

(s2s c!{a}, rc).X(. . .) + (s2s c?{p}, rc).X(. . .) + X(. . .)
X(c, a, e s bind, e p bind, unbind, react) =

(exit unbind, ru).S(. . .) + (exit react, rr).(enter e p bind, rp).P (. . .)
E(e s bind, e p bind, unbind, react) =

(accept e p bind, rp).ES(. . .) + (accept e s bind, rs).ES(. . .)

ES(e s bind, e p bind, unbind, react) = (expel unbind, ru).E(. . .) + (expel react, rr).E(. . .)

The complete transition system of our example is in Fig. 2. To clarify how
stochastic rates are computed we show the derivation of the first transition where
a mol ambient enters the enz ambient by executing the rule S In. In this case,
the functions Inα and Outα return 1, because in the ambient mol there is a single
enter e s bind prefix, and 2, because enz offers two accept e s bind prefixes. The
application of rule S Par only changes the label by rewriting its first part (n, n),
where n = e s bind. Finally, rule S Cong computes the actual rate.

mol[S()|0]|enz[E()|E()]
((n,n)),(rs,1,2,0)−−−−−−−−−−−→� enz[mol[P ()|0]|(ES()|E())]

mol[S()|0]|(mol[S()|0]|enz[E()|E()])
(n,n),(rs,1,2,0)−−−−−−−−−−→� mol[S()|0]|enz[mol[P ()|0]|(ES()|E())]

mol[S()|0]|(mol[S()|0]|enz[E()|E()])
(n,2×rs−0)−−−−−−−→s mol[S()|0]|enz[mol[P ()|0]|(ES()|E())]

where we assume that the basal rates be rs = 0.5, ru = 0.6, rp = 0.3,rc = 0.4,
rr = 0.7, thus the label of the above activity is (n, 1). Similarly, we compute the
labels of the other transitions.

The resulting vector of the stationary probability associated with each of the
10 states of Fig. 2 is:

(0.0805 0.2638 0.1464 0.1603 0.269 0.0728 0.1164 0.0442 0.0085 0.0072).

E.g. consider S4, ready for executing the s2s interaction or the two different
capabilities exit unbind and exit react, the probability of the system to be in this

32 L. Brodo, P. Degano, and C. Priami

S1
(e s bind,2rs)−−−−−−−−−→s S2 S4

(unbind,2rr)−−−−−−−−→s S5 S7
(e p bind,2rp)−−−−−−−−−→s S5 S9

(unbind,2ru)−−−−−−−−→s S10

S2
(unbind,ru)−−−−−−−−→s S1 S4

(c,rc)−−−→s S6 S8
(unbind,ru)−−−−−−−−→s S3 S10

(unbind,ru)−−−−−−−−→s S1

S2
(react,rr)−−−−−−→s S3 S5

(unbind,ru)−−−−−−−−→s S3 S8
(react,rr)−−−−−−→s S7 S10

(unbind,ru)−−−−−−−−→ S3

S2
(e s unbind,rs)−−−−−−−−−−→s S4 S5

(e p bind,rp)−−−−−−−−→s S4 S8
(e p bind,rp)−−−−−−−−→s S9 S10

(e s bind,rs)−−−−−−−−→s S9

S3
(e p bind,2rp)−−−−−−−−−→s S2 S5

(react,rr)−−−−−−→s S7 S9
(unbind,2ru)−−−−−−−−→s S2

S3
(e s bind,2rs)−−−−−−−−−→s S5 S6

(react,2rr)−−−−−−−→s S8 S9
(react,2rr)−−−−−−−→s S5

S4
(unbind,2ru)−−−−−−−−→s S2 S6

(unbind,2ru)−−−−−−−−→s S10 S9
(react,2rr)−−−−−−−→s S8

where S1 = System
S2 = enz[(E()|ES())|mol[P ()]]|mol[S()]
S3 = enz[E()|E()]|mol[S()]|mol[(enter e p bind, rp).P ()]
S4 = enz[(ES()|ES())|(mol[P ()]|mol[P ()])]
S5 = enz[(ES()|E())|mol[P ()]]|mol[(enter e p bind, rp).P ()]
S6 = enz[(ES()|ES())|(mol[X()]|mol[X()])]
S7 = enz[E()|E()]|mol[(enter e p bind, rp).P ()]|mol[(enter e p bind, rp).P ()]
S8 = enz[(ES()|E())|mol[X()]]|mol[(enter e p bind, rp).P ()]
S9 = enz[(ES()|ES())|mol[X()]|mol[X()]]
S10 = enz[(ES()|ES())|mol[X()]]|mol[S()]

Fig. 2. The transition system of the BioA process System

state is 0.1603. The actions that have the highest execution probability, 0.2638,
are those activated in S2 that offers exit react, enter e s bind and exit unbind.

Suppose now to have the following reward array, where non zero values are
assigned to the states where the capabilities can be fired:
(0 1/3 0 1/3 1/3 1/2 0 1/3 1/3 0). Then, the weighted troughtput of the
exit react capability is 0.285, i.e. the system is busy firing this capability for a
little more than 1

4 of the whole execution time.

5 Conclusions

We have defined a stochastic operational semantics for the calculus of BioAm-
bients, exploiting the Gillespie’s algorithm. To the best of our knowledge, this
is the first such semantics, which makes the calculus usable by biologists in per-
forming their experiments in silico. Through a very simple example, with no
significance in biology, we show that techniques for performance evaluation typ-
ical of process calculi can help analysing the behaviour of biological systems.

Acknowledgments. We thank Alessandro Romanel for his collaboration. The
second author has been partially supported by EU-FETPI GC Project IST-2005-
16004 Sensoria, and by the Microsoft Research - University of Trento Centre for
Computational and Systems Biology.

A Stochastic Semantics for BioAmbients 33

References

1. Regev, A., Panina, E.M., Silverman, W., Cardelli, L., Shapiro, E.: BioAmbients:
An abstraction for biological compartments. Th. Comp. Sci. 325(1), 141–167 (2004)

2. Calder, M., Gilmore, S., Hillston, J.: Modelling the influence of RKIP an the ERK
signalling pathway using the stochastic process algebra PEPA. In: Priami, C.,
Ingólfsdóttir, A., Mishra, B., Nielson, H.R. (eds.) Transactions on Computational
Systems Biology VII. LNCS (LNBI), vol. 4230, pp. 1–23. Springer, Heidelberg (2006)

3. Calzone, L., Chabrier-River, N., Fages, F., Soliman, S.: Machine learning biochem-
ical networks from temporal logic properties. In: Priami, C., Plotkin, G. (eds.)
Transactions on Computational Systems Biology VI. LNCS (LNBI), vol. 4220, p.
68. Springer, Heidelberg (2006)

4. Cardelli, L.: Brane calculi - interactions of biological membranes. In: Danos, V.,
Schachter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 257–280. Springer,
Heidelberg (2005)

5. Cardelli, L., Gordon, A.: Mobile ambients. Th. Comp. Sci. 240(1), 177–213 (2000)
6. Cardelli, L., Philips, A.: A correct abstract machine for the stochastic π-calculus.

In: Proc. Concurrent Models in Molecular Biology (2004)
7. Chiarugi, D., Curti, M., Degano, P., Lo Brutto, G., Marangoni, R.: Feedbacks

and oscillations in the virtual cell VICE. In: Priami, C. (ed.) CMSB 2006. LNCS
(LNBI), vol. 4210, p. 93. Springer, Heidelberg (2006)

8. Clark, G., Hillston, J.: Towards automatic derivation of performance measures from
pepa models. In: Proc. UK Performance Engineering Workshop, pp. 65–81 (1996)

9. Danos, V., Laneve, C.: Formal molecular biology. Th. Comp. Sci. 325(1), 69–110
(2004)

10. Goss, P., Peccoud, J.: Quantitative modeling of stochastic systems in molecular
biology by using stochastic petri nets. Proc. National Academy of Science USA 95,
6750–6754 (1998)

11. Heat, J., Kwiatkowska, M., Norman, G., Parker, D., Tymchyshyn, O.: Probabilistic
model checking of complex biological pathways. In: Priami, C. (ed.) CMSB 2006.
LNCS (LNBI), vol. 4210, p. 32. Springer, Heidelberg (2006)

12. Hoare, C.: Communicating Sequential Processes. Prentice-Hall, Englewood Cliffs
(1985)

13. Kitano, H.: Foundations of Systems Biology. MIT Press, Cambridge (2002)
14. Lecca, P., Priami, C., Quaglia, P., Rossi, B., Laudanna, C., Costantin, G.: A

stochastic process algebra approach to simulation of autoreactive lymphocyte re-
cruiment. SIMULATION, 80(4) (2004)

15. Milner, R.: Communication and Concurrency. Prentice-Hall, Englewood Cliffs
(1989)

16. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes (i and ii). Infor-
mation and Computation 100(1), 1–72 (1992)

17. Nagasaki, M., Onami, S., Miyano, S., Kitano, H.: Bio-calculus: Its concept and an
application for molecular interaction. Frontiers Science Series, 30 (2000)

18. Priami, C.: Stochastic π-calculus. The Computer Journal 38(7), 578–589 (1995)
19. Priami, C., Quaglia, P.: Beta-binders for biological interactions. In: Danos, V.,

Schachter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 21–34. Springer,
Heidelberg (2005)

34 L. Brodo, P. Degano, and C. Priami

20. Priami, C., Regev, A., Shapiro, E., Silverman, W.: Application of a stochastic
name-passing calculus to representation and simulation of molecular processes.
Information Processing Letters 80(1), 25–31 (2001)

21. Regev, A.: Computational Systems Biology: A Calculus for Biomolecular knowl-
edge. PhD thesis, Tel Aviv University (2002)

22. Regev, A., Shapiro, E.T., Silverman, W.: Representation and simulation of bio-
chemical processes using the π-calculus process algebra. In: Proc. Pacific Sympo-
sium on Biocomputing, vol. 6, pp. 459–470 (2001)

A Categorical Observation of

Timed Testing Equivalence

Natalya Gribovskaya and Irina Virbitskaite

A.P. Ershov Institute of Informatics Systems
Siberian Division of the Russian Academy of Sciences

6, Acad. Lavrentiev avenue, 630090, Novosibirsk, Russia
Phone: +7 3833 30 40 47; Fax: +7 3833 32 34 94

natamosk@ngs.ru, virb@iis.nsk.su

Abstract. Timed transition systems are a widely studied model for real-
time systems. The intention of the paper is to show the applicability of
the general categorical framework of open maps to the setting of test-
ing equivalence on timed transition systems, in order to transfer general
concepts of equivalences to the model. In particular, we define a cate-
gory of timed transition systems, whose morphisms are to be thought
of as simulations, and an accompanying (sub)category of observations,
to which the corresponding notion of open maps is developed. We then
use the open maps framework to obtain an abstract bisimilarity which
is established to coincide with timed testing equivalence.

1 Introduction

In the core of every theory of systems lies a notion of a behavioural equivalence
between systems: it indicates which particular aspects of a system behaviour
are considered to be observable. In concurrency theory, a variety of behavioural
equivalences have been promoted, and the relationship between them has been
quite well-understood (see, for example, [13,14]).

Testing [20] is one of the major equivalences of concurrency theory. Testing
equivalences and preorders are defined in terms of tests which processes may
and must satisfy. Two processes are considered as testing equivalent, if there is
no test that can distinguish them. A test is usually itself a process applied to
a process by computing both together in parallel. A particular computation is
assumed to be successful if the test reaches a designated successful state, and
the process guarantees the test if every computation is successful.

Recently, in an attempt to explain and unify apparent differences between the
extensive amount of research within the field of behavioural equivalences, several
category-theoretic approaches to the matter have appeared (see [18,19] among
others). One of them was initiated by Joyal, Nielsen, and Winskel in [19] where
they proposed an abstract way of capturing the notion of bisimulation through
the so-called spans of open maps: first, a category of models of computations
is identified, then a subcategory of observation is chosen relative to which open
maps are defined; two models are bisimilar if there exists a span of open maps

V. Malyshkin (Ed.): PaCT 2007, LNCS 4671, pp. 35–46, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

36 N. Gribovskaya and I. Virbitskaite

between the models. The abstract definition of bisimilarity makes possible a uni-
form definition of an equivalence over different models ranging from interleaving
models like transition systems to true concurrent models like event structures
and higher dimensional automata. On transition systems, abstract bisimilar-
ity readily corresponds to interleaving bisimulation. On event structures and
higher dimensional models, abstract bisimilarity leads to a slight strengthening
of history preserving bisimulation, as shown in [19,25] and [8,12], respectively.
Furthermore, the categorical setting turned out appropriate for defining, among
others, trace and testing equivalences, barbed and weak bisimulations (see [21]).
Moreover, as argued in [11], combining the open maps and presheaf approaches
allows one to avoids some obstructions to a treatment of weak bisimulation on
true concurrent models.

However, none of the models and approaches above has taken into account
real-time. It is generally recognized that time plays an important role in many
concurrent systems. This has motivated the development and extension of several
models and analysis methods to support the correctness of real-time systems.
As a result, timed extensions of interleaving models have been investigated thor-
oughly. Various recipes on how to incorporate time in transition systems —
the most prominent interleaving model — are, for example, described in [2,16],
whereas the incorporation of real time into equivalence notions is less advanced.
There are a few papers (see, for example, [9,22,24]), where decidability questions
of time-sensitive equivalences are investigated in the setting of timed interleaving
models.

The contribution of the paper is to show the applicability of the general
categorical framework of open maps to the setting of testing equivalence on
timed transition systems, in order to transfer general concepts of equivalences
to the model. In particular, we define a category of timed transition systems,
whose morphisms are to be thought of as simulations, and an accompanying
(sub)category of observations, to which the corresponding notion of open maps
is developed. We then use the open maps framework to obtain an abstract bisim-
ilarity which is established to coincide with timed testing equivalence.

There have been several motivations for this work. One has been given by
the number of papers on timed testing. For instance, [10] and [22] have treated
interleaving testing for discrete time and dense time transition models, respec-
tively. In order to analyze the behaviour of real-time and concurrent systems,
the testing approach has been extended by timing constraints in the setting of
true concurrent models like timed Petri nets [5] and timed event structures [4]. A
next origin of our study has been the paper [6] where the categorical setiing has
been developed for different kinds of transition systems to establish correspon-
dences with net based systems. Furthermore, in [21] abstract bisimilarity has
been shown to coincide with testing equivalence on transition systems. Finally,
another motivation has been the paper [17] that illustrates the use of open maps
for providing an abstract characterization of bisimulation on timed transition
systems. Besides, the category-theoretic approach has been applied to partial
order based equivalences in the framework of timed event structures [23].

A Categorical Observation of Timed Testing Equivalence 37

The rest of the paper is organized as follows. The basic notions and nota-
tions concerning timed transition systems and their behaviour are introduced in
section 2. In the subsequent section, we define a category of timed transition sys-
tems whose morphisms are to be thought of as simulations. An accompanying
(sub)category of observations and the corresponding notion of open maps are
developed in section 4. Also, an alternative characterization of the open maps is
provided. Further, the abstract equivalence based on spans of the open maps is
shown to coincide with timed testing equivalence. Section 5 contains conclusion
and some remarks on future work. In Appendix, we give a short introduction to
open maps as presented in [19].

2 Timed Transition Systems

In this section, we first introduce some basic notions and notations concerning
timed transition systems [2,17] and then define the notion of testing equivalence
in the setting of the model.

Before doing so, it will be convenient to introduce some auxiliary notions and
notations. Let R+ be the set of non-negative reals, and Σ a finite alphabet of
actions. A timed word over Σ is a finite sequence of pairs α = (σ1, τ1) (σ2, τ2)
(σ3, τ3) . . . (σn, τn) such that σi ∈ Σ, τi ∈ R+ for all 1 ≤ i ≤ n, and τi ≤ τi+1

for all 1 ≤ i < n. A pair(σi, τi) represents an occurrence of an action σi at time
τi relative to the starting time (0) of the execution. We consider a finite set V
of clock variables. A clock valuation over V is a mapping ν : V → R+ which
assigns time values to the clock variables of a system. Define (ν+c)(x) := ν(x)+c
for all clock variables x ∈ V . For a subset λ of clock variables, we shall write
ν[λ→ 0](x) := 0, if x ∈ λ, and ν[λ→ 0](x) := ν(x), otherwise. Given a set V, we
define the set Δ(V) of clock constraints by the following grammar: δ ::= c # x
| x + c # y | δ ∧ δ, where # ∈ {≤, <,≥, >,=}, c is a real valued constant and
x, y are clock variables from V . We shall say that a clock constraint δ is satisfied
by a clock valuation ν if the expression δ[ν(x)/x]1 evaluates to true. A clock
constraint δ defines a subset of Rm (m is the number of clock variables in V).
We call the subset as the meaning of δ and denote it as ‖δ‖V . A clock valuation
ν defines a point in Rm (denoted ‖ν‖V). So, the clock constraint δ is satisfied
by the clock valuation ν iff ‖ν‖V ∈ ‖δ‖V .

We are now prepared to consider the definition of timed transition systems.

Definition 1. A timed transition system T is a quintuple (S, s0, Σ, V, T) where

– S is a set of states and s0 is the initial state,
– Σ is a finite alphabet of actions,
– V is a set of clock variables,
– T ⊆ S ×Σ ×Δ(V)× 2V × S is a set of transitions. We shall write s σ→

δ, λ
s′

to denote a transition (s, σ, δ, λ, s′).

1 δ[y/x] is the substitution of y for x in δ.

38 N. Gribovskaya and I. Virbitskaite

Fig. 1.

Example 1. The timed transition system T̃ shown in Fig. 1 has three states s̃0
(the initial state), s̃1 and s̃2, three actions a, b and c, and two clock variables x
and y. Four transitions are depicted between the states. ♦

Define the behaviour of timed transition systems.

Definition 2. Let T = (S, s0, Σ, V, T) be a timed transition system.
A configuration of T is a pair 〈s, ν〉, where s is a state and ν is a clock

valuation. The set of configurations of T is denoted as Conf(T).
A run of T is a sequence 〈s0, ν0〉

σ1→
τ1
〈s1, ν1〉

σ2→
τ2
. . .

σn→
τn

〈sn, νn〉 such that for

all 0 < i ≤ n there is a transition si−1
σi→

δi, λi

si such that ‖νi−1 + (τi − τi−1)‖V

∈ ‖δi‖V and νi = (νi−1 + (τi − τi−1))[λi → 0]. Here, s0 is the initial state, ν0
is the constant 0 function, and τ0 is defined to be 0. A run as above is said to
generate the timed word α = (σ1, τ1) (σ2, τ2) (σ3, τ3) . . . (σn, τn). We will use
Runs(T) to denote the set of runs of T .

The language of T is the set L(T) = {α = (σ1, τ1) (σ2, τ2) . . . (σn, τn) |
〈s0, ν0〉

σ1→
τ1

〈s1, ν1〉
σ2→
τ2
. . .

σn→
τn

〈sn, νn〉 ∈ Runs(T)}.

Example 2. To illustrate the concepts, consider the language of the timed tran-
sition system T̃ , shown in Fig. 1: L(T̃) = {α | αω = (a, τ1) (x1, τ2) (a, τ3) . . .
(xn, τ2n) (a, τ2n+1) | τ2i+1 − τ2i ≤ 3 (i = 0..n), xj ∈ {b, c}, 1 < τ2j − τ2j−1 < 4
for xj = b, τ2j − τ2j−1 ≤ 2 for xj = c (j = 1..n)}. ♦

Testing equivalences [20] are defined in terms of tests which processes may and
must satisfy. Two processes are considered testing equivalent if there is no test
that can distinguish them. A test is usually itself a process applied to a process
by computing both together in parallel. A particular computation is assumed to
be successful if the test reaches a designated successful state, and the process
guarantees the test if every computation is successful. However, following the
papers [1,15], we use an alternative characterization of the testing concept. Then,
in timed interleaving semantics, a test consists of a timed word and a set of

A Categorical Observation of Timed Testing Equivalence 39

actions occurred at some times. A process passes this test if after every execution
of the timed word, occurrences of the actions at the times are inevitable next.

Definition 3. Let T1 and T2 be timed transition systems. Then,

– for a timed word α = (σ1, τ1) . . . (σn, τn) and for a subset L ⊆ (Σ ×R+),
Ti after α MUST L iff for all 〈s, ν〉 ∈ Conf(Ti) such that C0(Ti)

σ1→
τ1
. . .

σn→
τn

〈s, ν〉 there exists (σ, τ)∈L and 〈s′, ν′〉∈Conf(Ti) such that 〈s, ν〉 σ→
τ
〈s′, ν′〉

(i = 1, 2),
– T1 and T2 are testing equivalent iff for all timed words α = (σ1, τ1) . . .

(σn, τn) and for all subsets L ⊆ (Σ ×R+) it holds:

T1 after α MUST L ⇐⇒ T2 after α MUST L.

Fig. 2.

Example 3. Consider the timed transition systems shown in Fig. 1 and 2. The
timed transition systems T̃ and T̂ are testing equivalent, while the timed tran-
sition systems T̂ and T are not, because T after (a, 1) MUST {(c, 2)} but it
is not the case for T̂ . ♦

3 A Category of Timed Transition Systems

In this section, we define a category of timed transition systems, CT T SΣ , and
consider its useful property.

We start with introducing some auxiliary notions and notations. For a timed
transition system T , we define the following:

– for γ = 〈s0, ν0〉
σ1→
τ1
. . .

σn→
τn

〈sn, νn〉 ∈ Runs(T),

tw(γ) = σ1τ1 . . . σnτn,

AT (γ) = {(σn+1, τn+1) | ∃〈sn+1, νn+1〉 s.t. 〈sn, νn〉
σn+1→
τn+1

〈sn+1, νn+1〉},

40 N. Gribovskaya and I. Virbitskaite

– SR(T) is the least subset of (2Runs(T) \ {∅}) such that
• ∀γ ∈ Runs(T) ∃X ∈ SR(T) � γ ∈ X ,
• ∀X ∈ SR(T) ∀γ, γ′ ∈ X � tw(γ) = tw(γ′),

– for X,Y ∈ SR(T),
AT (X) = {AT (γ) | γ ∈ X},

tw(X) = tw(γ) for some γ ∈ X,

X
σ→
τ
Y ⇐⇒ tw(Y) = tw(X) (σ, τ).

Example 4. To illustrate the notions and notations defined prior to that, consider
some run γ̃ ∈ Runs(T̃) and some set of runs X̃ ∈ SR(T̃) of the timed transition
system T̃ shown in Fig. 1. For instance, take γ̃ = 〈s̃0, ν0〉 a→

1
〈s̃1, ν1〉, where

ν1(x) = 1, ν1(y) = 0, and X̃ = {〈s̃0, ν0〉 a→
1
〈s̃1, ν1〉, 〈s̃0, ν0〉 a→

1
〈s̃2, ν′1〉}, where

ν1(x) = 1, ν1(y) = 0 and ν′1(x) = ν′1(y) = 1. Clearly, tw(γ̃) = tw(X̃) = (a, 1).
Moreover, we have AT̃ (γ̃) = {(b, τ), (c, τ ′) | 1 < τ − 1 < 4, τ ′ − 1 ≤ 2} and
AT̃ (X̃) = {{(b, τ), (c, τ ′) | 1 < τ − 1 < 4, τ ′ − 1 ≤ 2}, ∅}. Next, consider
Ỹ ∈ SR(T̃) such that tw(Ỹ) = (a, 1)(c, 2), i.e. Ỹ = {〈s̃0, ν0〉 a→

1
〈s̃1, ν1〉 c→

2

〈s̃0, ν2〉}, where ν1(x) = 1, ν1(y) = 0 and ν2(x) = ν2(y) = 0. We then get
X̃

c→
2
Ỹ . ♦

Now we are ready to define the notion of a morphism.

Definition 4. Let T and T ′ be timed transition systems. A map μ : T → T ′

is called a morphism, if μ : SR(T) → SR(T ′) is a function such that for all
X ∈ SR(T) it holds:

– tw(X) = tw(μ(X)),
– ∀A′ ∈ AT ′(μ(X)) ∃A ∈ AT (X) � A ⊆ A′.

Notice, the morphisms defined prior to that are to be thought of as simulations
— the morphisms reflect correspondences of timed words and matches of sets of
actions occurred after the timed words at some times.

Example 5. It is easy to check that there is the (only) morphism from the timed
transition system T̃ in Fig. 1 to the timed transition system T̂ in Fig. 2. ♦

Timed transition systems (with alphabet Σ) and morphisms between them form
a category of timed transition systems, CT T SΣ , in which the composition of
two morphisms μ1 : T0 −→ T1 and μ2 : T1 −→ T2 is (μ2 ◦ μ1) : T0 −→ T2, and
the identity morphism is the identity function.

Theorem 1. CT T SΣ has pullbacks.

Proof. Assume T1
μ1→ T0

μ2← T2 to be a diagram, where Ti = (Si, Σ, s
i
0, Vi, Ti)

(i = 0, 1, 2) is an object and μj (j = 1, 2) is a morphism of the category CT T SΣ .
Construct the system T = (S,Σ, s0, V, T) as follows:

A Categorical Observation of Timed Testing Equivalence 41

– S = {(X,Y,D) ∈ SR(T1) × SR(T2) × 2(Σ×R+) | μ1(X) = μ2(Y) and D ∈
M(X,Y)}, where M(X,Y) = {A ∩ (∪

B∈AT2 (Y)
B) | A ∈ AT1(X)} ∪ {B ∩

(∪
A∈AT1 (X)

A) | B ∈ AT2(Y)},

– s0 = ({C0(T1)}, {C0(T2)}, AT1(C0(T1)) ∩ AT2(C0(T2))). Notice, s0 ∈ S,
– V = {u},
– ((X,Y,D), σ, (u = τ), ∅, (X ′, Y ′, D′)) ∈ T ⇔ (σ, τ) ∈ D, X σ→

τ
X ′, Y σ→

τ
Y ′.

Due to the above construction, it is easy to see that T is a timed transition
system. Consider the following properties of T :

– for γ ∈ Runs(T) with last(γ) = 〈(X,Y,D), ν〉2, AT (γ) = D and tw(γ) =
tw(X) = tw(Y). It follows from the construction of T and the definition of
AT (γ).

– for Z ∈ SR(T), Z = {γ ∈ Runs(T) | last(γ) = 〈(X,Y,D), ν〉 with D ∈
M(X,Y)}. It follows from the construction of T and the definition of SR(T1)
and SR(T2) (i.e. the uniqueness of X and Y).

Define the mappings π1 : SR(T) → SR(T1) and π2 : SR(T) → SR(T2) as
follows: π1(Z) = X and π2(Z) = Y , for all Z ∈ SR(T). Using the properties of
T and the definition of πi (i = 1, 2), it is routine to show that πi is a morphism.
By the construction of T and the definition of π1 and π2, we get μ1◦π1 = μ2◦π2.

Suppose T1
φ1← T ′ φ2→ T2 to be a diagram in the category CT T SΣ such that μ1◦

φ1 = μ2 ◦φ2. Define the mapping ξ : SR(T ′)→ SR(T) as follows: ξ(Z ′) = {γ ∈
Runs(T) | last(γ) = 〈(φ1(Z ′), φ2(Z ′), D), ν〉 with D ∈ M(φ1(Z ′), φ2(Z ′))}, for
all Z ′ ∈ SR(T ′). Using the properties of T and φi (i = 1, 2) being a morphism,
it is straightforward to show that ξ is a morphism. The equations φ1 = π1 ◦ ξ
and φ2 = π2 ◦ ξ follow from the definition of the morphisms ξ, π1 and π2. ♦

4 PΣ-Open Morphisms

In this section we first define a subcategory of observations allowing us to develop
the corresponding notion of open maps (see Appendix) and then provide an
alternative characterization of the open maps. Further, the abstract equivalence
based on spans of the open maps is shown to coincide with testing equivalence.

Following the standards of timed transition systems and the paper [21], we
choose the subcategory PΣ of observations which are trees consisting of a ’trunk’
and ’branches’ of length one, except for the ’top’ of the tree, where a more general
branching structure is assumed.

Definition 5. The subcategory PΣ of the category CT T SΣ contains objects of
the form

2 For γ = C0(T)
σ1→
τ1

. . .
σn→
τn

〈(X, Y, D), ν〉 ∈ Runs(T), we write last(γ) to denote

〈(X, Y, D), ν〉.

42 N. Gribovskaya and I. Virbitskaite

and morphisms between the objects, where k1, . . . , kn, m1, . . . ,mkn ≥ 0.

Our next aim is to characterize PΣ-openness (see Appendix) of morphisms rel-
ative to the subcategory of observations defined prior to that.

Theorem 2. Let T and T ′ be timed transition systems. Then, a morphism μ :
T → T ′ in CT T SΣ is PΣ-open iff for all Y ∈ SR(T ′) there exists X ∈ SR(T)
such that μ(X) = Y and for all A ∈ AT (X) there exists A′ ∈ AT ′(Y) such that
A′ ⊆ A.

Proof. (⇒) Assume μ : T → T ′ to be a PΣ-open morphism. Take an arbitrary
Y ∈ SR(T ′) such that tw(Y) = (σ1, τ1) . . . (σn, τn). Construct the system O =
(O,Σ, o0, XO, TO) as follows:

– O = {o0, oi, ςi, oγn, ϑ
γ
(a,d) | i = 1..(n− 1), γ ∈ Y, (a, d) ∈ AT ′(γ)},

– XO = {u},
– TO = {(oi−1, σi, {u = τi}, ∅, oi) | i = 1..(n− 1)} ∪

{(oi−1, σi, {u = τi}, ∅, ςi) | i = 1..(n− 1)} ∪
{(on−1, σn, {u = τn}, ∅, oγn) | γ ∈ Y } ∪
{(oγn, a, {u = d}, ∅, ϑγ

(a,d)) | γ ∈ Y, (a, d) ∈ AT ′(γ)}.

Due to the construction, it is easy to see that O is a timed transition system.
For the sake of clarity, consider the set SR(O) = {Z0, Z1, . . . , Zn, Z(a,d) | (a, d) ∈

⋃

A′∈AT ′(Y)

A′}, where Z0 = {C0(O)}; Zi = {C0(O) σ1→
τ1
. . .

σi−1→
τi−1

〈oi−1, νi−1〉
σi→
τi

〈oi, νi〉, C0(O) σ1→
τ1
. . .

σi−1→
τi−1

〈oi−1, νi−1〉
σi→
τi

〈ςi, νi〉} (i = 1..n− 1); Zn = {C0(O) σ1→
τ1

. . .
σn−1→
τn−1

〈on−1, νn−1〉
σn→
τn

〈oγn, νn〉 | γ ∈ Y }; Z(a,d) = {C0(O) σ1→
τ1
. . .

σn→
τn

〈oγn, νn〉
a→
d
〈ϑγ

(a,d), νn+1〉 | γ ∈ Y , (a, d) ∈ AT ′(γ)} ((a, d) ∈
⋃

A′∈AT ′(Y)

A′). Moreover, we

have that AO(Z0) = {{(σ1, τ1)}}; AO(Zi) = {{(σi+1, τi+1)}, ∅} (i = 1..n − 1);
AO(Zn) = {AT ′(γ) | γ ∈ Y }; AO(Z(a,d)) = {∅} ((a, d) ∈

⋃

A′∈AT ′(Y)

A′).

A Categorical Observation of Timed Testing Equivalence 43

Define the mappings μ1 : E → O and μ2 : E → T as follows: μ1({C0(E)}) =
{C0(O)} and μ2({C0(E)}) = {C0(T)}, where E = ({e0}, Σ, e0, ∅, ∅). Clearly,
μ1 and μ2 are morphisms. Also, define the mapping μ3 : O → T ′ as follows:
μ3(Zi) = {γ′ ∈ Runs(T ′) | tw(γ′) = tw(Zi)} (i = 1..n) and μ3(Z(a,d)) = {γ′ ∈
Runs(T ′) | tw(γ′) = tw(Z(a,d))} ((a, d) ∈

⋃

A′∈AT ′ (Y)

A′). Due to the construction

of O and the definition of μ3, it should be easy to see that μ3 is a morphism.
By the definition of SR(T ′), we conclude that μ3(Zn) = Y . Clearly, we have
μ ◦ μ2 = μ3 ◦ μ1. Since μ is a PΣ-open morphism, there exists a morphism
μ : O → T such that μ2 = μ ◦ μ1 and μ3 = μ ◦ μ. Assume X = μ(Zn).
Due to the commutativity property of the triangles, we have Y = μ(X). Take
A ∈ AT (X) = AT (μ(Zn)). Since μ is a morphism, there exists A′ ∈ AO(Zn)
such that A′ ⊆ A. Moreover, we have AO(Zn) = AT ′(Y) = AT ′(μ(X)). So,
there exists A′ ∈ AT ′(μ(X)) such that A′ ⊆ A.

(⇐) Assume μ : T → T ′ to be a morphism in CT T SΣ . Take arbitrary
morphisms μ1 : O1 → O2 in PΣ , and μ2 : O1 → T , μ3 : O2 → T ′ in CT T SΣ

such that μ◦μ2 = μ3 ◦μ1. Define the mapping μ′ : SR(O2)→ SR(T) as follows:
μ′(Z) = {γ ∈ Runs(T) | tw(γ) = tw(Z)}, for all Z ∈ SR(O2). It is routine to
show that μ′ is a morphism. The equations μ3 = μ ◦ μ′ and μ2 = μ′ ◦ μ1 follow
trivially. Thus, μ is a PΣ-open morphism. ♦

Example 6. Consider the transition systems T̂ and T shown in Fig. 2. The (only)
morphism, μ, from T̂ to T is not PΣ-open because, for instance, for A = ∅ ∈
AT̂ (X̂) there is no A′ ∈ AT̄ (X = μ(X̂)) such that A′ ⊆ A = ∅, where X̂ =
{〈ŝ0, ν0〉 a→

1
〈ŝ1, ν1〉, 〈ŝ0, ν0〉 a→

1
〈ŝ2, ν′1〉, 〈ŝ0, ν0〉

a→
1
〈ŝ3, ν′′1 〉}, where ν1(x) = ν′1(x) =

1, ν1(y) = ν′1(y) = 0, ν′′1 (x) = ν′′1 (y) = 1, and X = {〈s0, ν0〉 a→
1
〈s1, ν1〉}, where

ν1(x) = 1 and ν1(y) = 0. ♦

Finally, the coincidence of PΣ-bisimilarity and testing equivalence is established.

Theorem 3. Timed transition systems are PΣ-bisimilar iff they are testing
equivalent.

Proof. (⇒) For a timed transition system T , X ∈ SR(T) and α ∈ L(T), we
shall write AT (α) = AT (X) if tw(X) = α. Suppose T1

μ1← T μ2→ T2 to be a span
of PΣ-open morphisms. It is easy to show that L(T1) = L(T2). We shall prove
that for all timed words α and for all sets L ⊆ (Σ×R+), if T1 after αMUST L,
then T2 after α MUST L (the proof of the converse direction is similar). Take
arbitrary α and L such that T1 after α MUST L. Two cases are admissible.

– α ∈ L(T1). This implies α ∈ L(T2). Then there exists X1 ∈ SR(T1) and
X2 ∈ SR(T2) such that tw(X1) = α = tw(X2). Hence, we have AT1(X1) =
AT1(α) and AT2(X2) = AT2(α). Since μ1 is a PΣ-open morphism, for X1

we can find X ∈ SR(T) such that μ1(X) = X1 and for all A ∈ AT (X)
there exists A1 ∈ AT1(X1) such that A1 ⊆ A, by Theorem 2. Next, since

44 N. Gribovskaya and I. Virbitskaite

μ2 is a morphism, it follows that X2 = μ2(X) ∈ SR(T2), and for all A2 ∈
AT2(X2) there exists A ∈ AT (X) such that A ⊆ A2. So, we have that for all
A2 ∈ AT2(α) there exists A1 ∈ AT1(α) such that A1 ⊆ A2. Since T1 after α
MUST L, it follows A1∩L �= ∅, for all A1 ∈ AT1(α). This means A2∩L �= ∅,
for all A2 ∈ AT2(α). Thus, we can conclude that T2 after α MUST L.

– α �∈ L(T1). Then, α �∈ L(T2). This implies T2 after α MUST L.

(⇐) Suppose T1 and T2 to be testing equivalent. It is easy to show that
L(T1) = L(T2). Clearly, we can define a map μ : T1 → T2 as a function μ :
SR(T1) −→ SR(T2) such that: for all X ∈ SR(T1), tw(X) = tw(μ(X)), and
for all Y ∈ SR(T2) there exists X ∈ SR(T1) such that μ(X) = Y . Next, we
shall prove that for all A2 ∈ AT2(μ(X)) there exists A1 ∈ AT1(X) such that
A1 ⊆ A2 (the proof of the converse fact is similar). Suppose a contrary, i.e. there
exists A2 ∈ AT2(μ(X)) such that A1 �⊆ A2, for all A1 ∈ AT1(X). This means
that for all A1 there exists at least one (σ, τ)A1 such that (σ, τ)A1 ∈ A1 \ A2.
Define L0 = ∪A1∈AT1 (X)(σ, τ)A1 . W.l.o.g. assume tw(X) = α. We then conclude
that T1 after α MUST L0, but ¬(T2 after α MUST L0), contradicting our
assumption. Thus, μ is a morphism and, moreover, a PΣ-open morphism, due
to Theorem 2. ♦

5 Conclusion

In this paper, we have presented an application of Joyal, Nielsen, and Winskel’s
theory [19] illustrating that testing equivalence on timed transition systems can
be captured by the span of open maps idea. This allows us to transfer general
concepts of equivalences to the model under consideration and to apply general
results from the categorical setting (e.g. the existence of canonical models and
characteristic games and logics) to a concrete time-sensitive equivalence. It is
worth noting that the developed here category can also be exploited to provide
an open maps characterization of trace equivalence on timed transition systems.

As for future work, we plan to extend the obtained results to other observa-
tional equivalences (e.g., equivalences taking into account internal actions, etc.)
and to other classes of timed models (e.g. timed Petri nets, timed local event
structures, etc.). Also, we intend to exploit the approach from [11] as part of
our future work. Further, it would be interesting to study the relationship of the
characteristic path logic [19] to existing real-time logics [3].

References

1. Aceto, L., De Nicola, R., Fantechi, A.: Testing equivalences for event structures.
In: Venturini Zilli, M. (ed.) Mathematical Models for the Semantics of Parallelism.
LNCS, vol. 280, pp. 1–20. Springer, Heidelberg (1987)

2. Alur, R., Dill, D.: The theory of timed automata. Theoretical Computer Sci-
ence 126, 183–235 (1994)

3. Alur, R., Henziger, T.A.: Logics and models of real time: a survey. In: Huizing,
C., de Bakker, J.W., Rozenberg, G., de Roever, W.-P. (eds.) Real-Time: Theory
in Practice. LNCS, vol. 600, pp. 74–106. Springer, Heidelberg (1992)

A Categorical Observation of Timed Testing Equivalence 45

4. Andreeva, M.V., Bozhenkova, E.N., Virbitskaite, I.B.: Analysis of timed concur-
rent models based on testing equivalence. Fundamenta Informaticae 43(1–4), 1–20
(2000)

5. Bihler, E., Vogler, W.: Timed Petri Nets: Efficiency of asynchronous systems. In:
Bernardo, M., Corradini, F. (eds.) Formal Methods for the Design of Real-Time
Systems. LNCS, vol. 3185, pp. 25–58. Springer, Heidelberg (2004)

6. Badouel, E., Bednarczyk, M., Darondeau, P.: Generalized automata and their net
representations. In: Ehrig, H., Juhás, G., Padberg, J., Rozenberg, G. (eds.) Unifying
Petri Nets. LNCS, vol. 2128, pp. 304–345. Springer, Heidelberg (2001)

7. Borceux, F.: Handbook of Categorical Algebra, vol. 2(3). Encyclopedia of Mathe-
matics and its Applications, vol. 51(52). Cambridge University Press (1994)

8. Cattani, G.L., Sassone, V.: Higher dimentional transition systems. In: Proc.
LICS’96, pp. 55–62 (1996)

9. Čerāns, K.: Decidability of bisimulation equivalences for parallel timer processes.
In: Probst, D.K., von Bochmann, G. (eds.) CAV 1992. LNCS, vol. 663, pp. 302–315.
Springer, Heidelberg (1993)

10. Cleaveland, R., Zwarico, A.E.: A theory of testing for real-time. In: Proc. LICS’91,
pp. 110–119 (1991)

11. Fiore, M., Cattani, G.L., Winskel, G.: Weak bisimulation and open maps. In: Proc.
LICS’99, pp. 214–225 (1999)

12. Fahrenberg, U.: A Category of Higher-Dimensional Automata. In: Sassone, V. (ed.)
FOSSACS 2005. LNCS, vol. 3441, pp. 187–201. Springer, Heidelberg (2005)

13. van Glabbeek, R.J.: The linear time – branching time spectrum II: the seman-
tics of sequential systems with silent moves. Extended abstract. In: Best, E. (ed.)
CONCUR 1993. LNCS, vol. 715, pp. 66–81. Springer, Heidelberg (1993)

14. Glabbeek, R., Goltz, U.: Equivalence notions for concurrent systems and refinement
of action. In: Kreczmar, A., Mirkowska, G. (eds.) Mathematical Foundations of
Computer Science 1989. LNCS, vol. 379, pp. 237–248. Springer, Heidelberg (1989)

15. Goltz, U., Wehrheim, H.: Causal testing. In: Penczek, W., Sza�las, A. (eds.) Math-
ematical Foundations of Computer Science 1996. LNCS, vol. 1113, pp. 394–406.
Springer, Heidelberg (1996)

16. Henzinger, T.A., Manna, Z., Pnueli, A.: Timed transition systems. In: Huizing, C.,
de Bakker, J.W., Rozenberg, G., de Roever, W.-P. (eds.) Real-Time: Theory in
Practice. LNCS, vol. 600, pp. 226–251. Springer, Heidelberg (1992)

17. Hune, T., Nielsen, M.: Bisimulation and open maps fot timed transition systems.
Fundamenta Informaticae 38, 61–77 (1999)

18. Jacobs, B., Rutten, J.: A tutorial on (Co)algebras and (Co)induction. EATCS
Bulletin 62, 222–259 (1997)

19. Joyal, A., Nielsen, M., Winskel, G.: Bisimulation from open maps. Information and
Computation 127(2), 164–185 (1996)

20. De Nicola, R., Hennessy, M.: Testing equiavalence for processes. Theoretical Com-
puter Science 34, 83–133 (1984)

21. Nielsen, M., Cheng, A.: Observing behaviour categorically. In: Thiagarajan, P.S.
(ed.) Foundations of Software Technology and Theoretical Computer Science.
LNCS, vol. 1026, pp. 263–278. Springer, Heidelberg (1995)

22. Steffen, B., Weise, C.: Deciding testing equivalence for real-time processes with
dense time. In: Borzyszkowski, A.M., Sokolowski, S. (eds.) MFCS 1993. LNCS,
vol. 711, pp. 703–713. Springer, Heidelberg (1993)

23. Virbitskaite, I.B., Gribovskaya, N.S.: Open maps and observational equivalences
for timed partial order models. Fundamenta Informaticae 60(1-4), 383–399 (2004)

46 N. Gribovskaya and I. Virbitskaite

24. Weise, C., Lenzkes, D.: Efficient scaling-invariant checking of timed bisimulation.
In: Reischuk, R., Morvan, M. (eds.) STACS 97. LNCS, vol. 1200, pp. 176–188.
Springer, Heidelberg (1997)

25. Winskel, G., Nielsen, M.: Models for concurrency. In: Handbook of Logic in Com-
puter Science 4 (1995)

Appendix: Introduction to Open Maps

We briefly recall the basic definitions from [19].
First, a category which represents a model of computation has to be identi-

fied. Let us denote this category M. A morphism m : X −→ Y in M should
intuitively be thought of as a simulation of X in Y . Then, within the category
M, we choose a subcategory of ‘observation objects’ and ‘observation extension’
morphisms between these objects. We denote this category of observations by P .
Given an observation (object) O in P and a model X in M, then O is said to
be an observable behaviour of X if there exists a morphism p : O −→ Y in M.
We think of p as representing a particular way of realizing O in X .

Next, we identify morphisms m : X −→ Y which have the property that
whenever an observable behaviour of X can be extended via f in Y then that
extension can be matched by an extension of the observable behaviour in X . A
morphism m : X → Y in M is called P-open if whenever f : O1 → O2 in P ,
p : O1 → X , q : O2 → Y in M such that m ◦ p = q ◦ f , there exists a morphism
h : O2 → X in M such that p = h ◦ f and q = m ◦ h. When no confusion is
possible, we refer to P-open morphisms as open maps.

Finally, we introduce an abstract notion of bisimilarity. As reported in [19], the
open map approach provides general concepts of bisimilarity for any categorical
model of computation. The definition is given in terms of spans of open maps.
Two models X and Y in M are said to be P-bisimilar if there exists a span

X
m←− Z m′

−→ Y with vertex Z of P-open morphisms.
Notice that if M has pullbacks, it can be shown that P-bisimilarity is always

an equivalence relation. The important observation is that pullbacks of open
maps are themselves open maps [19].

From Unreliable Objects to Reliable Objects:

The Case of Atomic Registers and Consensus

Rachid Guerraoui1 and Michel Raynal2

1 Distributed Programming Lab, EPFL, Lausanne, Switzerland
rachid.guerraoui@epfl.ch

2 IRISA, University of Rennes 1, 35042 Rennes, France
michel.raynal@irisa.fr

Abstract. A concurrent object is an object that can be concurrently
accessed by several processes. It has been shown by Maurice Herlihy that
any concurrent object O defined by a sequential specification can be wait-
free implemented from reliable atomic registers (shared variables) and
consensus objects. Wait-free means that any invocation of an operation
of the object O issued by a non-faulty process does terminate, whatever
the behavior of the other processes (e.g., despite the fact they are very
slow or even have crashed).

So, an important issue consists in providing reliable atomic registers
and reliable consensus objects despite the failures experienced by the
base objects from which these atomic registers and consensus objects
are built. This paper considers self-implementations, i.e., the case where
a reliable atomic register (resp., consensus object) is built from unre-
liable atomic registers (resp., unreliable consensus objects). The paper
addresses the object failure model where the base objects can suffer re-
sponsive or nonresponsive crash failures. When there are solutions the
paper presents corresponding algorithms, and when there is no solution,
it presents the corresponding impossibility result. The paper has a tu-
torial flavor whose aim is to make the reader familiar with important
results when one has to build resilient concurrent objects. To that aim,
the paper use both algorithms from the literature and new algorithms.

1 Introduction

Concurrent object with a sequential specification. A concurrent object is an ob-
ject that can be concurrently accessed by several processes. As any object, such
an object is defined by (1) an interface providing operations that allow manipu-
lating the object and (2) a specification describing the correct behaviors of the
object. Such a specification can be sequential or not. As an example, a concur-
rent queue has a sequential specification. Differently, a failure detector [2,10]
has no sequential specification. Sequential specification means that, at some ab-
straction level, the behavior of the object can be described as if each operation
was executed instantaneously and without concurrency. Among the most popu-
lar concurrent objects defined by a sequential specification there are the shared
queue (whose implementation is usually described in textbooks under the name

V. Malyshkin (Ed.): PaCT 2007, LNCS 4671, pp. 47–61, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

48 R. Guerraoui and M. Raynal

producer/consumer problem), and the shared file, also called disk or register (the
implementation of which underlies the readers/writers problem).

Net effect of asynchrony and failures. When operations accessing a concurrent
object overlap, a simple way to ensure that the sequential specification of the
object is never violated consists in blocking all of them but one during some
time in order that one can access the object without being bothered by the
others and consequently be able to proceed in a safe way. This is traditionally
solved by associating locks with each concurrent object [6]. (Such a lock is called
a condition in the monitor terminology [6], and a simple way to implement a
lock consists in using a semaphore.) Due to their (relative) simplicity and their
effectiveness, lock-based implementations are popular.

Unfortunately, in asynchronous systems (i.e., the class of systems where no
assumption on the speed of the processes is possible), the lock-based approach
presents intrinsic major drawbacks. If a slow process holds a lock during a long
period of time, it can delay faster processes from accessing (some parts of) the
object. More severely, the lock-based approach does not prevent by itself dead-
lock scenarios from occurring. Preventing them requires additional mechanisms
or strategies that can give rise to long waiting periods that degrade the whole
system efficiency. The situation becomes even more critical in presence of fail-
ures. When a process holding a lock crashes, as the system is asynchronous,
there is no way to know whether this process has crashed or is only very slow. It
follows that such a crash can block the system during an arbitrarily long period
(i.e., until an appropriate recovery action is started, either manually, or after the
operating system becomes aware of the crash of the process).

Wait-free object implementation and consensus universality. These crucial draw-
backs make a case for implementations of concurrent objects that, instead of be-
ing lock-based, allow each process that executes an object operation to progress
without waiting, i.e., whatever the current state and behavior of the other pro-
cesses. Such implementations of concurrent objects are known as wait-free [4].
Initially proposed by Lamport [8], they basically ensure that no process can be
arbitrarily delayed by the other processes. It is important to notice that “wait-
free” is a property of a protocol implementing an object, not a property of the
object itself.

Very interestingly, it has been shown [4] that any concurrent object that has
a sequential specification (as it is the case for shared queues and shared files)
can have a wait-free implementation for any number of processes as soon as we
are provided with atomic registers (shared variables) and consensus objects [4].
This result is called the universality of consensus. A universal construction is a
wait-free algorithm that, given the specification of any sequential type T , builds
a concurrent object of the type T from atomic registers and consensus objects.
The most known universal construction is described in [4]; that construction is
bounded. A simpler (not bounded) universal construction is described in [3].

Content of the paper. The previous discussion shows that atomic registers and
consensus objects are fundamental objects as soon as one wants to build high

From Unreliable Objects to Reliable Objects 49

level wait-free reliable objects. A universal construction considers that these base
objects are reliable, i.e., they always provide their failure-free semantics. So, to
complete the picture, it is necessary to be able to build reliable atomic registers
and reliable consensus objects from unreliable base objects. Such an investigation
had been done in [7]. In that paper, adopting a very theoretical point of view,
the authors consider several failure models (crash, omission, Byzantine) and
delineate a precise borderline separating what that can be done from what that
cannot be done (impossibility results).

Although some of the algorithms it presents are new, this paper has a more
pedagogical and survey flavor. Assuming that any number of processes can crash
(wait-free case), the paper considers two variants of the object crash failure
model, namely the responsive crash model, and the nonresponsive crash model.
This difference is fundamental. In the responsive crash model, a process that
invokes an operation always receives a response (a default value when the object
has crashed), while it can never receive a response in the nonresponsive model af-
ter the base object has crashed (the invoking operation can then remain pending
forever).

The paper is divided into 4 sections. First, the system model is presented and
important definitions are stated (Section 2). Then, the responsive failure model
is addressed in Section 3, while the nonresponsive failure model is considered in
Section 4. In each case, (existing or new) algorithms are presented and proved
correct. When no algorithm can be designed, an impossibility result is proved. As
already mentioned, in addition to new algorithms, the paper has a pedagogical
and survey flavor. Interestingly, the paper visits also proofs techniques that one
can use to prove that objects are atomic.

2 Computation Model

2.1 Processes, Registers and Consensus Objects

Process model We consider a system made up of an arbitrary number (not nec-
essarily finite) of sequential processes, denoted p1, p2, . . ., such that any number
of them can crash (wait-free case). Given any execution of the system, a correct
process is a process that does not crash during that execution. A process that
crashes is said to be faulty. A process executes correctly (i.e., according to its
specification) until it possibly crashes. After it has crashed, a process executes
no operation. There is no bound on the relative speed of a process with respect
to another, which means that the system is asynchronous [1].

Shared Registers. A register [9] is an abstraction of shared variable. A reliable
atomic register is an object that provides the processes with two operations
usually called read and a write operations. Whatever the number of processes
that can concurrently access such a register, the read and write operations issued
by the processes appear as if they have been executed one after the other, each
one being executed instantaneously at some point of the time line between its
invocation event and its response event.

50 R. Guerraoui and M. Raynal

In the following we consider that each register has a single writer and a single
reader (1W1R register). This is not at the price of generality as multi-writers
multi-readers atomic registers can be built from 1W1R atomic registers (e.g.,
see [11]). The notion of atomic register is the ultimate of the following suite of
definitions [9].

– A 1W1R safe register is a register such that a read operation that is not
concurrent with a write operation returns the current value of the register,
while a read concurrent with a write returns any value that the register can
contain (let us observe that, in that case, it is possible that the returned
value has never been written into the register!).

– A 1W1R regular register is a safe register such that any read concurrent with
one or more write operations returns the value of the register before these
write operations, or the value written by one of these write operations.
It is important to see that when two read operations r1 and r2 are concurrent
with two write operations w1 and w2 (see Figure 5), it is possible that the
second read r2 obtains the value written by the first write w1, while the first
read r1 obtains the value written by the second write w2. When it occurs,
this is called a new/old inversion.

– A 1W1R atomic register is a regular register with no new/old inversion [9].

Consensus Object. A consensus object offers a single operation to its users,
namely propose(). A process pi invokes it at most once, and supplies a parameter
value vi. So its invocation has the form “propose(vi)”, and we say “pi proposes
vi”. Each process invocation returns a result. The semantic of a consensus object
states that (1) all the processes that invoke propose() obtain a result value
(termination); (2) there is single result value (agreement); and (3) the result
value is a proposed value (validity). Restraining, without loss of generality, the
decided value to be the value proposed in the first invocation of the propose()
operation provides a sequential specification of the consensus object [7].

2.2 Responsive and Nonresponsive Crash Failures

Intuitively, an object crash failure occurs when the corresponding object stops
working. More precisely, two different crash failure models can be distinguished:
the responsive crash model and the nonresponsive crash model.

Responsive crashes. In the responsive crash failure model, an object fails if
it behaves correctly until some time, after which every operation returns the
default value ⊥. This means that the object behaves according to its sequential
specification until it crashes (if it ever crashes), and then satisfies the property
“once ⊥, forever ⊥”. The responsive crash model is sometimes called fail-stop
model.

Nonresponsive crashes. In the nonresponsive crash model, an object does not
return ⊥ after it has crashed. There is no response and the invoked operation

From Unreliable Objects to Reliable Objects 51

remains pending forever. The nonresponsive crash model is sometimes called
fail-silent model.

Facing nonresponsive failures is more difficult than facing responsive failures.
Indeed, in the asynchronous computation model, a process that invokes an oper-
ation on an object that has crashed and is not responsive, has no mean to know
whether the object has indeed crashed or is only very slow. As we will see, some
objects that can be implemented in the responsive failure model, can no longer
be implemented in the nonresponsive failure model.

2.3 Notion of t-Resilience

As indicated above, we are interested in the wait-free construction of reliable
objects from base object prone to crash (let us recall that “wait-free” means
that the constructions have to work whatever the number of faulty processes).
More precisely we are interested in, self-implementation, which means that we
want to build a reliable object of type T (atomic register or consensus), from
base objects of the same type T a subset of them being possibly unreliable.

︸
︷︷

︸

Reliable object RO

m base objects, up to t < m can be unreliable

︸ ︷︷ ︸

Fig. 1. Reliable object from unreliable base objects

Let us assume that the reliable object RO is built from m base objects of the
same type (Figure 1). RO is said to be t-resilient if behaves correctly despite
the crash of up to t shared base objects from which it is built. This means that,
for the processes that use RO, there is no difference if none, 1, 2, etc., up to
t < m base objects crash. (If there are differences, those concern efficiency and
could be perceived only by an external observer. Due to the asynchrony of the
system model, they are “hidden” to the processes.) Differently, if more than t
base object crash, there is no guarantee on the behavior of RO (that can then
behave arbitrarily).

3 Registers and Consensus Objects with Responsive
Failures

This section presents wait-free self-constructions of t-resilient objects from m ≥
t+ 1 base objects prone to responsive crash failures. “Self-construction” means
that the reliable object that is built and the base objects from which it is built
have the same type. It is easy to see that t+1 is a tight lower bound on the number
of base objects required to mask up to t faulty base objects. If an operation on

52 R. Guerraoui and M. Raynal

the constructed object accesses only t base objects, and all of them fail, there is
no way for the constructed object to mask the base object failures. As previously
indicated, these constructions concern 1W1R atomic registers and consensus.

3.1 Reliable Register When Failures Are Responsive: An
Unbounded Construction

The first construction (that is present on some textbooks without proof) is based
on sequence numbers. It consequently requires base atomic registers that are
potentially unbounded. The t + 1 registers are denoted REG [1 : (t + 1)]. Each
register REG[i] is made up of two fields denoted REG[i].sn (sequence number
part) and REG [i].val (value part). Each base register REG[i] is initialized to
the pair (vinit, 0) where vinit is the initial value of the constructed register.

operation RO.write(v): % invoked by the writer %
sn ← sn + 1;
for j ∈ {1, . . . , t + 1} do REG[j] ← (v, sn) end do;
return ()

operation RO.read(): % invoked by the reader %
% The initial value of last is (v init, 0) %
for j ∈{1, . . . , t + 1} do

aux ← REG [j];
if (aux �= ⊥) ∧ (aux.sn > last.sn) then last ← aux end if

end do;
return (last.val)

Fig. 2. 1W1R t-resilient atomic register RO: construction 1

The read and write operation to access the t-resilient 1W1R register (denoted
RO) are described in Figure 2. The write operation consists in writing the pair,
made up of the new value plus its sequence number, in all the base registers
(without specific order) sn is a variable local to the writer that is used to generate
sequence numbers (it is initialized to 0).

The reader keeps in a local variable denoted last, and initialized to (vinit, 0),
a copy of the pair (v, sn) with the highest sequence number it has ever read.
This variable allows preventing new/old inversions when base registers or the
writer crash. The read operation consists in reading the base registers (in any
order). Let us observe that, as at most t registers can crash, at least one register
always returns a non-⊥ value. For all the base registers whose read returns a
non-⊥ value, if the reader reads a more recent value, it updates last accordingly.
Finally, it returns the value last.val, i.e., the value associated with the highest
sequence number it has ever seen (last.sn).

It is important to notice that the read and write operations access the base
registers in any order. This means that no operation on a base register depends

From Unreliable Objects to Reliable Objects 53

on a previous operation on another base register. Said in another way, they could
be issued in parallel, thereby favoring efficiency. (Differently, when base registers
can suffer nonresponsive failures, the parallel invocation approach has to be used
to cope with base operations that never answer. This is illustrated in Figure 8.)
Let us also notice that the version of the construction with parallel invocations
provides an optimal construction as far as time complexity is concerned.

Theorem 1. The algorithm described in Figure 2 wait-free implements a t-
resilient 1W1R atomic register from (t + 1) 1W1R base atomic registers that
can suffer responsive crash failures.

Proof. As already noticed, the construction is trivially wait-free. Moreover, as
each read operation returns a non-⊥ value, the register that is built is reliable
(in the sense that it always returns a non-⊥ value). So, it remains to show that
the register that is built is atomic. This is done by first defining a total order on
the read and write operations on the constructed object, and then showing that
the resulting sequence satisfies the sequential specification of a register. This
second step uses the fact that there exists a total order on the accesses to the
base registers (as those registers are atomic).

Let us associate with each write operation on the constructed object RO (high
level write) the sequence number associated with the value it writes. Similarly,
let us associate with each high level read operation the sequence number of the
value it reads. Let Ŝ be the total order on the high level read and write operations
defined as follows. The high level write operations are ordered according to their
sequence numbers. The high level read operations with a given sequence number
are ordered just after the high level write operation with the same sequence
number. If two or more read operations have the same sequence number, they
are ordered in Ŝ according to their invocation order. We have the following.

– It follows from its definition that Ŝ includes all the operations issued by the
reader and the writer (except possibly their last operation if they crash).

– Due to the way the local variable sn is used by the writer, the high level
write operations appear in Ŝ according to their invocation order.

– Similarly, the high level read operations appear in Ŝ according to their invo-
cation order. This is due the local variable last used by the reader (the reader
returns the value with the highest sequence number it has ever obtained from
a base register).

– As the base registers are atomic, the base operations on these registers are
totally ordered. Consequently, when we consider that total order, a base read
operation that obtains the sequence number sn from a base atomic register,
is after the base write operation that wrote sn into that register.
As Ŝ is such that a high level read operation that obtains a value whose
sequence number is sn is after the snth high level write operation, it follows
that Ŝ is consistent with the occurrence order defined by the operations on
the base objects.

It follows from the previous items that Ŝ is a linearization of the high level read
and write operations (this means that these high level operations can be totally

54 R. Guerraoui and M. Raynal

ordered in such a way that each operation appears as if it has been executed
instantaneously at some point of the time line between its invocation event and
its end event [4]). Consequently, the constructed object RO is an atomic register.

�Theorem 1

3.2 Reliable Register When Failures Are Responsive: A Bounded
Construction

Eliminating sequence numbers. When we consider the previous construction, an
interesting question is the following: is it possible to design a t-resilient 1W1R
atomic register from t+1 bounded base registers, i.e., are the sequence numbers
necessary? The construction that follows shows that they are not: there is a
bounded 1W1R atomic register construction. Moreover, that construction (that,
to our knowledge, is new) is optimal in the sense that each base register has
only to contain the value that is written. No additional control information is
required.

The corresponding construction is described in Figure 4. The writer simply
writes the new value in each base register, in increasing order, starting from
REG[1] until REG[t + 1]. The reader scans sequentially the registers in the
opposite order, starting from REG[t + 1]. It stops just after the first read of
a base register that returns a non-⊥ value. As at least one base register does
not crash (model assumption), the reader always obtains a non-⊥ value. (Let
us remind that, as we want to build a t-resilient object, the construction is
not required to provide guarantees when more than t base objects crash.) It is
important to remark that, differently from the construction described in Figure
2, each read and write operation has now to follow a predefined order when it
accesses the base registers. Moreover, the order for reading and the order for
writing are opposite. These orders are depicted in Figure 3 with a space-time
diagram in which the “time line” of each base register is represented. A black
circle indicates a base read or write operation on a base register REG[k]. The
read stops reading base registers when it reads a non-⊥ value for the first time.

REG [2]

REG [1]

REG [k]

REG [k − 1]

REG [t + 1]

Write line Read line

⊥
⊥

v �= ⊥

REG [t]

Fig. 3. Order in which the operations access the base registers

From Unreliable Objects to Reliable Objects 55

Why read and write operations have to access base registers in opposite order.
To understand why the high level read and write operations have to access the
base registers in opposite order, let us consider the following scenario where
both the read and write operations access the base registers in the same order,
from REG [1] to REG[t + 1].The write updates REG[1] to x and crashes just
after. Then, a read obtains the value x. Sometimes later, REG[1] crashes. After
that crash occurred, the reader reads REG [1], obtains ⊥, then reads REG[2]
and obtains y, the value that was written before x. The two high level read
operations issued by the reader suffer a new/old inversion, and consequently, the
constructed object is not atomic. Forcing the reader to access the base registers
in the reverse order (with respect to the writer) ensures that if the reader returns
v from REG [j], then all the based registers REG [k] such that j < k ≤ t+1 have
crashed. More generally, as we have seen previously, if the reader and the writer
do not access the base registers in opposite order, additional control information
has to be used, such as sequence numbers.

operation RO.write(v): % invoked by the writer %
for j from 1 to t + 1 do REG [j] ← v end do;
return ()

operation RO.read(): % invoked by the reader %
for j from t + 1 to 1 do

aux ← REG[j];
if (aux �= ⊥) then return (aux) end if

end do

Fig. 4. 1W1R t-resilient atomic register RO: construction 2

Tradeoff. It is interesting to emphasize the tradeoff between this construction
and the previous one. The construction of a 1W1R t-resilient atomic register de-
scribed in Figure 2 is time-optimal (when the invocations are done in parallel),
but requires additional control information, namely, sequence numbers. Differ-
ently, the construction described in Figure 4 is space optimal (no additional
control information is required), but requires sequential invocations on the base
registers.

Theorem 2. The algorithm described in Figure 4 wait-free implements a t-
resilient 1W1R atomic register from (t + 1) 1W1R base atomic registers that
can suffer responsive crash failures. Moreover it is space optimal.

Proof. The wait-free property follows directly from the fact there is no explicit
or implicit wait statement in the construction. Due to the assumption that at
most t base registers crash, the value returned by a high level read operation is
a value that has been previously written. Consequently, the constructed object
never returns ⊥, and is (in that sense) a reliable register.

56 R. Guerraoui and M. Raynal

The proof that the constructed register is atomic is done incrementally. It is
shown that the register is first safe, then regular and finally atomic. The proof for
going from regularity to atomicity consists in showing that there is no new/old
inversion, from which atomicity follows [9].

Safeness. Let us consider a read operation of the constructed register when there
is no concurrent write operation. Safeness requires that, in this scenario, the read
returns the last written value.

As (by assumption) no write operation is concurrent with the read operation,
we conclude that the writer has not crashed during the last write operation
issued before the read operation (otherwise, this write operation would not be
terminated and consequently would be concurrent with the read operation).

The last write has updated all the non-crashed registers to the same value v.
It follows that, whatever the base register from which the read operation obtains
a non-⊥ value, it obtains and returns the value v.

Regularity. If a read operation r is concurrent with one or several write opera-
tions, we have to show that it obtains the value of the constructed register before
these write operations, or a value written by one of them.

Let us first observe that a read operation cannot obtain from a base register
a value that has not yet been written into it. We conclude from that observation
that a high level read operation cannot return a value that has not yet been
written by a write operation.

Let v be the value of the register before the concurrent high level write opera-
tion. This means that all the non-crashed base registers are equal to v before the
first concurrent high level write operation. If the high level read operation obtains
the value v, regularity is ensured. So, let us assume that r obtains another value
v′ from some register REG[x]. This means that REG[x] has not crashed and has
been updated to v′ after having been updated to v. This can only be done by a
concurrent high level write operation that writes v′ and has been issued by the
writer after the write of v. The constructed register is consequently regular.

Atomicity. We prove that there is no new/old inversion. Let us assume that two
read operations r1 and r2 are such that r1 is invoked before r2, r1 returns v2
that has been written by w2, r2 returns v1 that has been written by w1, and
w1 is before w2 (Figure 5). The read operation r1 returns v2 from some base
register REG [x]. It follows from the read algorithm that all the base registers
REG[y] such that x < y ≤ t + 1 have crashed. It also follows from the write

time line

r1 r2

w2w1

Fig. 5. Proof of no new/old inversion

From Unreliable Objects to Reliable Objects 57

algorithm that the non-crashed registers from REG [1] to REG [x−1] contain v2
or a more recent value when r1 returns v2.

As the base registers from REG[t+1] until REG [x+1] have crashed when r2
is invoked, that read operation obtains ⊥ from all these registers. When it reads
the atomic register REG[x], it obtains v2, or a more recent value, or ⊥.

– If it obtains v2 or a more recent value, there is no new/old inversion.
– If it obtains ⊥, it continues reading from REG[x − 1] until it finds a base

register REG [y] (y < x) from which it obtains a non-⊥ value. On another
side, as the write algorithm writes the base registers in increasing order
starting from REG [1], it follows that no register from REG[1] until REG[x−
1] (not crashed when read by r2) can contain a value older than v2, namely
it can only contain v2 or a more recent value. It follows that there is no
possibility of new/old inversion also in that case. �Theorem 2

operation RO.read(): % invoked by the reader %
for j from shortcut to 1 do

aux ← REG[j];
if (aux �= ⊥) then shortcut ← j; return (aux) end if

end do

Fig. 6. Improving construction 2

An improvement. An easy way to improve the time efficiency of the previous
read operation consists in providing the reader with a local variable (denoted
shortcut and initialized to t + 1), that keeps an index such that, to the reader
knowledge, each REG[k] has crashed, for shortcut < k ≤ t + 1. The resulting
read algorithm is described in Figure 6. It is easy to see that, if after some time
no more base register crashes, shortcut always points to the first (in descending
order) non-crashed base register. This means that there is a time after which
the duration of a read operation is constant.

3.3 Consensus When Failures Are Responsive: A Bounded
Construction

This section presents a t-resilient consensus object RES CONS built from m =
t + 1 base consensus objects. As for the previous register, it is easy to see that
t+1 is a tight lower bound on the number of crash-prone base consensus objects.

The “parallel invocations” approach does not work. Before presenting a construc-
tion that builds a t-resilient consensus object, let us give an intuitive explanation
of the fact that there is no solution when the invocations on the base consensus
objects are done in parallel.

58 R. Guerraoui and M. Raynal

So, let us assume that we have m = 2t + 1 base consensus objects, and an
invocation on the constructed object is implemented as follows: a process pi (1)
invokes in parallel propose(v) on each base object, and then (2) takes the value
decided by a majority of the base consensus objects. As there is a majority of base
objects that are reliable, this algorithm does not block, and pi receives decided
values from a majority of base consensus objects. But, according to the values
proposed by the other processes, it is possible that none of the values it receives
be a majority value. It is even possible that it receives a different value from each
of the 2t + 1 base consensus objects if there are n ≥ m = 2t + 1 processes and
they all have a proposed different values to the constructed consensus object.

While this approach works for objects such as atomic registers (see below),
it does not for consensus objects. This comes from the fact that registers are
data objects, while consensus are synchronization objects and synchronization is
inherently non-deterministic.

A t-resilient construction. The t+1 base consensus objects are denoted CONS [1 :
(t+ 1)]. The construction (from [7]) is described in Figure 7. The variable est is
local to the invoking process. When a process pi invokes RES CONS .propose(v),
it first sets est to the value v it proposes. Then, pi sequentially visits the base
consensus objects in a predetermined order (e.g., starting from CONS [1] until
CONS [t + 1]. The important point here is that all the processes use the same
visit order). At the step k, pi invokes CONS [k].propose(est). Then, if the value
it obtains is different from ⊥, pi adopts it as its new estimate value est. Finally,
pi decides the value of est after it has visited all the base consensus objects. Let
us observe that, as at least one consensus object is not faulty, all the processes
that invoke propose() on that object obtain the same non-⊥ value from it.

operation RES CONS .propose(v):
(1) est ← v;
(2) for k from 1 to t + 1 do
(3) aux ← CONS [k].propose(est);
(4) if (aux �= ⊥) then est ← aux end if
(5) end do;
(6) return (est)

Fig. 7. Construction of a t-resilient consensus object RES CONS [7]

Theorem 3. The algorithm described in Figure 7 wait-free implements a t-
resilient consensus object from (t + 1) base consensus objects that can suffer
responsive crash failures.

Proof. The proof has to show that, it no more than t base consensus object
crash, the object that is built satisfies the validity, agreement and wait-free
termination properties of consensus.

From Unreliable Objects to Reliable Objects 59

As any CONS [k] base consensus object is responsive, it follows that any
CONS [k].propose(est) invocation terminates (line 03). Consequently, when ex-
ecuted by a correct process, the for loop always terminates. The wait-free ter-
mination follows directly from these observations.

When a process invokes RES CONS .propose(v), it first initializes its local
variable est to the value v it proposes. Then, if est is modified, it is modified
at line 04 and takes the value proposed by a process to the corresponding base
consensus object. By backward induction, that value has been proposed by a
process. The consensus validity property follows.

Let CONS [x] be the first (in the increasing order on x) non-faulty base con-
sensus object (by assumption, there is at least one such object). Let v be value
decided by that consensus object. It follows from the agreement property of that
base object, that all the processes that invoke CONS [x].propose(est) decide v.
From then on, only v can be proposed to the base consensus objects CONS [x+1]
until CONS [t+ 1]. It follows that, from CONS [x], the only value proposed to a
next consensus object is v. Consequently, v is the value decided by the processes
that execute line 06. The agreement property follows. (As we can see, the fact
that all the processes “visit” the base consensus objects in the same order -from
CONS [1] to CONS [t + 1]- is central in the proof of this agreement property.)

�Theorem 3

4 Registers and Consensus Objects with Nonresponsive
Failures

4.1 Reliable Register When Failures Are Not Responsive: An
Unbounded Construction

Construction of a 1W1R reliable register. When failures are not responsive, the
construction of a 1W1R atomic register is still possible but requires a higher cost
in terms of base registers, namely m ≥ 2t+ 1 base registers are then required.
This construction is well-known. Its principles are simple. They are:

– The use of sequence numbers, as in the construction for responsive failures
(Figure 2).

– The use of the majority notion, as the model assumes at most t unreliable
base registers, with t < m/2 < m − t. This implies that any two majorities
of base objects do intersect. Moreover, any set of t+1 base registers contains
at least one correct register.

– The parallel activation of read operations on base registers, as now it is
possible that such a read operation never returns a result if the corresponding
base object has crashed. Due to the majority of correct base registers, we
know that a majority of these base read operations do terminate, but it is
not know in advance which ones.

The construction is described in Figure 8. It is a straightforward extension of
the algorithm described in Figure 2, that takes into account the fact that a

60 R. Guerraoui and M. Raynal

base operation can never answer. So, it considers m = 2t + 1, and issues base
read and write operations in parallel in order to prevent a possible definitive
blocking that could occur if the base operations were issued sequentially. As
in the algorithm described in Figure 2, the reader maintains a local variable
last that keeps the (val, sn) pair with the highest sequence number it has ever
read from a base register. This construction shows that, when one is interested

operation RO.write(v): % invoked by the writer %
sn ← sn + 1;
concurrently for each base register j ∈ {1, . . . , m}

do issue write (v, sn) into REG [j] end do;
wait until (a majority of the previous base write operations have terminated);
return ()

operation RO.read(): % invoked by the reader %
concurrently for each base register j ∈ {1, . . . , m}

do issue read () on REG[j] end do;
wait until (a majority of the previous base read operations have terminated);
let pairs= the set of pairs (val, sn) received from the previous read operations;
last ← the pair in the set pairs ∪ {last} with the highest sequence number;
return (last.val)

Fig. 8. 1W1R t-resilient atomic register RO despite nonresponsive crashes

in building a reliable 1W1R atomic register, the price to go from base object
responsive failures to nonresponsive failures, increases from t+ 1 base registers
to 2t+ 1 base registers.

Theorem 4. The algorithm described in Figure 8 wait-free implements a t-
resilient 1W1R atomic register from m = 2t + 1 base 1W1R atomic registers
that can suffer nonresponsive crash failures.

Proof. The proof is a simple adaptation of the proof of Theorem 1 to the context
of nonresponsive crash failures. It is left to the reader as an exercise. (The fact
that at least one non-faulty base register is written (read) used in Theorem 1 is
replaced here by the majority of correct base registers assumption.) �Theorem 2

4.2 Consensus When Failures Are Not Responsive: An Impossibility

This section presents an impossibility result. Differently from atomic registers,
no t-resilient consensus object can be built from crash-prone nonresponsive con-
sensus objects.

Theorem 5. There is no algorithm that wait-free implements a consensus object
from crash-prone nonresponsive consensus objects and reliable atomic registers.

From Unreliable Objects to Reliable Objects 61

Proof. The proof is by contradiction. Let us assume that there is an algorithm
A that builds a consensus object from reliable atomic registers and any number
x of consensus objects such that at least one of them is crash-prone and nonre-
sponsive. Each consensus object can be simulated by an asynchronous process.
(From a computability point of view, a process is as powerful as any object with
a sequential specification.) It follows that A solves the consensus problem in a
system made up of atomic registers and x asynchronous processes, where one of
them can crash. This has shown to be impossible [4], from which we conclude
that no algorithm A can be designed. �Theorem 5

References

1. Attiya, H., Welch, J.: Distributed Computing: Fundamentals, Simulations and Ad-
vanced Topics, p. 451. McGraw-Hill, New York (1998)

2. Chandra, T., Toueg, S.: Unreliable Failure Detectors for Resilient Distributed Sys-
tems. Journal of the ACM 43(2), 225–267 (1996)

3. Guerraoui, R., Raynal, M.: A Universal Construction for Wait-free Objects. In:
Proc. ARES 2007 Workshop on Foundations of Fault-tolerant Distributed Com-
puting (FOFDC 2007), IEEE Society Computer Press, Vienna (Austria) (2007)

4. Herlihy, M.P.: Wait-Free Synchronization. ACM TOPLAS 13(1), 124–149 (1991)
5. Herlihy, M.P., Wing, J.M: Linearizability: a Correctness Condition for Concurrent

Objects. ACM TOPLAS 12(3), 463–492 (1990)
6. Hoare, C.A.R.: Monitors: an Operating System Structuring Concept. Comm.

ACM 17(10), 549–557 (1974)
7. Jayanti, P., Chandra, T., Toueg, S.: Fault-Tolerant Wait-Free Shared Objects. Jour-

nal of the ACM 45(3), 451–500 (1998)
8. Lamport, L.: Concurrent Reading and Writing. Comm. ACM 20(11), 806–811

(1977)
9. Lamport, L.: On Interprocess Communication, Part 1: Models, Part 2: Algorirhms.

Distributed Computing 1(2), 77–101 (1986)
10. Raynal, M.: A Short Introduction to Failure Detectors for Asynchronous Dis-

tributed Systems. ACM Sigact News, Distributed Computing Column 36(1), 53–70
(2005)

11. Vitányi, P., Awerbuch, B.: Atomic Shared Register Access by Asynchronous Hard-
ware. In: Proc. 27th IEEE Symposium on Foundations of Computer Science
(FOCS’86), pp. 233–243. IEEE Computer Society Press, Los Alamitos (1986)

A Functional Programming System SFP:

Sisal 3.1 Language Structures Decomposition�

V.N. Kasyanov and A.P. Stasenko

A.P. Ershov Institute of Informatics Systems
Novosibirsk, 630090, Russia

kvn@iis.nsk.su, astasenko@gmail.com

Abstract. The paper describes equivalent transformations of structures
of the Sisal 3.1 programming language (based on Sisal 90). These trans-
formations are aimed to decompose the complex language structures into
more simple ones that can be directly expressed by the internal repre-
sentation IR1 (based on the IF1 language). Currently some description
of similar transformations can be found in few works about Sisal 90 in
the form of examples. A front-end compiler from Sisal 3.1 into IR1 per-
forms these transformations, so they can help to understand better its
translation strategy. The paper also briefly describes Sisal 3.1 and IR1.

Keywords: Sisal 3.1, functional programming, parallel programming,
program transformation, internal representation, front-end compiler.

1 The Introduction

Using the traditional methods, it is very difficult to develop high quality portable
software for parallel computers. In particular, parallel software cannot be devel-
oped on low cost sequential computers and then moved to high performance
parallel computers without extensive rewriting and debugging.

As compared with imperative languages, functional languages [1] simplify the
programmer’s work, because an algorithm can be specified in terms of recur-
sive function applications without special care to computing resources and it is
a compiler responsibility to produce effective code. In contrast to many other
functional languages, the functional language Sisal (Steams and Iterations in
a Single Assignment Language) supports data types and operators typical for
scientific calculations. Sisal is considered as an alternative to Fortran for super-
computers [2] and its version 1.2 was implemented for many of them.

Sisal 90 [3] is more oriented towards scientific programming. It has built-in
support for complex values, array and vector operations, higher order functions,
rectangular arrays, and an explicit interface to other languages like Fortran and
C. Sisal 3.1 [4] that has been designed as an input language of the SFP system be-
ing under development at the Institute of Informatics Systems in Novosibirsk [5]

� The work was partially supported by the Russian Foundation for Basic Research
(grant N 07-07-12050).

V. Malyshkin (Ed.): PaCT 2007, LNCS 4671, pp. 62–73, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A Functional Programming System SFP 63

is based on Sisal 90. Sisal 3.1 simplifies, improves, extends and more exactly
specifies Sisal 90. Sisal 3.1 incorporates the ideas of enhanced module support,
annotated programming and preprocessing of Sisal 3.0 [6]. Sisal 3.1 also supports
function overloading and user-defined types which allow user-defined operations.

The SFP system is intended to support the development of portable high per-
formance parallel computing applications. It runs under Microsoft Windows and
provides target platform independent means to write, debug and translate the
Sisal-programs into target platform optimized code. The SFP uses the interme-
diate representation IR1 [7], which is based on the intermediate form language
IF1 [8] and consists of acyclic, directed, hierarchical graphs [9]. The IR1 allows
the Sisal constructions to be represented in their natural form, close to their syn-
tax. This is convenient for simplification of further optimizing transformations.

Usually, not every form of a language syntax construction can be directly rep-
resented in IR1, so compound nodes correspond to the basic forms, which are
powerful enough to express all their variations. Because of that, during transla-
tion in the SFP system, some complex Sisal 3.1 structures need to be reduced
to more unified objects of IR1. The peculiarities of such transformations are
shown in terms of Sisal 3.1 by rewriting of complex language structures into
more simple ones that can be directly represented by IR1. Such rewriting rules
are described in terms of the Sisal language, because IR1 does not allow natural
representation of the most complex language structures.

The rest of the paper is structured as follows. Section 2 briefly describes the
most important Sisal 3.1 constructions used below. Section 3 considers the Select
and Forall compound nodes of IR1 to which the most language structures can
be reduced. Sections 4, 5, 6 and 7 present transformations of complex Sisal 3.1
structures into more simple ones that can be directly represented by IR1.

2 The Sisal 3.1 Language

Sisal defines calculations via a function application in a form of different expres-
sions. Every Sisal type has the dedicated error value, which can be explicitly
produced and tested. In most undefined situations Sisal expressions produce er-
ror values. Since the explanations are very brief, familiarity with the Sisal 90
user’s guide [3] is recommended. As an example, consider function QuickSort in
Listing 1.1 that recursively sorts an input array of integers.

The let expression in its name definitions defines a new scope and its names
that can be used in a calculation of the result expression list :

l e t name definitions in result expression list end let

The if expression looks as follows, where the chosen result expression list
will define the results of the if expression, so all of them should have the same
number of expressions and the same sequence of expression types:

i f Boolean expression then result expression list
{

e l s e i f Boolean expression then result expression list
}
∗[

else result expression list
]

end i f

64 V.N. Kasyanov and A.P. Stasenko

Listing 1.1. Sisal 3.1 function that sorts array of integers

type In fo = array [i n t e g e r] ;
function QuickSort (Data : In fo returns In fo)

i f s i z e (Data) < 2 then Data
// A func t i on liml re turns the lower bound o f an array .
else let Pivot := Data [l im l (Data)] ;

Low , Mid , High := for E in Data
returns array of E when E < Pivot ;

array of E when E = Pivot ;
array of E when E > Pivot

end for
in QuickSort (Low) | | Mid | | QuickSort (High)

end let
end i f

end function

The case expression looks as follows, where the control expression can select
a result expression list by value, union tag or type signature:

case
[

tag
∣
∣ type

]
control expression{

of condition list then result expression list
}
+

[
else result expression list

]
end case

The where expression of Sisal 3.1 was reconsidered as compared to Sisal 90:

where n-dimensional array A i s name I in expression R end where

The where expression returns an n-dimensional array of the same shape as
the array A, where each element which corresponds to the array A element with
the name I equals to the expression R result.

In Sisal 3.1, element selection and replacement expressions are almost the
same as in Sisal 90: “array [selection construction1]” and “array [selection
construction :=2 replacement construction]”. In addition to arithmetic, rela-
tional and Boolean vector operations of Sisal 90, Sisal 3.1 allows vector forms
for any infix, prefix and postfix operations (including user defined ones). Sisal 3.1
also allows vector operations between streams and arrays that produce streams.

The Sisal loop expressions do not contradict the functional language seman-
tics. Sisal 3.1 has three loop forms, however the paper considers only the for
expression with a range generator, which has the following form:

for range generator
[
repeat body

]
returns return statement end for

The loop body defines a new scope and its names like the let expression. The
for expression is parallel, when it has no “old N” names, a stream range sources
in its loop range generator and sequential reductions in its return statement. The
“old N” name equals to the value of the name N at the previous loop iteration.
1 In Sisal 3.1 triplets, the symbol “!” is used instead of “:” symbol of Sisal 90.
2 Here in Sisal 3.1, the symbols “:=” are used instead of “!” symbols of Sisal 90.

A Functional Programming System SFP 65

The one-dimensional range generator consists of a range or several ranges
joined by dot keyword. A range is a triplet, array or stream. The joined ranges
emit their values simultaneously until at least one of them can do it, while the
others that cannot do it emit the error values.

The return statement consists of the reduction applications. Reductions are a
special kind of functions that work with a sequence of values produced by loop
iterations. There are some predefined reductions to obtain the last loop value,
to compute a sum or product of loop values, to find the least or greatest loop
value, to produce n-dimensional3 (n ≥ 1) array or stream of loop values and to
catenate loop values that are arrays or streams.

3 The IR1 Internal Representation

Like their nodes, which express operations, IR1 graphs have ordered input and
output ports. Typed edges of these graphs express informational relationships
between ports. Each port can be a destination of no more than one edge. Con-
ditional and loop expressions are represented via compound nodes which are
nodes that additionally hold a sequence of IR1 graphs. Informational relation-
ships between ports of these graphs and ports of the compound node are ex-
pressed implicitly by the kind of the compound node. As an example, consider
Figure 1 that contains IR1-graphs, produced by our Sisal 3.1 front-end compiler
for function QuickSort from Listing 1.1.

The compound node Select, which can directly represent the if expression of
Sisal 3.1, has an arbitrary number of input ports and non-zero number of output
ports. Let N ≥ 3 be the number of its graphs. The input ports of all graphs are
the same as the input ports of the compound node and directly receive values
from them. All graphs except the first one have the same output ports as the
output ports of the compound node. One of these N − 1 graphs is chosen to
supply values of its output ports to the output ports of the compound node.

The choice is based on the first graph, which has different semantics as com-
pared to its prototype from IF1. The first graph has N − 2 Boolean output
ports (edges that end in these ports have Boolean type), which are sequentially
checked until the true value is found at the output port with a number M . In
that case, the graph with a number M + 1 is chosen. If no true value is found,
then the last graph is chosen.

The compound node Forall, which can represent any one-dimensional for
expression controlled by a range, has four graphs described in Table 1. Ports
of these graphs can be divided in the following groups that consist of the same
ports for each separate compound node Forall. A group C contains the constants
imported to the compound node ports. A group R contains the result values
exported from the compound node ports. A group L contains the new values of
old names. A group L2 contains the values which will not be required on the

3 In Sisal 3.1, notation array [n] and stream [n] replaces array nd and stream nd
notation of Sisal 90.

66 V.N. Kasyanov and A.P. Stasenko

Fig. 1. IR1-graphs generated for “quick sort” function in Listing 1.1 (compound nodes
and non-empty graphs are shaded): 1) the QuickSort graph; 2) the Select node graphs;
3) the condition; 4) the then branch; 5) the else branch (the graph layout was tweaked
by hand to reduce its width); 6) the Forall node graphs; 7) the range generator; 8) the
return statement

A Functional Programming System SFP 67

Table 1. Groups of ports for the compound node Forall and its graphs

Graph No. Graph Name Input port groups Output port groups

Forall C R

1 Initialization C L

2 Range generator C D

3 Loop body Lold, D, C L, L2

4 Return statement Lold, L, L2, D, C R

next loop iteration. A group Lold contains the values of old names from the
iteration before. A group D contains the values of the loop range generator.

At the beginning, the output ports of the initialization graph are computed
and their values are used as the values of the group Lold at the first iteration of
the loop body graph. The loop body graph computes its output ports, for each
instance of the group D, generated by the range generator graph. The return
statement graph is computed after each loop iteration and after the last one,
its output port values are used as the compound node results. Before the next
iteration, the values from the group L are copied to the ports of the group Lold.

The return statement graph contains the reduction nodes that can only (and
only they can) supply values to the output ports of this graph. These reduction
nodes directly correspond to one-dimensional reductions of Sisal 3.1 and may
depend on and recompute additional values every loop iteration.

The range generator graph also has the unique Scatter nodes that can only
(and only they can) supply values to the output ports of this graph. The Scatter
node has one input and two output ports. The input port has a type of an array
or stream of a type T . The first output port has the type T and the second output
port has the integer type. The Scatter node sequentially emits a new array or
stream element with its index for every loop iteration. If there are several Scatter
nodes, then they emit new values simultaneously until at least one of them can
do it, while the others that cannot do it return the error values.

4 Decomposition of Case, Where and Vector Expressions

The conditional expression case is naturally decomposed into the conditional
expression if with additional elseif branches, that is can be directly expressed
by the IF1 language. Every selection list of the case expression is transformed
into one if or elseif condition using logical disjunction and conjunction oper-
ations over the comparison operation results: equality (=), “less than or equal
to” (≤) and “greater than or equal to” (≥). For expressions “case tag” and
“case type”, the infix operation tag (tag function of Sisal 90) and the expres-
sion “type [. . .]” are used, respectively.

68 V.N. Kasyanov and A.P. Stasenko

The Sisal 3.1 where expression is decomposed into one-dimensional loops in
the following way, where A, n, R and I names are taken from Section 2:

for A1
4 in A returns array of

for A2 in A1 returns array of . . .
for I in An−1 returns array of expression R end for

. . . end for
end for

All vector operations are decomposed into one-dimensional loops. An oper-
ation on multidimensional vectors is decomposed into a vector operation on
vectors of lower dimensions.

Prefix and postfix operations on arrays op (A) are decomposed into:

for i in A returns array (l im l (A)) of op (i) end for

Prefix and postfix operations on streams op (S) are decomposed into:

for i in S returns stream of op (i) end for

An infix operation op on two arrays A1 and A2 is decomposed into:

for i1 in A1 dot i2 in A2 returns array of i1 op i2 end for

An infix operation op on an array A and a stream S is decomposed into:

for ia in A dot is in S returns stream of ia op is end for

An infix operation op on an array A and a scalar value V is decomposed into:

for i in A returns array (l im l (A)) of i op V end for

An infix operation op on a stream S and a scalar value V is decomposed into:

for i in S returns stream of i op V end for

5 Decomposition of the Multidimensional Loops

Let us consider the following n-ary m-dimensional loop, in which each reduction
returns unary expression (for simplicity of further notation):

for D1 cross D2 repeat B
returns RN1 of RV1 ; . . . ; RNn of RVn

end for

The name D1 denotes the loop range generator part without the operator
cross and multidimensional indices of the construction at, the name D2 de-
notes the remaining part of the range generator, the name RNi∈1...n denotes
the reduction name with possible initial values, and the name RVi denotes the
reduction loop values. In this notation, a m-dimensional loop expression can be
decomposed into the following two loop expressions of dimensions 1 and m− 1,
where names RN ′

i and RN ′′
i depend on the name RNi as shown in Table 2:

4 The overlined name denotes any unique name (the same in each code fragment).

A Functional Programming System SFP 69

for D1 repeat
x1 , . . . , xn := for D2 repeat B

returns RN ′
1 of RV1 ; . . . ; RN ′

n of RVn

end for
returns RN ′′

1 of x1 ; . . . ; RN ′′
n of xn

end for

Table 2. Decomposition rules for multi-dimensional reductions, which show how to
determine the names RN ′

i and RN ′′
i , used in this section before, from the name RNi

Value of the RNi name RN ′
i RN ′′

i

Equals to value, product, least , greatest,
catenate, “catenate (. . .)” or user-defined reduc-
tion.

RNi value

Equals to “array [k](i1, . . . , ik)”, where:

– part “[k]” is optional and equals to
“[m]” by default;

– last indices of the part “(i1, . . . , ik)”
are optional like this whole part and
equal to 1 if omitted.

k > 1

k = 1

array [k −1] (i2, . . . , ik) array (i1)

array [1] (i2, . . . , ik) catenate (i1)

Equals to “stream [k]”, where part “[k]”
is optional and equals to “[m]” by default.

k > 1
k = 1

stream [k − 1] stream
stream [1] catenate

If the range generator contains multidimensional indices “n in S at j1, . . .”
before the operator cross, then the loop can be represented in the following way:

for D3 n in S at j1 , D4 repeat B
returns RN1 of RV1 ; . . . ; RNn of RVn

end for

The name D3 denotes the range generator part without the operator cross
and multidimensional indices of the construction at, the name S denotes the
array or stream source of multidimensional indices, the name D4 denotes the
remaining part of the range generator. In this notation, a m-dimensional loop
expression can also be decomposed into the following two loop expressions of
dimensions 1 and m− 1:

for D3 n1 in S at j1 repeat
x1 , . . . , xn := for n in n1 at D4 repeat B

returns RN ′
1 of RV1 ; . . . ; RN ′

n of RVn

end for
returns RN ′′

1 of x1 ; . . . ; RN ′′
n of xn

end for

70 V.N. Kasyanov and A.P. Stasenko

6 Decomposition of the Array Element Selection

Let us represent the element selection expression from the array A as “A[se-
lection construction]”. If a selection construction does not have the cross (or
comma) operator, then it can be represented as “D1 dot D2 dot . . . dot Dm”,
where m ≥ 1 and all expressions D1, . . . , Dm are ranges (as required by the
operator dot semantics). If m = 1 and the part D1 is a singlet, then the ar-
ray element selection operation can be represented directly in IR1 and does not
require further decomposition, otherwise the array element selection operation
can be decomposed into the following one-dimensional loop:

for x1 in D1 dot x2 in D2 dot . . . xm in Dm

A1 := A [x1 , x2 , . . . , xm]
returns array of A1

end for

The name xi (here and below) denotes any unique name, if the part Di does
not have the form “name N in Di”, and denotes the name N otherwise. If the
selection construction contains the operator cross, then it can be represented
as “S1, S2, . . . , Sm cross C1” or “D1 dot D2 dot . . . dot Dm cross C2”,
where S1, . . . , Sm denote singlets, and the names C1 (that does not begin with
a singlet) and C2 denote the remaining parts of the selection construction.

The array element selection operation beginning with a singlet can be decom-
posed into the following let expression:

l e t A1 := A [S1 , S2 , . . . , Sm] in A1 [C1] end let

The array element selection operation beginning with a range can be decom-
posed into the following one-dimensional loop:

for x1 in D1 dot x2 in D2 dot . . . xm in Dm repeat
A1 := A [x1 , x2 , . . . , xm]
returns array of A1 [C2]

end for

The presented decomposition of the array element selection operation also
explains an additional restriction, which is missed in Sisal 90 user’s manual, for
the selection construction triplets with omitted parts: they should be placed as
the first operand of the selection construction or just after the cross operator. In
the rangeD1, the first and second omitted triplet parts are explicitly represented
via “liml (A)” and “limh (A)”, correspondingly. In the ranges D2, . . . , Dm, the
triplet parts cannot be omitted because there is no corresponding univocal array
dimension available whose lower and upper bounds can be taken. In summary,
any array element selection operation was decomposed into the array element
selection with simple indices.

A Functional Programming System SFP 71

7 Decomposition of the Array Element Replacement

This section continues to use the notation of selection construction introduced
before. The array element replacement expression in a general form looks like
“A [selection construction := replacement construction R]”. As it will be shown
below, any array element replacement expression can be decomposed into series
of the array replacements that alter one element pointed by its index.

If the selection construction is a singlet list S1, . . . , Sn, then the replacement
construction is allowed to be an expression list E1, . . . , Et and the array ele-
ment replacement operation is elementary represented as a composition of the
following one-element replacement operations:

A [S1 , . . . , Sn := E1] [S1 , . . . , (Sn) + 1 := E2]
. . . [S1 , . . . , (Sn) + (t−1) := Et]

Let us consider the case when the selection construction is not a singlet list
and the replacement construction is an expression of type of the n-th dimension
of the array A, where n is the number of the selection construction ranges and
singlets. In this case, the array element replacement operation can be decom-
posed into nested one-dimensional loops obtained after the recursive application
of the decompositions given below.

If the selection construction does not have the cross operator, the array ele-
ment replacement operation can be presented as the one-dimensional loop:

for x1 in D1 dot x2 in D2 dot . . . xm in Dm

A := old A [x1 , x2 , . . . , xm := R]
returns va lue of A

end for

The array element replacement operation beginning with a singlet can be
decomposed into the following let expression:

l e t A1 := A [S1 , S2 , . . . , Sm] in A1 [C1 := R] end let

The array element replacement operation beginning with a range can be de-
composed into the following one-dimensional loop:

l e t A1 := A in for x1 in D1 dot x2 in D2 dot . . . xm in Dm

A2 := old A1 [x1 , x2 , . . . , xm] ;
A3 := A2 [C2 := R] ;
A1 := old A1 [x1 , x2 , . . . , xm := A3]
returns va lue of A1

end for
end let

Let us consider the case when the selection construction is not a singlet list and
the replacement construction is an expression of type of a k-dimensional array
of elements that have the type of the n-th dimension of the array A. In this case,
k should be a sum of ranges in the selection construction minus the number of

72 V.N. Kasyanov and A.P. Stasenko

its dot operators. In this case, the array element replacement operation can also
be decomposed into nested one-dimensional loops obtained after the recursive
application of decompositions given below.

If the selection construction does not have the cross operator, the array ele-
ment replacement operation can be presented as the one-dimensional loop:

l e t i := 1 in for x1 in D1 dot x2 in D2 dot . . . xm in Dm

A := old A [x1 , x2 , . . . , xm := (R) [i]] ;
i := old i + 1
returns va lue of A

end for
end let

The array element replacement operation beginning with a singlet can be
decomposed into the same let expression as in the previous case when the re-
placement construction is an expression of type of the n-th dimension of the
array A. The array element replacement operation beginning with a range can
be decomposed into the following one-dimensional loop:

l e t A1 := A; i := 1
in for x1 in D1 dot x2 in D2 dot . . . xm in Dm

A2 := old A1 [x1 , x2 , . . . , xm] ;
A3 := A2 [C2 := (R) [i]] ;
A1 := old A1 [x1 , x2 , . . . , xm := A3] ;
i := old i + 1
returns va lue of A1

end for
end let

8 Conclusion

The paper briefly presents the input language Sisal 3.1 and intermediate language
IR1 of the functional programming system SFP intended to support supercom-
puting. During translation from Sisal 3.1 to the internal representation IR1, some
complex Sisal 3.1 structures need to be reduced to more unified objects of the
IR1 language. These transformations have been shown in terms of Sisal 3.1 by
decomposition of complex language structures into more simple ones that can
be directly represented by IR1. These transformations can help to better under-
stand the translation strategy of front-end compiler from Sisal 3.1 into IR1. They
can be used also as a basis for formal description of semantics of Sisal 3.1. For a
general-purpose machine (without any special hardware support for the opera-
tions considered in this paper), the described transformations do not introduce
unnecessary inefficiency and open additional optimization opportunities.

Acknowledgments. The authors are thankful to all colleagues taking part in
the SFP project.

A Functional Programming System SFP 73

References

1. Backus, J.: Can programming be liberated from the von Neumann style? Commun.
Commun. ACM. 21(8), 613–641 (1978)

2. Cann, D.: Retire Fortran? A debate rekindled. Commun. ACM. 35(8), 81–89 (1992)
3. Feo, J.T., Miller, P.J., Skedzielewski, S.K., Denton, S.M.: Sisal 90 user’s guide.

Lawrence Livermore National Laboratory, Draft 0.96, Livermore, CA (1995)
4. Stasenko, A.P., Sinyakov, A.I.: Basic means of the Sisal 3.1 language. A.P. Ershov

Institute of Informatics Systems, Tech. Rep. N 132 (in Russian), Novosibirsk (2006)
5. Kasyanov, V.N., Stasenko, A.P., Gluhankov, M.P., Dortman, P.A., Pyjov, K.A.,

Sinyakov, A.I.: SFP – An interactive visual environment for supporting of functional
programming and supercomputing. WSEAS Transactions on Computers, 5(9),
2063–2070 (2006)

6. Kasyanov, V.N., Biryukova, Y.V., Evstigneev, V.A.: A functional language Sisal
3.0. Supercomputing support and Internet-oriented technologies, Novosibirsk (in
Russian) pp. 54–67 (2001)

7. Stasenko, A.P.: Internal representation of functional programming system Sisal 3.0.
A.P. Ershov Institute of Informatics Systems, Tech. Rep. N 110 (in Russian), Novosi-
birsk (2004)

8. Skedzielewski, S.K., Glauert, J.: IF1 – An intermediate form for applicative lan-
guages, version 1.0. LLNL, Tech. Rep. M-170, Livermore, CA (1985)

9. Kasyanov, V.N., Lisitsyn, I.A.: Hierarchical graph models and visual processing. In:
Proc. of Intern. Conf. on Software: Theory and Practice, 16th IFIP World Computer
Congress, PHEI, Beijing, pp. 179–182 (2000)

Towards a Computing Model
for Open Distributed Systems

Achour Mostefaoui

IRISA, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes, France
achour@irisa.fr

Abstract. This paper proposes an implementation of the data structure called
bag or multiset used by descriptive programming languages (e.g. Gamma, Linda)
over an open system. In this model, a succession of ”chemical reactions” con-
sumes the elements of the bag and produces new elements according to specific
rules. This approach is particularly interesting as it suppresses all unneeded syn-
chronization and reveals all the potential parallelism of a program. An efficient
implementation of a bag provides an efficient implementation of the subsequent
program. This paper defines a new communication and synchronization model
adapted from workqueues used in parallel computing. The proposed model al-
lows to benefit from the potential parallelism offered by this style of program-
ming when only an approximate solution is needed.

Keywords: Bag data structure, Chemical reaction, Distributed programming,
Fault-Tolerance, Open system, Parallel programming, Synchronization,
Workqueue.

1 Introduction

Context. Most programming languages use sequential control. Even parallel execu-
tions are composed of sequential processes. A sequential control flow offers simplicity
of the design, better fits the functioning of processors and moreover, benefits from many
theoretical results (e.g. decidability and computability). This style of programming in-
troduces unneeded control as it orders operations that are not semantically related (e.g.
a loop that initializes an array to zero). Those constraints make the mapping of sequen-
tial programs on machines automatic and straightforward as it perfectly fits the von
Neumann processing model. However, this leads to high interprocess synchronization.
The consequence is that the unneeded control limits the potential parallelism of the
program that may benefit from the continuously increasing power offered by platforms
like parallel machines, local area networks and more recently peer-to-peer systems. Al-
most parallel programs are designed for an a priori given and generally fixed number
of processes although this has nothing to do with the problem to solve. This motivated
research of a programming model that abstracts this aspect.

A bag is a data structure (also called multiset [2], tuple space [5] or more recently
JavaSpace [8]) is the basis to implement a parallel program on the model of a chemical
reaction over the elements of the bag. The execution ends when the bag reaches a stable
state. The following example taken from [2] represents a program that computes the

V. Malyshkin (Ed.): PaCT 2007, LNCS 4671, pp. 74–79, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Towards a Computing Model for Open Distributed Systems 75

maximum value of a set: max : x, y → y ⇐ x ≤ y. The right part (x ≤ y) specifies
the reaction condition whereas the left part specifies the action. Each time two elements
x and y satisfy the reaction condition, they are replaced by the result of the action on
then (the maximum, i.e. y). The parallelism is implicit as several pairs of distinct values
can react simultaneously; notice also the nondeterminism concerning what values do
react together. This style of programming is free from unnecessary synchronization.
The number and relative speed of processes are totally absent from the program and may
vary at runtime. The efficiency of the execution is mainly determined by the efficient
implementation of the bag data structure and its accessing operation (insert data, pick
data and look for data that could react).

In timesharing, each process is granted a quatum of time (neither too small nor too
big). In our model, data represents this ”energy” or ”potential of computation” instead
of time. If no data satisfies the reaction condition, the potential of the bag is null. The
more there is reacting data the higher the potential of the bag. Any number of processes
can execute the same program code each at its own speed. They only interact via the
bag when they access it (each access gets/inserts a quantum of data). The finest grain
depends on the arity of the reaction condition/action.

Contribution of the paper. This paper proposes a new approach to implement a bag. It
has been pointed out by previous works that any implementation faces two main prob-
lems: (1) synchronization between the different processes through the basic operations
on bags and (2) termination detection. To detect termination, it is necessary to test the
reaction condition on all possible combinations of data. This means that if the reaction
condition is n-ary then any subset of n elements should be eventually tested. Hence,
no locality of accesses could be defined on the bag. The ”data quantum” should be as
small as possible n elements (n-uples) as considered by all existing implementations.
This leads to frequent accesses and thus frequent synchronizations.

In this paper, a bag is implemented by a distributed data structure called MergeQueue
that resembles the workqueue structure used in parallel programming. The MergeQueue
is composed of blocks of equal size it is initialized to the values of the inital bag. When
a process requests a block, it gets the block at the head of the MergeQueue and produces
an output block not necessarily of the same size that is dispatched over several blocks at
the tail of the MergeQueue. The insertion of the resulting data is done when its estimated
potential of computing is lower than a threshold. The potential of computation being
the ratio of n-uples that may react. Finally, we propose some parameters that allow
tuning the system (size of a block, number of new blocks over which inserted data is
dispatched, value of the potential computation below which a block is changed).

Related works. Since the publication of the first results on bag-transformation lan-
guages (e.g. Gamma and Linda), many implementations have been proposed. They are
based on compilation [3], shared memory [6] or database [8]. Compilation-based imple-
mentations try to translate bag-based programs to classical programs by using derivation
reintroducing the unnecessary synchronization. The concept of DSM is closely related
to the classical imperative programming languages that use variables and control-driven
executions. Consistency algorithms and cache coherence are based on the relation be-
tween successive read and write operations. Caching allows improving the efficiency of
memory systems thanks to what is called the locality property. It is not hard to see that

76 A. Mostefaoui

this locality property is in fact due to sequential programming. In a bag, data is totally
anonymous. Grid computing is static compared to the chemical reaction paradigm. In
term of data quantum, they have a very big quantum. Moreover, processes do not nec-
essarily execute the same code and cannot be added on the fly transparently. The flow
of data in well-controlled and the failures are detected and treated in a static way. Im-
plementations that use databases are not in the scope of this work as the main goal of
databases is to ensure persistence and consistency of data. The object oriented approach
like JavaSpace has a main drawback that is the granularity of data (one object=one el-
ement) that may entail high synchronization time overhead. The most close work is
the one on workqueues. However, the main difference, is that a workqueue is used
mainly to communicate they are constituted of cells (insert/get a cell) in a strict fifo
policy. The MergeQueue as proposed in this paper serves mainly to merge the blocks
obtained by different processes. Moreover, the access operations are not as strict as for
the workqueue (they are not necessarily atomic).

2 Computing Model

We consider a three-layer architecture: the underlying system is represented any dis-
tributed platform prone to failures and mobility (dynamic systems) and the upper-layer
is represented by the processes that execute a bag-based program. The distributed data
structure represents the medium layer.

System Model. The assumed underlying system offers the possibility to launch a pro-
gram by assigning to it a group of processes that execute its reactions. We first consider
a message-passing synchronous system (the duration of internal instructions and the
communication delays are bounded).

Each application process is associated with a controller (a kind of daemon) that
serves as an interface with the system. It gets a block, provides the process when re-
quested with a given number of elements (according to the arity of the reaction condi-
tion), inserts in the block the result of the action and keeps an estimation of the potential
of computing of the block. When the potential of computing is lower then a threshold,
the controller inserts the block in the MergeQueue and gets a new one.

In Section 5, we consider a more general case where processes may crash and where
there is no assumption on time. This represents a typical open asynchronous system
prone to process failures where processes may arrive and leave and where the exact
number of processes is not known.

Bag Transformation-Based Programming Language. As said in the Introduction, the
bag transformation is defined by pairs (reaction condition, action). When the bag reaches
a stable state the program ends. In the program max given in the Introduction, the re-
action condition is of arity 2. The associated action takes two parameters and produces
one value. This means that the size of the bag can only diminish. Let us consider a sec-
ond program that sorts an array. The initial bag is composed of pairs of values (index,
value). The final bag is composed of the same number of pairs, the same projection on
the domain of indices and the same projection on the domain of values. This means that
the program only permutes non sorted values. sort : (i, v), (j, w) → (i, w), (j, v) ⇐
(i < j) ∧ (v > w).

Towards a Computing Model for Open Distributed Systems 77

In a general case, the arity of the reaction condition is not necessarily two although
small values of the arity imply less combinatorial. For example, the reaction condition
of a program that computes the transitive closure of a graph is of arity 3. Note that
the program that suppresses any two identical consecutive values from an array has
a locality property due to data dependence. In such situation, the selection of pairs of
values that may potentially interact is deterministic. This suggests to offer the possibility
to use structured bags.

3 The Distributed MergeQueue

A MergeQueue is an abstract type close to the workqueue data structure. It is composed
of a series of blocks of the same size. It offers two main atomic operations get and
insert. No two processes can get the same block nor insert two blocks at the same
place in the queue. When a process calls get, the block at the head of the queue is with-
drawn from the queue and returned to the process. When a process inserts data in the
MergeQueue, it is inserted at the tail of the queue but dispatched over several blocks
(Figure 1). Initially, all the elements of the bag (for sake of simplicity, we consider a
unique bag) are inserted in a contiguous way in the MergeQueue. A queue could be
seen as a circular management of a physical memory. There is no interaction between
processes except when they access the MergeQueue, thus the necessity to fix a reason-
able size for a block of data which represents the quantum (the unity of data allocation).
To respect the (weak) atomicity of the accesses, synchronization is necessary each time
a process accesses the queue.

The management of the MergeQueue is done through locks put on blocks of data
(block allocation) and slot reservation (data insertion). The synchronization needed be-
tween processes, is not necessarily mutual exclusion or consensus. The renaming agree-
ment problem [1] seems to be more appropriate. The renaming problem differs from
consensus in the agreement property. Consensus: all processes make the same decision.
Renaming: no two processes make the same decision. It has been proved that consen-
sus is harder to solve than renaming [1]. If the underlying system is message-passing,
a queue can be implemented using active replication (partial or total replication). Each
process (in the case of total replication) keeps a copy of the queue. Allocation of blocks
of data and of free slots is done through ordered communication primitives (total order
multicast) or explicit calls to agreement primitives (renaming, consensus).

The proposed approach does not ensure termination detection of a program as it is not
sure that two different elements will be associated in the same block to be considered
for reaction unless processes access ”enough” blocks and the bag is shacked between
the different accesses. The shaking of memory is not done on the whole memory, it is

block i block i+1 block i+2 block i+3

Data to insert over 4 blocks

fi rst block
to allocate

Fig. 1. Management of the MergeQueue data structure

78 A. Mostefaoui

done locally (over a given number of blocks) each time a process inserts its output data
(recall that the inserted data has a low potential of computing i.e. only few of its element
can react). The inserted data is thus sliced and each part is inserted in a different block.
This means that when a process obtains a free slot to insert its data; in fact, it gets as
many slots from different blocks as the number of slices it has to insert. It is not hard
to see that the more a block is thinly sliced during the insertion, the more processes
need synchronization (the future block a process gets is a combination of the results
of many processes) but the memory is better shacked. Conversely, the less a block is
thinly sliced, the less processes need synchronization (the future block a process gets is
a combination of the results of few processes) but the memory is less shacked.

4 About Termination

As stated before, the proposed implementation does not ensure termination this is why
approximate computing is assumed (i.e. the produced result is only an approximation
of the expected one). It can be advocated that many computations are such that the data
they use is a result of physical measures (e.g. sensors), images, and sound, or the data
is by itself not very precise. In such situations, it is not shocking if the obtained result
is also an approximation. There are classical approximate computations (Runge-Kutta,
Monte Carlo, probabilistic SAT, simulated annealing).

After the potential of computation of a considered block is beyond a threshold, the
process inserts its resulting data in the bag and asks for a new block. For this, we define
a metrics that associates with any set of data a numeric value numerical (its potential of
computation) that could be defined as the ratio of the number of n-uples (n being the
arity of the condition/action) that may interact over the total number of possible com-
binations. Obviously, if this number is null, no reaction is possible and the execution
program is finished. In this paper, we consider the execution of a program as finished
as soon as its potential of computation is beyond a threshold.

Each program is materialized by a non-fixed number of processes. A program is also
composed of a process “sentinel” that does not need synchronization to access to the
bag (read-only accesses). Its role consists of computing the potential of computation of
the bag. As soon as this potential is beyond a threshold, the sentinel process sets a flag
that will cause the other process to stop their execution. This sentinel process will be
the only alive process when the program execution is finished. It will act as the frontal
process with respect to the user. It is also possible to have a timer-based termination.

5 Open Systems

The approach proposed in this paper could be extended to encompass asynchronous dis-
tributed systems prone to process failures (local area network, open system). In such sys-
tems, agreement services are essential (consensus, total order multi/broad-cast, renam-
ing, etc.). Moreover, there exist randomized solutions to distributed agreement problems
cited above [4,7]. If we consider an open system, a process could be materialized by a
group off processes (active replication - they all do the same work) assuming that no more
than a minority of those f processes disconnect/crash simultaneously without informing
other processes. Each of the processes composing a group ask for a block. They do it

Towards a Computing Model for Open Distributed Systems 79

through a consensus in order to get a same block. Each of them transforms the block and
the insertion is also made through a consensus as the resulting multiset is not necessarily
the same for all the processes of the group due to the non-determinism. If we consider
that each group is alive then the system composed of the “macro-processes” (groups) is
fault-free. The sentinel process also is implemented using a group of processes.

It is important to mention that there exist approximate agreement services. This
means that the agreement property is weak. This is not a problem for some programs.
For the program that computes the maximum value of an array, if the operation that
allocates the block is not atomic, the resulting value is always the same. This is also the
case for the program that computes the transitive closure of a graph. The problem that
may appear is an increase of the potential of computation. Of course, if the atomicity
is always violated, the program may be prevented from terminating even according to
our new definition. If the atomicity violation seldom happens and the efficiency of the
agreement services is greatly enhanced than this may be very interesting if allowed by
the program. Some other programs may see wrong values inserted in the bag if atomic-
ity is violated. For example, a program that computes the number of occurrences of each
element of a bag. If the atomicity is violated, the number of occurrences of some values
could be a little bit augmented/diminished. The proposed approach mainly targets open
systems to offer them a computing model.

6 Concluding Remarks

This paper presented a data structure called MergeQueue. A bag is the basis of program-
ming languages like Gamma which use the chemical reaction principal. This structure
can serve as a starting point to offer a programming model to open systems. This paper
also pointed out many research directions on different parameters that need to be fixed
such as the size of a block, the number of new blocks over which an inserted block is
dispatched, the value of the threshold for changing a block.

References

1. Attiya, H., Bar-Noy, A., Dolev, D., Peleg, D., Reischuk, R.: Renaming in an Asynchronous
Environment. Journal of the ACM 37(3), 524–548 (1990)

2. Banatre, J.P., Fradet, P., Le Metayer, D.: Gamma and the chemical reaction model: Fifteen
years after. In: Calude, C.S., Pun, G., Rozenberg, G., Salomaa, A. (eds.) Multiset Processing.
LNCS, vol. 2235, pp. 17–44. Springer, Heidelberg (2001)

3. Chaudron, C., de Jong, E.: Towards a compositional method for coordinating Gamma pro-
grams. In: Hankin, C., Ciancarini, P. (eds.) COORDINATION 1996. LNCS, vol. 1061, pp.
107–123. Springer, Heidelberg (1996)

4. Eugster, P., Handurukande, S., Guerraoui, R., Kermarrec, A.M., Kouznetsov, P.: Lightweight
probabilistic broadcast. In: Proc. DSN 2001 (July 2001)

5. Gelertner, D.: Generative communication in Linda. ACM TOPLAS 7(1), 80–112 (1985)
6. Gladitz, K., Kuchen, H.: Parallel implementqtion of the Gamma-operation on bags. In: Proc.

ofthe PASCO Conference, Linz, Austria (1994)
7. Rabin, M.: Randomized Byzantine Generals. In: Proc. 24th IEEE Symposium on Foundations

of Computer Science (FOCS’83), pp. 403–409, Tucson (AZ) (1983)
8. Sun Microsystems, JavaSpace Specification (March 1998) http://java.sun.com/

products/jini/specs

http://java.sun.com/products/jini/specs
http://java.sun.com/products/jini/specs

Enhancing Online Computer Games for Grids

Jens Müller and Sergei Gorlatch

Westfälische Wilhelms-Universität Münster, Germany

Abstract. Massively multiplayer online games (MMOG) require large
amounts of computational resources for providing a responsive and scal-
able gameplay for thousands of concurrently participating players. In
current MMOG, large data-centers are dedicated to a particular game
title. Such static hosting requires a huge upfront investment and carries
the risk of false estimation of user demand. The concept of grid comput-
ing allows to use resources on-demand in a dynamic way, and is therefore
a promising approach for MMOG services to overcome the limitations of
static game provisioning. In this paper, we discuss different paralleliza-
tion mechanisms for massively multiplayer gaming and grid architecture
concepts suitable for on-demand game services. The work presented here
provides both a state-of-the-art analysis and conceptual use case discus-
sion: We outline the new European project edutain@grid which targets
at scaling real-time interactive online applications and MMOG, including
First Person Shooter (FPS) and Real-Time Strategy (RTS) games, in an
on-demand manner using a distributed grid architecture. Finally, we de-
scribe our experimental online game Rokkatan and report experimental
scalability results for this game on a multi-server grid architecture.1

1 Introduction

Online gaming has become a major worldwide trend and experienced a massive
growth during the past years. According to the game search service gamespy [1],
currently about 250.000 users are online playing First Person Shooter (FPS)
games on more than 70.000 servers at any time of the day worldwide. The Steam
platform reports 140.000 servers with more than 2.8 million individual users
monthly for the games hosted on that platform [2]. In the area of Massively
Multiplayer Online Role-Playing Games (MMORPG), the number of players has
doubled over the last three years and more than 12 million users are currently
subscribed to different games [3].

While the number of players drastically increases, the basic concepts and
technologies of hosting games on the Internet have not been changed since the
beginning of online gaming. Most of the game servers have to be manually set
up, started and administrated in a static way, which does not allow for automatic
service adjustments with regard to the dynamic user demands.

1 The work described in this paper is partially supported by the European Commission
through the project edutain@grid (IST 034601).

V. Malyshkin (Ed.): PaCT 2007, LNCS 4671, pp. 80–95, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Enhancing Online Computer Games for Grids 81

In this paper we discuss how the concept of grid computing developed in the
academic and business area can be used in the realm of distributed interac-
tive applications including online games. The term grid [4] originates from the
conceptual analogy to the power grid, where computational power can be as
easily and transparently obtained as electricity by inserting a plug into a power
socket. Although there are already some commercial game-related grid systems
like Butterfly [5] or the BigWorld system [6] available, these systems target the
MMORPG genre and are barely suitable for running FPS or RTS games. A
consistent grid approach for a broad class of real-time interactive applications
including e-learning, interactive simulation and training is still missing.

This paper summarises our recent work on scalable network architectures for
real-time games and discusses scalability dimensions of different online game
genres. We present a novel concept of multi-server game world replication as a
feasible approach to scale FPS and RTS games, which so far have been only
played in small-scale game sessions. The proxy-server architecture, is described
as an operational network architecture for our replication approach. We outline
real-time computation and communication framework inside the edutain@grid
architecture[7] for scaling a variety of interactive online application classes. Fi-
nally, we present a practical implementation of our approach within a novel
real-time strategy game Rokkatan and report experimental scalability results.

2 Parallelisation Approaches to Scaling Online Games

Small-scale sessions of online games usually run on a single game server. This
server runs a game-update loop in a periodic manner, in which it has to receive
and process all user inputs, process user-independent parts of the game (compute
artificial intelligence of NPCs, respawn items, etc.), and send the resulting new
state to all game clients. The frequency of the game state update depends on the
particular responsiveness requirements of an actual game and ranges from about
5 updates per second for RTS and RPG up to 35 updates per second in fast-
paced FPS action games. The update frequency leaves the server a particular
maximum time for processing a single loop (less than 30ms in case of 35 updates
per second): if the server is not able to finish the calculations in time and send
the new state back to clients, then the users will immediately be disrupted in
their game immersion due to this computational lag.

Because the server has to maintain the update rate of the periodic real-time
state processing, there is a maximum amount of data which can be processed in
time. When increasing the number of players, the demand for data processing
is rising. However, the computation power of a server is constant, which makes
the single-server architecture approach unable to support MMOGs.

2.1 Scalability Dimensions

In order to scale a game application, i.e., to increase particular characteristics like
the number of players without violating the real-time constraints of the game

82 J. Müller and S. Gorlatch

update loop, the processing has to be parallelised. Before discussing different
approaches to parallelisation, we summarize three main scalability dimensions
identified in our previous work for different MMOG genres:

1. The overall number of participating users needs to be scalable in
every massively multiplayer game. All these users are connected to a single game
session and generally able to interact with each other.

2. The game world size needs to be scalable in particular in MMORPGs,
where the world usually is very large. Scaling the game world size requires
increasing of two resources: (1) processing power for processing more actively
computer-controlled entities filling the world, and (2) main memory for storing
an increasing amount of static terrain geometry and dynamic entities.

3. The player density has to be scalable especially in action-oriented Player-
versus-Player (PvP) games like FPS. In contrast to the huge game world of
MMORPG, these games are played in much smaller environments; users move
their avatars where some action is going on, and thus dynamically create local
player clusters with a high density. Player density has to be scalable in order to
provide responsive gameplay for situations with a lot of action.

There have been different parallelisation approaches discussed in academia
as well as implemented in commercial games to scale some of these dimensions
for different types of genres. In the following, we briefly discuss the well-known
zoning concept and our novel replication approach.

2.2 Game World Zoning

In the zoning parallelization approach, the game world is partitioned into inde-
pendent zones which are processed in parallel on several servers. The game client
has to change the server connection if the user moves his avatar into a different
zone. Figure 1 illustrates an example of a game world with four zones.

The game world zoning is usually incorporated in MMORPGs. Regarding the
scalability dimensions discussed above, this approach is very suitable for scaling
the total number of users and the overall game world size, as long as the users
scatter themselves regularly in the huge game world. However, the third dimen-
sion of player-density is not scalable, because a particular single zone is only
maintained at a single server. If, as for example in an action-oriented FPS game,

Game World
Server A

Server B Server C

Server D

Zone A Zone D

Zone CZone B

Game Entities

Fig. 1. Game World Zoning

Enhancing Online Computer Games for Grids 83

a lot of players gather within a small area in a large fight, the corresponding
zone server will become congested, similar to the single server in the conven-
tional client-server architecture. Zoning is, therefore, a suitable and important
approach for MMORPG, where users are encouraged to spread out, because due
to advancing avatar level and proceeding quest lines only a particular subset of
zones is interesting for a particular user. For action-oriented PvP games, how-
ever, zoning is not feasible because users are interested in fighting other players
and therefore gather together, which dynamically increases the player density
and congests a single zone.

2.3 Game World Replication

Our concept of game world replication [8] is an alternative parallelization ap-
proach for scaling the density of players in a real-time game session. In this
approach, each server holds a complete copy of the game state as illustrated in
Fig. 2 and the processing of entities is distributed among participating servers:
Each server has to process its active entities, while shadow entities are main-
tained at remote servers. After each entity update, the corresponding server
broadcasts a corresponding update message.

Game World

Server A

Server B

Server C

update

update Active Entity at B

Shadow Entity

Shadow Entity

Fig. 2. Game World Replication

The replication concept allows to scale the density of players, because the
processing amount available for a particular static region of the game world can
be increased this way. If players cluster together in a big fight, then the processing
of all the interactions and visibility checks is split up among all participating
servers. We implement this approach in our proxy-server architecture [9] and
demonstrate its feasibility in our scalable RTS game Rokkatan (Section 5) which
can be played by several hundreds of users in a single session on a comparatively
small game world.

84 J. Müller and S. Gorlatch

3 Grid Computing for Online Games

A computational grid allows users to access resources (processing power, stor-
age space, network bandwidth, etc.) in an on-demand fashion. Instead of buying
resources and setting them up statically and privately inside of academic or busi-
ness institutions, resources are shared over institutional boundaries by so-called
virtual organisations. If a user asks for a particular resource (for example, an
SMP server with at least eight CPUs running at 1.2GHz or higher), then a grid
middleware like the Globus toolkit [10] or Unicore [11] acts as a market broker
between the user and resource providers for negotiating resource characteris-
tics, usage time and prices. After successful negotiations, the user can start own
computations on the remote server by running a binary copied over or using
pre-installed services.

The main functional characteristics of grid systems are as follows:

– Dynamicity: instead of statically running services regardless of the actual
user demand, a grid allows to automatically start and stop services with
respect to the demand and provides resources in a just-in-time manner when
they are actually needed by users.

– Scalability: in order to provide a high amount of computational power, the
goal of modern grid middleware is to create a virtual cluster of several servers
for a single performance-demanding application.

– Checkpointing and Migration: several grid infrastructures allow to store the
state of running user applications, which can be used to periodically check-
point the state of a long-time computation and restart it from the last state
in case of a server crash or other failures. Additionally, this functionality
allows to migrate a computation from one host to another, for example for
load-balancing purposes.

– Accounting and Billing: users and service providers usually have their own
personal account in the grid infrastructure which is used for authentication
and billing purposes.

There exist grid systems and middleware which provide the basis for pro-
ductive grid environments especially in the academic area, where physicians,
meteorologists or geologists run distributed and collaborative simulations in an
on-demand manner.

In the challenging area of online computer games, there have been some aca-
demic and commercial grid-related infrastructures developed and presented. Ba-
sically, existing approaches can be distinguished to follow one of the following
two concepts:

Grids for Single-Server FPS
In the current state of the art of FPS game hosting, users rent servers at a flat
rate from hosting companies on a monthly basis. Casual users which do not have
control over such a server can only play on public servers and are not able to
set up an Internet-based session for a closed group of users with their own rules.
Grid systems for single-server FPS allow users to start FPS game sessions in an

Enhancing Online Computer Games for Grids 85

on-demand manner for short durations. Instead of statically renting a server at a
particular hoster, users specify the game and related characteristics like number
of players, private/public game etc. and the grid system negotiates these require-
ments with several hosters participating in this infrastructure. After contracting
with a particular hoster, the user can configure game-specific settings like the
map being played on, the score or time limit to win. The system then schedules
the start of a binary game server featuring the user-specific settings according
to the booking. Such a grid system was discussed, for example, in [12]; we also
presented a prototype of an infrastructure providing this functionality in [13].
Such a FPS grid system does not use the general grid concept to its full poten-
tial. Regarding the general features described in Section 3, only the dynamicity
of the grid approach and potentially its accounting applies to the hosting of a
particular subclass of online games. Such a single-server grid using the available
game server binaries can neither scale a single game session nor migrate it onto
a different host for overall load balancing. However, it still provides an improve-
ment over the static server hosting and is a first partial demonstrator of what
grids can provide for online game hosting.

Grids for Multi-Server MMORPG
The user demand for playing a particular MMORPG is dynamic in several di-
mensions, the most important are: (1) short-time variation of logged-in users
depending on daytime and weekday, and (2) changing total playerbase. The first
dimension reflects peak usage times of a constant total subscriber number, while
the second dimension usually varies more slowly and reflects the game’s over-
all lifecyle of release, growth, saturation and finally decrease, possibly restarted
with the release of expansions. Following these varying user demands, the game
provider has to ensure that sufficient computation resources are available. In
order to provide the required flexibility regarding the setup of an MMORPG,
different grid infrastructures have been proposed and commercially applied, as
for example Butterfly.net [5] or BigWorld [6]. These infrastructures provide a
server-side API to define game zones and instances and map them to actual
server hosts at runtime. In comparison to grids for single-server FPS, these infras-
tructures provide more sophisticated functionality of the general grid concept (as
summarized in Section 3) to online gaming: They enable dynamic game services,
scale a single massively multiplayer session by providing zones and instances and
incorporate accounting functionality. However, these grids are especially target-
ting MMORPGs and are barely usable for other online gaming genres for which
the built-in zoning concept is not appropriate. Additionally, the servers used
by a single MMORPG realm still reside at a particular hoster and there is no
option to migrate sessions between data centers for load-balancing reasons and
for enabling an open market of MMOG hosting.

Existing game-related grid infrastructures mainly target a specific MMOG
genre. For optimizing the distribution of server processing power for overall on-
line gaming, a comprehensive approach suitable for all classes of online games
is required. The recently started edutain@grid project [7] targets at providing

86 J. Müller and S. Gorlatch

the grid concept not only to online gaming, but also to other online interactive
multi-user applications like e-learning, training and simulation applications.

In the following, we outline the concept and use cases for a grid infrastruc-
ture which provides dynamicity and scalability for all major types of online
games. Our main idea is to scale all the different scalability dimensions intro-
duced in Section 2.1 by combining several scalability approaches suitable for
the various game genres. The resulting architecture should be practically us-
able, i.e. the complexity and dynamicity of the multi-server parallelisation has
to be hidden as much as possible from the game developer inside of a conve-
nient API, without restricting optimization possibilities for a specific application
implementation.

Our grid concept follows the familiar paradigm of game entities and game-
loop-centric processing. In particular, a comprehensive infrastructure has to sup-
port zoning, replication and instancing of particular game world regions. The
overall resulting concept is illustrated in Figure 3.

[..]

[..]

[..]

instance
servers

[..]

servers

servers

zone

replication

Fig. 3. Comprehensive Scalability Framework

The particular combination of zoning and instancing is already practically
used by commercial MMORPGs. However, using replication in combination with
zoning is a novel concept which allows to scale the density of players inside
of a particular zone. Combining these different approaches allows to scale all
three main scalability dimensions for a single application instance and, therefore,
results in a parallelisation architecture generally suitable for scaling all classes
of multiplayer games.

Enhancing Online Computer Games for Grids 87

4 Dynamic Scaling of Game Environments

While the overall architecture illustrated in Figure 3 combines the different scal-
ability approaches, an enclosing grid infrastructure is still required to provide
server resources for the zones, instances and replicas in a dynamic manner. In
the following, we illustrate two main use cases of dynamically mapping game
world regions to servers, for particular user demand and behaviour.

In Player-vs-Player scenarios using several zones, it can be expected that users
dynamically gather in a particular area and fight each other. The corresponding
zone then should be replicated using several servers for scaling the density of
users as illustrated for the bottom right zone in Fig. 4(a).

������
��
��
������

�� ����

�
�
�
�

����
��
��
��

��
��
��
���

�
�
����� ��
��
��
��
��

��
��
��
��

�
�
�
�

��
��
��
��

������
��
��
��

��

����

��
��
��
����

�
�
�
�

�
�
�
���

��
��
���
�
�
��
�
�
�

��
��
��
��
��
��
��
��

�
�
�
�

��
��
��
������

��
��
��
�� ����

�
�
�
�

��
��
��

��
��
��

(a) Heavy Fight at Bottom Right Zone

������
��
��
��
��
��

��
��
��
��

�
�
�
�

���������
�
�
�

�
�
�
���
�
�
�
�
����
��
��
��
��

������
��
��
��

�
�
�
�

�
�
�
�

��
��
��
������

�
�
�
�

��
��
��
��
��

�
�
�
�

���
�
�
�

�
�
�
�

�
�
�
��
�
�
���

��
��
��

��
��
��
��

��
��
��
��

�
�
�
�

����
��
��
��
��
��
��
��

�
�
�
� ��
��
��
����������

������

�
�
�
�

��
��
��
�� ����

����

�
�
�
�

��

����

(b) Fight Moving to Bottom Left Zone

Fig. 4. Dynamic Clustering of Users

In such a scenario of a fight with a high user density, it can be expected
that users eventually move over to an adjacent zone. In Figure 4(b), the bot-
tom right zone then becomes less frequented because users move over to the
bottom left zone. This zone now has to be replicated in order to scale the den-
sity of users, while the replication degree of the previously frequented zone can
be lowered due to decreasing load. Our concept of the comprehensive scalabil-
ity framework supports dynamic adding and removing of replications, and the
overall grid infrastructure has to dynamically reassign the replication servers to
zones according to the user behaviour.

88 J. Müller and S. Gorlatch

Increasing Instance Demand. As another example of how our concept of the
overall scalability framework can be dynamically orchestrated by a grid infras-
tructure respecting the actual user demand, let us imagine that the users are
distributed across several zones of the virtual world. Besides the zones, there are
particular instanced areas which are only barely frequented in the beginning as
illustrated in Fig. 5(a).

instance
servers

�����
�
�
�
����
��
��

��
��
��
����
��
��
���
�
�
�
�
�
�
�

��

�
�
�
���
����

��������

��

�� ��

(a) Low Instance Usage

[..]

[..]

[..]

instance
servers

�� �
�
�
�
�
�
�
�
�������������

�
�
�

�
�
�
�

�
�
�
�

����

��
��
��
��

����
�
�
�
�

����

����

��
��
��
��

��
��
��
��

����

������

����

[..]

(b) High Instance Usage

Fig. 5. Changing demand for Instances

Especially in MMORPG, it is a common scenario that the instance utiliza-
tion increases drastically during night time, because users pre-arrange groups
to adventure collaboratively. As a result, many more instance servers are re-
quired as illustrated in Figure 5(b) while the general zoned game world might
be less frequented. A grid infrastructure therefore has to be able to dynamically
increase the number of instance servers and possibly combine zones to reassign
zone servers to instances.

5 Case Study: Rokkatan

In this section, we present our demonstrator game Rokkatan, which belongs
to the popular genre of real-time strategy (RTS) games. The development of
Rokkatan pursued three major goals:

Enhancing Online Computer Games for Grids 89

1. Evaluation of the proxy-server topology: Rokkatan serves as a de-
tailed case-study of how to design and implement a sophisticated and scalable
real-time game using the proxy-server approach. In particular, our goal was to
detect potential difficulties in the usage of the eventual consistency model for
server synchronisation and possible problems in providing the required respon-
siveness for a fast-paced real-time game.

2. Incorporation of the Game Scalability Model (GSM): The GSM
[14] provides the possibility to be incorporated in a particular game implemen-
tation by measuring execution times for several basic tasks that have to be
accomplished during a running game session. Based on these times, the model
calculates a forecast of maximum player numbers without exhaustive tests. Such
a mechanism, integrated into a real game implementation, helps to determine
required server capabilities and provides hints for an efficient setup of servers
and session rules.

3. Conceptual evaluation of a massively multiplayer RTS game de-
sign: Current large-scale game designs concentrate on Massively Multiplayer
Online Role Playing Games (MMORPG) like Everquest or World of Warcraft,
which provide a huge persistent world for the users to adventure in. However,
other game genres like First Person Shooter or Real-time strategy games have
rarely been adapted to massively multiplayer sessions so far. With Rokkatan, we
propose a possible game design which extends current real-time strategy gaming
to the massively multiplayer realm.

5.1 Rokkatan: The Game

In Rokkatan, each user has control over a single unit, his avatar, and belongs to
a particular team. The number of teams playing in a single game session is set
up arbitrarily upon session creation. After connecting to a running game session,
the user chooses a team to join and the class and name of his avatar. Currently,
there are two classes implemented in the game: the warrior, fighting within close
range, and the archer who can shoot arrows at distant enemies.

Users of the same team coordinate themselves and move around to occupy
flags scattered in the game environment. For each flag currently occupied, a team
periodically gains score points. Each team has an initial amount of score points
and the team with most points will win the session after a certain time of playing.
Therefore, avatars of opposite teams have to fight for supremacy of flags. Such
real-time fights, as depicted by the screenshots of Fig. 6 for a small duel and a
large battle, play a major role in Rokkatan. Each avatar has a particular amount
of health points which decreases when the avatar is hit by an enemy warrior or
archer. If the health points of an avatar drop to zero, then he is ”dead” for a
short period of time, after which he respawns at the starting area of his team.
Additionally, the team score points for an avatar which temporarily lost his life.

The game style of Rokkatan is comparable to RTS games like Command and
Conquer or Warcraft III, with the main difference that not few users control
large groups of avatars, but each avatar of the game is controlled by a single
user. Therefore, it is necessary for all users of a single team to coordinate their

90 J. Müller and S. Gorlatch

(a) Small Duel (b) Massive Encounter

Fig. 6. Small Duel and Massive Encounter in Rokkatan

actions. Some avatars guard the occupied flags, while others try to conquer new
areas of the game environment. This goal of occupying flags is comparable to
tactical FPS games like Battlefield 1942, in which several flag points have to be
captured in order to win the game session.

A Rokkatan game session takes place in a particular game environment, the
game map, which is described in an easily editable text-file. At different locations
in the map, potions are available, which can be picked up, carried by avatars and
used later on. If the user decides to use such a potion, his avatar immediately
regains health points, which makes potions very valuable when fighting enemies.

5.2 Processing of User Actions

There are two main types of user actions in Rokkatan: Movement commands
and interaction commands. A movement command can be processed directly
at the proxy a client is connected to, because this action only affects the state
of the user’s avatar. The proxy it is connected to is the only process allowed
to alter this data for a particular client, such that the position change of the
avatar resulting from a movement command can immediately be performed and
acknowledged. Additionally, the proxy communicates this game state change to
all other servers which update their local game state replicas accordingly.

The processing of interactions, however, can not be done solely by the local
proxy of a particular client. The interaction command can affect either other
avatars, e.g., by attacking an opponent, or the general game environment, e.g.,
by picking up a potion. Therefore, the state of the target game entity like an
avatar or a potion has to be changed. In the general case, a remote proxy will
be authoritative for the state of the interaction target, which requires sending
the interaction to this remote proxy for evaluation. Fig. 7 depicts an example of
user interaction processing in Rokkatan.

In Fig. 7, the user at client A issues an interaction affecting the avatar of
client B, e.g., attacking the position of the avatar of B in the game environment.
In step ➀, client A submits the action to its proxy server which validates the

Enhancing Online Computer Games for Grids 91

[...][...]

client submits
user action

input
validation

interaction
forwarding

evaluation
interaction
results of

B

A

C D

E

acknowledgement

update

update

update

and interaction check
game state update

and interaction check
game state update

1 3

7

2
4

7

6

7

5 5

Fig. 7. Interaction Processing

received input in step ➁. If the validation was successful, i.e., the state of the
avatar allows to perform the attack, then the proxy sends an acknowledgement
back to client A (step ➂) and forwards the interaction to all other participating
servers in step ➃. The other proxies update their local game state, i.e., they
update the avatar’s state of the attacking client A in step ➄. Additionally, each
remote proxy checks whether a game element it is responsible for is affected by
the attack of avatar A. In this example, the avatar of client B is hit by the attack.
The local proxy of client B updates the state of its avatar by decrementing health
points and informs all other proxies about this state change (step ➅). Finally,
in step ➆, all proxies inform local clients which are directly affected by the
interaction (client A and B). Additionally, all clients, whose avatar is located
near to the interacting avatars, are notified about the interaction. For example,
users at the clients D and E observe the interaction and the proxies inform the
clients about it.

5.3 Rokkatan Implementation and Scalability Experiments

Rokkatan is implemented in C++ and uses the Kyra sprite engine and the
Simple Directmedia Layer (SDL) for client graphics and sound. The game com-
munication is based on our Game Proxy Architecture (GPA) library which we
developed to make the usage of the proxy-server approach convenient for game
developers. The library provides a simple API for clients and proxy servers to
send and receive game messages at different levels of reliability. For the inter-
proxy communication, game messages are sent using IP-Multicast. If proxies are
not able to participate in the IP-Multicast group, the GPA automatically falls
back to unicast message sending. This way, scalable multicast communication is

92 J. Müller and S. Gorlatch

used whenever possible and the unicast fallback ensures general functionality of
game sessions in networks not supporting multicast.

While the concept of the proxy-server topology determines the general de-
sign of the Rokkatan implementation, some Rokkatan-specific issues had to be
additionally addressed in order to ensure the scalability of the game. For these
particular problems, we developed solutions and implemented them directly into
the Rokkatan application. Although developed for Rokkatan, these solutions can
be reused in other games using the proxy-server topology and thus provide an
extension of the generic proxy architecture.

We ran numerous test sessions in order to studyy the scalability of the actual
Rokkatan implementation using the proxy-server architecture and to verify our
analytical model. Although we tested Rokkatan with various connection types
of clients (modem, ISDN, DSL) in order to confirm the general functionality of
Rokkatan under higher latencies, the scalability tests were conducted in the local
area network of our department because a large number of hosts was required.

The Rokkatan client includes a special ”bot” mode, which automatically par-
ticipates in a game session. This client-side bot issues actions based on the
current gaming situation and makes full usage of all possible game interactions
like moving, attacking, occupation of flags and pickup of potions. It uses potions
to recover health points and retrieves from fights when all stocked potions have
been consumed. For a server, the bot-mode of a client is transparent and can
not be distinguished from a human user.

The experiments were conducted for two test maps of different sizes (64x64
and 128x128 ground tiles). The dimensions of both maps are comparable to those
of commercial real-time strategy games like Warcraft 3. It takes about 90 seconds
for the smaller and 180 seconds for the larger test map to walk diagonally from
the upper left to the lower right corner.

Our reference server host is a Pentium 4 1.7GHz system with 640MB RAM
running Linux with kernel 2.6, of which we have several systems available.

For our tests, a total of 25 computers were used. Five of them act as proxy
servers while the other hosts run the bot clients, of which several can be started
on a single computer. For the experiments using both test maps, Fig. 8 shows the
maximum number of clients which were able to play before servers became con-
gested. Additionally, the plots show the maximum client numbers as predicted
using the Game Scalability Model[14].

The scalability of a game session depends on the size of the game map. In the
smaller map, the density of avatars increases faster than in the larger map, which
leads to congestion much earlier. Fig. 8 demonstrates that the GSM forecasts are
very near to the actually measured player numbers, with a maximum deviation
of 5 %. The model’s forecasts for larger session setups with more than five proxy
servers (which we were not able to measure experimentally) show that more than
500 players are expected to be able to participate in a large session of Rokkatan.

The forecasts and actual measurements for the average bandwidth at a single
proxy server are shown in Table 1 for the smaller test map; again, our measure-
ments were done for up to five servers. With a maximum deviation of 7 %, the

Enhancing Online Computer Games for Grids 93

 0

 100

 200

 300

 400

 500

 600

 0 1 2 3 4 5 6 7 8 9 10

supported clients

number of proxy servers l

measured 64
forecast 64

measured 128
forecast 128

Fig. 8. Maximum Number of Players

Table 1. Estimated and measured bandwith at a single proxy server for a 64x64 map

Session estimated measured deviation

1 pr., 115 cl. 150.7 kB/s 152.0 kB/s 2 %
2 pr., 170 cl. 213.9 kB/s 210.3 kB/s 2 %
3 pr., 220 cl. 245.3 kB/s 235.5 kB/s 5 %
4 pr., 250 cl. 237.0 kB/s 222.7 kB/s 7 %
5 pr., 290 cl. 243.7 kB/s 242.5 kB/s 1 %
6 pr., 310 cl. 257.1 kB/s - -
8 pr., 375 cl. 284.8 kB/s - -
10 pr., 410 cl. 291.2 kB/s - -

bandwidth predictions are quite accurate as well. Due to the dead reckoning used
in Rokkatan, the amount of data sent to a single client is quite low, ranging from
about one to ten kBytes per second depending on the game situation. However,
the proxy servers fully synchronize their state at each tick in order to provide
the required responsiveness for direct interactions. Overall, the bandwidth uti-
lization at a single proxy is low enough to allow sessions with a large number of
users when the servers are hosted at high capacity Internet connections.

6 Conclusion and Related Work

In this paper, we summarized the main scalability dimensions of online com-
puter games and provided an overview of existing scalability approaches. The
zoning concept [15,16], which is widely used by existing MMORPG, scales the
total number of users and the game world size. For scaling the density of play-
ers, however, our replication concept using the proxy-server architecture [9] is
more feasible. As a general result of this discussion, we outlined our approach of
a comprehensive scalability framework which combines zoning, instancing and
replication and is thus suitable to scale all contemporary genres of online games.

94 J. Müller and S. Gorlatch

Besides scalability, three other functional characteristics of grids – dynamicity,
migration and accounting – promise an enormous improvement over the currently
usually static online game hosting. The current game-related grid infrastructures
target specific game genres and do not provide the full benefits of grid computing
to general online game hosting yet.

There has been a lot of work in the area of scalable network topologies dedi-
cated to massively multiplayer gaming. Most of the presented architectures par-
tition the game world into several zones. The authority for such zones, which
commonly are used in MMORPG, is either assigned to single servers as in, or
distributed dynamically in a decentralized way. However, in our Rokkatan game,
due to the much smaller size of its map in comparison to an MMORPG envi-
ronment, a map partitioning is not feasible. In the worst case, all avatars would
be clustered within a single zone and the single responsible server would quickly
become congested. The proxy-server approach performs much better in such a
scenario with a high avatar density. Rokkatan shows the feasibility of the proxy
architecture to host game sessions for hundreds of users in a small game envi-
ronment at very high responsiveness of 25 updates per second.

In the area of game design for other MMOG genres besides role playing games,
only little research has been done, although there are already commercial games
of the FPS genre, suitable for a high number of participating players. Such
games like Joint Operations or Soeldner take place in a huge area and simulate
a small warfare, in which users have to coordinate themselves in a team. The
single-server approach used by these games limits the player number, although
the game design itself would support many more players in a session. The proxy
approach is feasible for these fast-paced action games and will allow a much
higher number of users.

With the development of Rokkatan, we showed the scalability of our proxy-
server architecture for game designs requiring high responsiveness. The behaviour
of the client bots in the experiments was sophisticated enough to make the test
sessions comparable to human user sessions. There were always several large bat-
tles taking place, bots fought for supremacy of flags, used potions and tried to save
themselves when being low on health points. This proves that, with a game map
of adequate size, fluent and responsive game sessions involving several hundreds
of users are possible in Rokkatan.

References

1. IGN Entertainment. Gamespy, http://www.gamespy.com/
2. Valve Corporation. Steam platform, http://www.steampowered.com/
3. Bruce Sterling Woodcock. Mmorpg chart, http://www.mmogchart.com/
4. Foster, I., Kesselmann, C. (eds.): The Grid: Blueprint for a New Computing In-

frastructure. M. Kaufmann, Seattle (1998)
5. Butterfly.net, http://www.butterfly.net
6. BigWorld. Bigworld technology, http://www.bigworldtech.com/
7. edutain@grid project, http://www.edutain.eu/
8. Müller, J., Gorlatch, S.: Rokkatan: scaling an RTS game design to the massively

multiplayer realm. ACM Computers in Entertainment 4(3), 11 (2006)

http://www.gamespy.com/
http://www.steampowered.com/
http://www.mmogchart.com/
http://www.butterfly.net
http://www.bigworldtech.com/
http://www.edutain.eu/

Enhancing Online Computer Games for Grids 95

9. Müller, J., Fischer, S., Gorlatch, S., Mauve, M.: A proxy server-network for real-
time computer games. In: Danelutto, M., Vanneschi, M., Laforenza, D. (eds.) Euro-
Par 2004. LNCS, vol. 3149, pp. 606–613. Springer, Heidelberg (2004)

10. Globus Alliance. Globus toolkit, http://www.globus.org/toolkit/
11. Unicore Forum e.V. Unicore-grid, http://www.unicore.org
12. Shaikh, A., Sahu, S., Rosu, M., Shea, M., Saha, D.: Implementation of a service

platform for online games. In: Proceedings of ACM Network and System Support
for Games Workshop (NetGames), Portland, Oregon, USA (September 2004)

13. Müller, J., Schwerdt, R., Gorlatch, S.: Dynamic service provisioning for multiplayer
online games. In: Cao, J., Nejdl, W., Xu, M. (eds.) APPT 2005. LNCS, vol. 3756,
pp. 461–470. Springer, Heidelberg (2005)

14. Müller, J., Gorlatch, S.: GSM: a game scalability model for multiplayer real-time
games. In: Infocom, I.E.E.E. (ed.) IEEE Infocom 2005, Miami, Florida, USA,
March 2005, IEEE Communications Society (2005)

15. Cai, W., Xavier, P., Turner, S.J., Lee, B.S.: A scalable architecture for supporting
interactive games on the internet. In: Proceedings of the 16th Workshop on Parallel
and Distributed Simulation, pp. 60–67, IEEE, Washington, D.C. (May 2002)

16. Knutsson, B., Lu, H., Xu, W., Hopkins, B.: Peer-to-peer support for massively mul-
tiplayer games. In: IEEE Infocom 2004, Hong Kong, China, IEEE Communications
Society (2004)

http://www.globus.org/toolkit/
http://www.unicore.org

Optimized Parallel Approach for 3D Modelling

of Forest Fire Behaviour

Gilbert Accary1, Oleg Bessonov2, Dominique Fougère3,
Sofiane Meradji3, and Dominique Morvan4

1 Université Saint-Esprit de Kaslik, B.P. 446 Jounieh, Lebanon
2 Institute for Problems in Mechanics of Russian Academy of Sciences,

101, Vernadsky ave., 119526 Moscow, Russia
3 Laboratoire de Modélisation en Mécanique à Marseille, L3M–IMT, La Jetée,

Technopôle de Château-Gombert, 13451 Marseille Cedex 20, France
4 Université de la Méditerranée, UNIMECA, 60, rue Joliot Curie,

13453 Marseille Cedex 13, France
gilbertaccary@usek.edu.lb, bess@ipmnet.ru, fougere@l3m.univ-mrs.fr,

sofiane@l3m.univ-mrs.fr, dominique.morvan@univmed.fr

Abstract. In this paper we present methods for parallelization of 3D
CFD forest fire modelling code on Non-uniform memory computers in
frame of the OpenMP environment. Mathematical model is presented
first. Then, some peculiarities of this class of computers are considered,
along with properties and limitations of the OpenMP model. Techniques
for efficient parallelization are discussed, considering different types of
data processing algorithms. Finally, performance results for the paral-
lelized algorithm are presented and analyzed (for up to 16 processors).

1 Introduction

This work is carried out within the context of the European integrated fire
management project (Fire Paradox) aiming to obtain a full-physical three-di-
mensional model of forest fire behaviour. The proposed approach accounts for
the main physical phenomena involved in a forest fire by solving the conservation
equations of physics applied to a medium composed of solid phases (vegetation)
and gas mixture (combustion gases and the ambient air). The model consists in
coupling the main mechanisms of decomposition (drying, pyrolysis, combustion)
and of transfer (convection, diffusion, radiation, turbulence, etc.) taking place
during forest fire propagation [1]. This multiphase complete physical approach
already exists in 2D approximation [2] and consists in solving the described
model in a vertical plane defined by the direction of fire propagation. The 3D
extension of the existing model will enable to render 3D effects observed in real
fires and to represent the real heterogeneous structure of the vegetation. The
CFD code under development is currently at the stage of predicting turbulent
gas flows and has been validated on several benchmarks of natural, forced, and
mixed convection [3].

V. Malyshkin (Ed.): PaCT 2007, LNCS 4671, pp. 96–102, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Optimized Parallel Approach for 3D Modelling 97

The extended 3-dimensional formulation requires much more computational
resources than the previous 2D model. The new model needs substantially bigger
grids (Nx×Ny ×Nz vs. Nx×Ny grid points), more complicated discretizations
(more terms in the equations), additional grid compression in problematic areas
(because of non-flat fire interfaces), more robust and expensive algebraic solvers.
As a result, the total computational complexity of the algorithm increases by
two orders of magnitude or more.

In order to be able to perform precise computations in reasonable time, it
is necessary to exploit efficiently all available resources and improve computa-
tional performance by combining the following considerations: efficient numeri-
cal method and procedure, robust algebraic solvers, optimization of the code for
modern superscalar microprocessors with memory hierarchies, and paralleliza-
tion of the algorithm for moderate number of processors. However, this last
consideration remains the most efficient way for increasing the speed of compu-
tations.

The next important point is the choice of a parallel computer architecture and
parallelization model for this work. Generally, distributed memory parallel com-
puters (clusters) are used for large-scale computations. However, such parallel
computers, used with the appropriate MPI message-passing model, result in very
complex algorithms and require tight optimization of communication exchanges
[4]. In addition, a model with relatively slow communication exchanges can’t be
efficiently used for many algorithms [5]. Finally, it is difficult to implement a
portable code that would work on any parallel platform with required efficiency.

Thus, shared-memory computer architecture was chosen as a target for the
new parallel code. An OpenMP parallelization model without explicit exchanges
is used for the algorithm [6]. This model, which is the natural choice for shared-
memory computers, is just an extension of high level languages (Fortran, C).
With appropriate programming, the code may work on a parallel system with
any number of processors. Consequently, the new code becomes portable and
compatible with many parallel platforms.

However, implementation of the shared-memory paradigm encounters another
difficulty: almost all modern shared-memory systems with moderate or high
number of processors (4, 8, 16 and more) belong to the class of Non-uniform
Memory Access (NuMA) computers. It means that every processor or group of
processors (processor node) is directly connected only to its own (local) memory
while an access to the non-local (remote) memory is performed through interme-
diate communication network. Due to such organization, remote accesses become
much slower than local ones. This restriction requires a special approach for the
organization of parallel algorithms in order to ensure that most or all accesses
from every processor node occur within this node’s local memory.

Thereby, in the presented paper we will describe the mathematical model
and numerical method, strategy of OpenMP parallelization on NuMA comput-
ers, results of parallelization efficiency of the new 3D code, and summary with
conclusions.

98 G. Accary et al.

2 Mathematical Model and Numerical Method

We consider Newtonian fluid whose flow is governed by non-stationary Navier-
Stokes equations in Boussinesq approximation. The model is also capable to
handle the Low Mach number approximation in the context of perfect gas [3].
The set of equations consists of the continuity equation, the momentum equa-
tions in three spatial dimensions (i = 1, 2, 3) and the equations for energy and
turbulent quantities. The generalized governing equation for all variables is ex-
pressed in the following conservative form:

∂

∂t
(ρφ) +

∂

∂xi
(ρφui) =

∂

∂xi

(

Γ

(
∂φ

∂xi

))

+ Sφ with φ = 1, u1, u2, u3, T, k, ε

where φ represents the transported variable; ρ and ui are respectively the local
density and the i-th component of velocity; Γ – the effective diffusion coefficient;
Sφ – the source term for the corresponding variable.

The Finite Volume discretization is applied to the non-uniform Cartesian
staggered grid. Second-order discretizations are used, employing the quadratic
upstream interpolation of advective terms with flux limiters.

The transport equations are solved by a fully implicit segregated method based
on the SIMPLER algorithm [7]. The non-symmetric linear systems obtained from
the discretized equations are solved by the BiCGStab iterative method, while
the symmetric linear system of the pressure equation is solved by the Conjugate
Gradient method (CG). The use of under-relaxation techniques, when necessary,
allows better convergence and stability of the solution.

The code is applicable for simulation of flows in rectangular domains. Valida-
tion of the sequential version of the code has been performed for several common
benchmarks (lid driven cavity, differentially heated cavity etc.).

3 OpenMP Parallelization on NuMA Computers

We will consider the strategy of OpenMP parallelization using the SGI Altix 350
shared memory system with non-uniform organization. It consists of 10 processor
nodes, each with two Intel Itanium 2 processors (1.5 GHz, L3-cache 4 Mbyte) and
4 Gbyte of the local memory. Processor nodes are interconnected by the special
NuMA-link interfaces through the high-speed switch that provides accesses to
non-local (remote) memories. Logically, the considered system belongs to the
shared-memory class, when every process may transparently access any memory
location in a system. However, remote accesses are much slower than local ones.
For example, the peak memory read rate (throughput) within a node is equal to
6.4 Gbyte/s, while the peak throughput of NuMA-links is two times less.

Direct measurements show that the speed of regular read accesses achieves
6.1 GByte/s for local memories, and only 2.4 GByte/s for remote locations.
This speed is very important for many computational algorithms that perform
processing of data in big 3-dimensional arrays. Performance of such memory-
bound algorithms depends on the memory throughput almost linearly.

Optimized Parallel Approach for 3D Modelling 99

Therefore, it is necessary to ensure that all processes of a parallel program
access only (or mostly) data located within a local memory. On the system level,
it can be done by the special utility that affiliates (bounds) every process to its
own processor. This binding is needed to avoid migration of processes between
processors and to guarantee that every processor executes only one process. In
a multi-user computer system, some discipline must be established in order to
avoid interference of processes from different programs.

On the application level, it is important to organize an algorithm in such a
way that every thread (branch) of a parallelized algorithm would process only
(mostly) a corresponding piece of data. Additionally, these data must be dis-
tributed between processor node’s memories by the appropriate way (in the
beginning of the execution). If these requirement are not fulfilled, parallel per-
formance may drop two times or more.

The same rules and restrictions apply to another types of NuMA computer
systems. For example, systems built on AMD Opteron processors also use rela-
tively slow interprocessor links. In these systems, processors are interconnected
into a mesh that imposes an additional limitation: access to some particular
memory location may pass through several intermediate (transit) processors if
the target processor (who owns the required location) is not connected directly
to the requesting one. Therefore, Opteron-based systems (with mesh topology)
may become less flexible and less efficient for OpenMP parallelization, in com-
parison to switch-based systems (with star topology).

Generally, the OpenMP extension to a high level language (Fortran in our
case) is very simple and complements this language by several comment-like
directives. These directives instruct a compiler how to perform parallelization
of a program. The most important and popular directive is ”PARALLEL DO”
which is usually applied to an outermost ”do” statement (for nested loops) (see
example on Fig. 1, left). In accordance with the number of processors requested,
iterations of this loop are evenly distributed between branches (threads) of a
program for execution in different processors. This corresponds to the geometric
splitting of a processed data array (3-dimensional, as a rule) into sub-arrays by
the last spatial dimension (Fig. 1, right).

!$OMP DO
do K=1,Nz
do J=1,Ny

do I=1,Nx
Wo3(I,J,K)=Wo2(I,J,K)+

& beta*Wo3(I,J,K)
enddo

enddo
enddo

!$OMP END DO
0 1 2 3
processors

k

j i

Fig. 1. Example of ”PARALLEL DO” directive (left); geometric splitting of data array
by this directive (right)

100 G. Accary et al.

The OpenMP parallelization model is very convenient for ”true” shared-
memory computers with uniform memory. For these computers, it is possible
to split a multidimensional computational domain by any spatial direction. For
non-uniform systems, only splitting by the last direction ensures that neces-
sary portions of data are fully located within the corresponding processor node’s
memory. In order to avoid remote memory accesses, algorithms must be rear-
ranged. Some sorts of algorithms (for example, those with recursive dependences
in all spatial directions) can’t be parallelized easily and efficiently within the
OpenMP model. On the other hand, algorithms of the ”explicit” nature, that
pass sequentially through data arrays and use small local data access patterns
(stencils), may benefit from this model. Accesses to remote memory occur only
within boundaries between subdomains in this case.

One-dimensional splitting of multidimensional arrays imposes another limi-
tation on the OpenMP model for NuMA computers: subdomains become very
”narrow” by this dimension, and, as a result, accesses to remote memory through
boundaries become frequent enough (compared to the number of local accesses).
Also, the last dimension may become not divisible by the number of proces-
sors that results in a bad load balance. These limitations restrict the degree of
efficient parallelization by moderate number of processors (typically 8–16).

Unfortunately, OpenMP in the current state has no special tools or directives
for NuMA parallelizations. Therefore, only indirect techniques (as described in
the current paper) may by applied to customize parallelization methods for this
sort of computers.

4 Parallelization Approach and Results

In the current implementation, the considered CFD code has the ”explicit” na-
ture, i.e. it doesn’t employ direct implicit solvers. Most part of its computational
time (about 80 %) is consumed by two Conjugate Gradient type solver routines
– CG (for pressure) and BiCGStab (for transport equations). These routines
process data arrays with 7-point local stencils and therefore perform remote
memory accesses only when processing data near subdomain boundaries. As a
result, these CG-type routines can be efficiently parallelized using the OpenMP
model for NuMA. Another time-consuming routines also belong to the ”explicit”
class and can be parallelized without difficulties.

In order to ensure that data are correctly distributed within local memories
of corresponding processor nodes, it is necessary to perform special initialization
of all important data arrays. Neither the current OpenMP standard, nor the
OpenMP-aware compiler used in this work (Intel Fortran 9.1) have any tools
for explicit data distribution. To provide this distribution, a simple routine is
used that initializes all arrays in nested loops with ”PARALLEL DO” directives.
This routine is called in the beginning of the code when memory pages for arrays
are not yet allocated. Since this allocation occurs ”by demand”, it is necessary
to issue the first request to any element of data from the same processor node,
which will be used for further processing of this element. Therefore, parallel loops

Optimized Parallel Approach for 3D Modelling 101

for initialization of data must be organized similarly to data-processing ”do”
loops with exactly the same splitting of outermost iterations between processors
(Fig. 1).

Validation of the parallelized code and measurements of its parallelization
efficiency were performed on the benchmark problem of natural convection in
differently heated cavity [8]. We used the Boussinesq flow configuration with
Rayleigh number Ra = 106 and grid size 60 × 60 × 60. Performance results are
presented on Fig. 2. In the table, results of relative acceleration (compared to the
previous grade with half number of processors), absolute acceleration (compared
to one processor) and parallelization efficiency are shown.

No. of processors

1 2 4 8 16

time (seconds) 1966 1448 523 246 173

relative speedup – 1.36 2.77 2.13 1.42

total speedup – 1.36 3.76 7.99 11.36

efficiency – 68% 94% 100% 71% 1

 2

 4

 8

 16

 1 2 4 8 16

Fig. 2. Parallelization results for the benchmark problem

Relative acceleration for two processors is not high because both processors
compete for the same memory, and performance is limited by its throughput.
On the other hand, for 4 and 8 processors we see a superlinear speedup owing
to the help of a large 4 MByte L3-cache in each processor. As a result, total
acceleration for 4 and 8 processors corresponds to the linear profile. For 16
processors, some negative effects are accumulated: load disbalance (60 is not
divisible by 16) and influence of big boundaries (1 boundary grid point per 2 or
3 internal points). Due to these effects, parallelization efficiency drops. It follows
that the reasonable degree of efficient parallelization for this configuration is 8,
at most 16, that corresponds to the goal of the current work.

The presented parallel code is based on a serial code that was initially opti-
mized for modern pipelined processors with memory hierarchies. Further opti-
mization of the code will be devoted to the acceleration of algebraic solvers by
applying efficient preconditioners. It was demonstrated that the explicit-class (lo-
cal) Jacobi preconditioner can be easily parallelized. However, for more efficient
implicit (global) line-Jacobi preconditioner, new parallelization technique must
be developed with parallel solution of tri-diagonal linear system. This paralleliza-
tion will be based on the previous work [4]. Another direction of the development
of the current CFD code will consist in incorporation of the radiation transfer
algorithm. This algorithm can’t be parallelized by geometric manner and will
need a special approach based on the concept of input data parallelism.

102 G. Accary et al.

5 Conclusion

In this work we developed the strategy of OpenMP parallelization for NuMA
computers and parallelization method for 3D CFD code for modelling of for-
est fire behaviour, taking into account restrictions and limited flexibility of the
current state of the OpenMP environment. This new method allows to achieve
good parallelization efficiency for moderate number of processors (up to 16). The
obtained results correspond to the general goal of the work – to obtain a tool
for performing precise 3D computations in reasonable time.

Acknowledgements. This work was supported by the European integrated
fire management project (Fire Paradox) under the Sixth Framework Programme
(Work Package WP2.2 ”3D-modelling of fire behaviour and effects”), and by the
Russian Foundation for Basic Research (project RFBR-05-08-18110).

References

1. Morvan, D., Dupuy, J.L.: Modeling of fire spread through a forest fuel bed using a
multiphase formulation. Combust. Flame 127, 1981–1994 (2001)

2. Morvan, D., Dupuy, J.L.: Modeling the propagation of a wildfire through a Mediter-
ranean shrub using a multiphase formulation. Combust. Flame 138, 199–210 (2004)

3. Le Quéré, P., et al.: Modelling of natural convection flows with large temperature
differences: A Benchmark problem for Low Mach number solvers. Part 1. Reference
solutions. ESAIM: Math. Modelling and Num. Analysis 39(3), 609–616 (2005)

4. Bessonov, O., Brailovskaya, V., Polezhaev, V., Roux, B.: Parallelization of the solu-
tion of 3D Navier-Stokes equations for fluid flow in a cavity with moving covers. In:
Malyshkin, V. (ed.) PaCT 95. LNCS, vol. 964, pp. 385–399. Springer, Heidelberg
(1995)

5. Bessonov, O., Fougère, D., Roux, B.: Parallel simulation of 3D incompressible flows
and performance comparison for several MPP and cluster platforms. In: Malyshkin,
V. (ed.) PaCT 2001. LNCS, vol. 2127, pp. 401–409. Springer, Heidelberg (2001)

6. Dagum, L., Menon, R.: OpenMP: an industry-standard API for shared-memory
programming. IEEE Computational Science and Engineering 5(1), 46–55 (1998)

7. Moukalled, F., Darwish, M.: A unified formulation of the segregated class of algo-
rithms for fluid flow at all speed. Numer. Heat Transfer, Part B 37, 103–139 (2000)

8. Bessonov, O., Brailovskaya, V., Nikitin, S., Polezhaev, V.: Three-dimensional natu-
ral convection in a cubical enclosure: a bench mark numerical solution. In: de Vahl
Davis, G., Leonardi, E (eds.) CHT’97: Advances in Computational Heat Transfer.
Proc. of Symposium, Cesme, Turkey. Begell House, Inc., New York, pp. 157–165
(1998)

V. Malyshkin (Ed.): PaCT 2007, LNCS 4671, pp. 103–110, 2007.
© Springer-Verlag Berlin Heidelberg 2007

A High-Level Toolkit for Development of Distributed
Scientific Applications*

Alexander Afanasiev, Oleg Sukhoroslov, Mikhail Posypkin

Institute for Systems Analysis, Russian Academy of Sciences,
Prosp. 60-let Oktyabrya 9, 117312 Moscow, Russia

{apa, os, posypkin}@isa.ru

Abstract. The paper presents IARnet toolkit, a set of high-level tools and
services simplifying integration of software resources into a distributed
computing environment and development of distributed applications involving
dynamic discovery and composition of resources. A case study of using IARnet
for solving large scale discrete optimization problems is discussed.

Keywords: distributed computing, Grid, integration of software resources,
middleware, information service, distributed workflow, discrete optimization.

1 Introduction

The Grid, emerged from the relatively narrow problem of wide-area access to high-
performance computing resources, is transforming now into a general-purpose
infrastructure for coordinated resource sharing within dynamic virtual organizations.
Resources being “plugged” to Grid are no more limited to computing facilities, but
include any resources that can be used in collaborative scientific applications:
knowledge bases, software libraries and applications, instruments, etc. This extends
the scope of Grid applications from high-performance computing to a wider class of
complex problems which are decomposable into multiple subproblems being solved
by existing resources. Next-generation Grid applications will involve dynamic
composition and orchestration of various types of distributed resources and services
forming an application workflow.

The widespread adoption of Grid computing among scientists is impeded by the
difficulty of developing Grid services and implementing Grid-enabled applications.
Among the several efforts targeting this problem most are focused on a simple unified
API for various Grid middleware platforms [1, 2]. The presented in this paper IARnet
toolkit differs from above approaches by providing a set of tools and services
simplifying both deployment of existing software resources and remote access to
deployed resources, as well as dynamic discovery and composition of resources into
workflows. Despite its focus on integration of software applications IARnet has
proven its usefulness in traditional high-performance computing, as demonstrated by
the BNB-Grid application described in the end of this paper.

* Partially supported by the RFBR grant 05-07-90182-в and RAS Presidium Programme 15П.

104 A. Afanasiev, O. Sukhoroslov, and M. Posypkin

2 IARnet Toolkit

The IARnet toolkit, aimed at the integration of software resources rather than “raw”
computational facilities and data storages, extends classical view on the Grid
computing while conforming to the modern service-oriented architecture (SOA).

At the core of IARnet is the notion of information-algorithmic resource (IAR), by
which we generally mean any software component with certain specified capabilities
aimed at solving a well-defined range of applied problems, such as special-purpose
collections of applied computational algorithms, mathematical and simulation models,
etc. Following this definition, IARnet provides a set of high-level tools for exposing,
discovering and accessing IARs enabling development of distributed scientific
applications. The IARnet architecture is composed of resource agents, services and
IARnet API (Fig. 1).

Fig. 1. IARnet architecture

Resource agents are software components acting as mediators between resources
and client applications. An agent provides unified access to a resource in accordance
with its type, integrates it into the system, and controls user's access to it. In terms of
SOA, agents expose resources to applications as standard services.

IARnet services are general-purpose components which provide basic mechanisms
required by applications, such as resource discovery. Current version of IARnet
contains two services – Information Service and Workflow Management Service,
which are described later in this paper. It is important to note that IARnet services are

 A High-Level Toolkit for Development of Distributed Scientific Applications 105

considered as special types of IARs, so they are implemented and accessed using the
same tools as resources.

IARnet API defines a high-level application programming interface for develop-
ment of applications on top of IARnet. Current version of IARnet API is implemented
in Java and represents a library used by applications to discover and access resources
and services. IARnet API is also used by resources and services for interactions
between each other.

As shown in Fig. 1, unified access to “typical” Grid resources such as computing
and data storage facilities can be provided for IARnet applications by special agents
which interact with these resources indirectly via existing Grid middleware (GMW),
basic Grid services, or simple Grid APIs.

2.1 Integration of Software Resources

The problem of resource integration can be stated as how to expose a given software
resource as a remote-accessible service with standard interface expected by clients.
This requires one to provide a remote access to a resource, as well as implement
mapping between unified and implementation-specific interfaces. These two tasks are
separated and accomplished by different components of IARnet.

One of the main goals of IARnet was to make the development of distributed
applications easy for people unfamiliar with distributed programming and middle-
ware. To abstract developers away from details of remote access the transport level of
IARnet is completely hidden from them by IARnet API. This also means that agent
and application developers don’t have to manually generate or use any stubs.

Resource Agent. The different resource implementations providing same func-
tionality are highly heterogeneous, so there’s a strong need in unified interfaces for
different types of IARs which hide this heterogeneity from user and provide
transparent access to dynamic collections of resources. The basic functionality of
resource agent conforms to adapter design pattern where agent implements mapping
between the unified interface for a given resource type and the native interface of
resource implementation. Each agent implements two interfaces: base general-
purpose interface, which is used for operations such as resource type inspection, and
an interface of the corresponding resource type. Current version of IARnet supports
development of resource agents in Java and C++. As a rule, agent developer needs
only to implement resource-specific interface by extending from base agent class.

Container. Resource agents don’t provide remote access to resources. To ensure
flexibility and extensibility of IARnet this task is isolated in another component called
container. Container is a hosting environment for resource agents which provide
remote access to agents by means of some middleware technology. IARnet supports
multiple implementations of transport level, called middleware profiles. Current
version of IARnet includes three middleware profiles based on CORBA (JacORB
[3]), Web services (Apache Axis [4]) and Ice [5], accompanied with corresponding
container implementations. Upon deployment of agent container returns a string
reference which is used to access the resource from client applications as discussed in
the next section.

106 A. Afanasiev, O. Sukhoroslov, and M. Posypkin

Client API. An application developer uses IARnet API to access resources via proxy
objects instantiated by resource references. Each proxy implements a standard
interface Resource (Fig. 2) which corresponds to the base interface of resource agent
and contains methods for inspection and invocation of resource operations.

Fig. 2. Resource interface

2.2 Information Service

The Grid applications require ability to dynamically discover resources currently
available in Grid and inspect their metadata. This functionality is provided in IARnet
by Information Service (IS). While following the basic producer-aggregator-consumer
architecture IS differs from widely deployed systems, such as MDS [6] and R-GMA
[7], by exploring the use of Semantic Web technologies [8] in Grid along with
Semantic Grid projects [9].

IS enables information producers to publish information about resource types and
individual resources. The information models of resource type and resource are
defined in the core IARnet ontology by means of Web Ontology Language (OWL).
The core ontology can be further extended by domain-specific ontologies, e.g.
mathematical resources. Standard RDF/XML format is used for information repre-
sentation and exchange with clients. Information consumers can query IS by means of
SPARQL language. There is also a simple interface for common queries, such as
searching resources by type. For basic RDF/OWL operations and RDF data storage IS
uses Jena RDF toolkit [10].

Among the other components IS includes a high-level Java API for constructing
and exploring metadata conforming to the core IARnet ontology, which doesn’t
require from developer a knowledge of RDF/OWL. Recently developed Web
interface allows users to explore metadata published in IS via Web browser.

2.3 Workflow Management Service

The composition and orchestration of Grid services is another hot topic targeted by
many experimental projects. The focus on integration of software resources and
solving of decomposable problems necessitate the support for workflow composition
and execution in IARnet. This functionality is provided by the Workflow
Management Service (WfMS).

Among the various workflow representation techniques we have chosen high-level
Petri nets [11] as an approach based on a strict mathematical formalism and neutral

 A High-Level Toolkit for Development of Distributed Scientific Applications 107

with respect to middleware technologies in contrast to such languages as WS-BPEL.
The use of high-level Petri nets for Grid workflows was first introduced in [12].
IARnet WfMS is built on top of Renew framework [13] which provides graphical
Petri Net editor (Renew GUI) and simulator.

The workflow composition is carried out in Renew GUI. A user can annotate net
transitions with invocations of IARnet resources and use typed tokens as arguments
and return values for resource calls. Composed workflow can be deployed in WfMS
as a new IARnet resource ready for remote execution. The workflow deployment and
control of workflow execution is also carried out in Renew GUI by means of specially
made plug-in. The deployed workflow instance is opened in a new window where
user can examine its state during the execution. The user is also supplied with a string
reference to the workflow instance which he can use later to reopen the instance
window or to send it to the other users. Via the IARnet WfMS plug-in menu user can
start, pause and resume the execution of workflow or terminate it.

Since all workflow instances are deployed as resources the other IARnet resources
can use standard mechanisms for interaction with the workflow. This is especially
useful for the implementation of asynchronous callbacks which are often required by
Grid workflows. Each workflow resource has a standard operation which can be used
by participating resources to send a callback. The received data is placed as a new to-
ken in a specified place in the net and then processed according to defined transitions.

The initial tests of IARnet WfMS showed promising results to be further proved by
a real-world application.

3 BNB-Grid: Using IARnet for Solving Large Scale Discrete
Optimization Problems

In a most general form the discrete optimization problem is formulated as follows:

given a finite set G and a function RGf →: find Gx ∈* such that

)()(* xfxf ≥ for all Gx ∈ (or)()(* xfxf ≤ for all Gx ∈). Many discrete

optimization problems are NP-hard and their resolution requires significant computa-
tional resources. That is why this sort of problems is a traditional subject for parallel
and distributed computing. The branch-and-bound method is one of the main
approaches to solve discrete optimization problems. The approach is based on a tree-
like decomposition of the search space. Since different branches can be processed
almost independently the branch-and-bound method perfectly suits for implementing
in parallel and distributed computing environments.

The BNB-Grid is a programming infrastructure for solving optimization problems
with branch-and-bound method in a distributed computing environment. The
distributed computing environment is characterized by the following issues:

1. computing nodes may have different architecture and significantly differ in
performance;

2. a computing node may not be available all the time along the search: it may
join or leave the system at an arbitrary moment;

3. computing nodes are connected via Internet or Intranet: links may be rela-
tively slow and an access may be secured.

108 A. Afanasiev, O. Sukhoroslov, and M. Posypkin

The approaches based on “Grid”-MPIs (MPICH-G2, PACX etc.) are unacceptable
because of three reasons. First these versions of MPI do not efficiently cope with
issue 2 listed above: there is no a reliable mechanism to handle occasional failure of
one of computing nodes. Second MPI is not a best platform for shared-memory
systems. Third, setting up a Grid-enabled version of MPI and its integration into a
particular batch-system requires administrative privileges. That may not be feasible
on a large system running in a production mode (like publicly available
supercomputers). The completely distributed approach based on some Grid middle-
ware like Condor or Globus Toolkit faces similar difficulties with administrative
privileges. Second the comprehensive utilization of computing resources of a given
node is difficult: for shared memory machines tools based on threading technologies
are better and on HPC clusters the conventional MPI is the best solution.

Fig. 3. The structure of the BNB-Grid application

The BNB-Grid approach is as follows. Inside each computing node the solver is
implemented according to the best technology appropriate for this node. From the
outside the computing node is visible as an IARnet resource (IAR). Different IARs
cooperate via IARnet. This structure is depicted at the Fig. 1. A sample distributed
system consists of three nodes: nodes 1 and 2 are multiprocessor systems while node
3 is a powerful workstation. Each computing node runs a BNB-Solver [14]: a branch-
and-bound solver targeted at uni- and multi-processor systems. The BNB-Solver is
represented in a system as an IAR through an agent (agents 1,2,3 in the case under
consideration). Besides agents representing computing nodes there are also the
scheduler agent and the user interface agent. The former manages work distribution
among computing nodes. The latter handles the user input and allows the user to load

 A High-Level Toolkit for Development of Distributed Scientific Applications 109

problem type and data, manage the distributed environment and control the search
process.

During the search computing nodes may join or leave the distributed system at
arbitrary moments. It may happen because nodes are turned on and off or because of
batch system running on HPC cluster introduces delays in starting the BNB-Solver
application or terminates it before the computation is completed. To cope with this
issue BNB-Grid backs up tasks sent to a computing node agent and if the computing
node fails the tasks are rescheduled to other nodes.

Computational experiments were run on a system consisting of a central work-
station at Institute for systems analysis of Russian academy of sciences and two HPC
clusters: MVS 15000BM and MVS 6000IM located at Joint Supercomputer Center
and Computational Center of Russian academy of sciences respectively. Both clusters
contain CPU nodes of approximately same performances on the considered kind of
problems.

The following knapsack problem instance was selected for experiments:

{ }
30 30

1 1

2 max , 2 31, 0,1 , 1 2 30.i i i
i i

x x x i , ,...,
= =

→ ≤ ∈ =∑ ∑ This problem is

known as a hard one: the number of vertices in the search tree is 601080389. Three
configurations were tried. The average running times obtained from several runs are
given in the Table 1.

Table 1. Running times for different configurations

Description: Running time:
1 8 CPU MVS 15000 BM 5.57 minutes
2 8CPU MVS 6000 IM 6.03 minutes
3 8 CPU MVS 15000 BM + 8 CPU MVS 6000 IM 3.15 minutes

The simple stealing-based scheduling policy was used: when one node runs out of
work the given number of subproblems is “stolen” from the other node. Experimental
results show that even with this simple scheduling policy remarkable speedup could
be obtained. However for some problems the speedup is much less than the
theoretically estimated. This is the subject for future research to improve the
scheduling policy.

7 Conclusions

The presented IARnet toolkit fills the gap between the low-level middleware
technologies and the needs of application developers by providing high-level tools for
development of distributed scientific applications. These tools allow developers to
focus on a problem being solved instead of becoming an expert in middleware and
Grid technologies. The distinctive feature of IARnet is a support for easy integration
and deployment of software resources.

The availability of multiple transport level implementations allowed us to evaluate
different middleware technologies, namely CORBA, Web services and Ice. Our

110 A. Afanasiev, O. Sukhoroslov, and M. Posypkin

experience indicates that Web services, which are being widely adopted by Grid
projects, offer the poorest performance and suffer from immaturity issues. While the
Ice technology provides consistent and powerful framework lacking deficiencies of
both aged CORBA and immature Web services.

The next version of IARnet will be completely based on Ice to introduce the
advanced functionality, such as secure communication, authentication, session
management, flexible configuration and administration of a local resource pool. The
future work on IARnet will also focus on integration with popular Grid middleware.

References

1. Allen, G., Davis, K., Goodale, T., Hutanu, A., Kaiser, H., Kielmann, T., Merzky, A., Van
Nieuwpoort, R., Reinefeld, A., Schintke, F., Schuett, T., Seidel, E., Ullmer, B.: The Grid
Application Toolkit: Towards Generic and Easy Application Programming Interfaces for
the Grid. Proceedings of the IEEE 93(3), 534–550 (2005)

2. Goodale, T., Jha, S., Kaiser, H., Kielmann, T., Kleijer, P., von Laszewski, G., Lee, C.,
Merzky, A., Rajic, H., Shalf, J.: SAGA: A Simple API for Grid Applications, High-Level
Application Programming on the Grid. Computational Methods in Science and
Technology 12(1), 7–20 (2006)

3. JacORB, The free Java implementation of the OMG CORBA (2007)
http://www.jacorb.org/

4. Apache Axis, The Apache SOAP Project (2007) http://ws.apache.org/axis/
5. Henning, M.: A New Approach to Object-Oriented Middleware. IEEE Internet

Computing 8(1), 66–75 (2004)
6. Czajkowski, K., Fitzgerald, S., Foster, I., Kesselman, C.: Grid Information Services for

Distributed Resource Sharing. In: Proceedings of the 10th IEEE International Symposium
on High-Performance Distributed Computing (HPDC-10), IEEE Press, New York (2001)

7. Cooke, A., Gray, A., Ma, L., Nutt, W., Magowan, J., Taylor, P., Byrom, R., Field, L., Hicks,
S., Leake, J.: R-GMA: An Information Integration System for Grid Monitoring. In:
Proceedings of the 11th International Conference on Cooperative Information Systems (2003)

8. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific Am. 34–43 (May
2001)

9. De Roure, D., Jennings, N.R., Shadbolt, N.R.: The Semantic Grid: Past, Present, and
Future. Proceedings of the IEEE 93(3), 669–681 (2005)

10. Jena – A Semantic Web Framework for Java (2007) http://jena.sourceforge.net/
11. Jensen, K.: An introduction to the theoretical aspects of Coloured Petri Nets. In: de

Bakker, J.W., de Roever, W.-P., Rozenberg, G. (eds.) A Decade of Concurrency. LNCS,
vol. 803, pp. 230–272. Springer, Heidelberg (1994)

12. Hoheisel, A.: User Tools and Languages for Graph-based Grid Workflows. In: Workflow
in Grid Systems (Special Issue of Concurrency and Computation: Practice and
Experience), vol. 18(10), Wiley, Chichester (2006)

13. Kummer, O., Wienberg, F., Duvigneau, M., Schumacher, J., Köhler, M., Moldt, D., Rölke,
H., Valk, R.: An extensible editor and simulation engine for Petri nets: Renew. In:
Cortadella, J., Reisig, W. (eds.) ICATPN 2004. LNCS, vol. 3099, pp. 484–493. Springer,
Heidelberg (2004)

14. Posypkin, M., Sigal, I.: Investigation of Algorithms for Parallel Computations in
Knapsack-Type Discrete Optimization Problems. Computational Mathematics and
Mathematical Physics 45(10), 1735–1743 (2005)

Orthogonal Organized Finite State Machine

Application to Sensor Acquired Information

Brian J. d’Auriol, John Kim, Sungyoung Lee, and Young-Koo Lee

Department of Computer Engineering, Kyung Hee University, Korea
dauriol@acm.org, johnkim korea@yahoo.ca, sylee@oslab.khu.ac.kr,

yklee@khu.ac.kr

Abstract. The application of the Orthogonal Organized Finite State
Machine (OOFSM) to the representation of data acquired by sensor net-
works is proposed. The OOFSM was proposed in earlier work; it is suc-
cinctly reviewed here. The approach and representation of the OOFSM
to sensor acquired data is formalized. The usefulness of this OOFSM
application is illustrated by several case studies, specifically, gradients,
contouring and discrete trajectory path determination. In addition, this
paper informally discusses the OOFSM as a Cellular Automata.

1 Introduction

Finite State Machines (FSMs) have a long history of theoretical and practical
developments. In brief simplicity, an FSM is characterized by a set of states
and a set of transitions between these states, often together with definitions of
the set of start and terminal states as well as perhaps with other attributes.
The majority of FSMs in the literature do not consider the spatial relationships
between states. In [1], an orthogonal arrangement of states is considered: this
is termed an Orthogonal Organized Finite State Machine (OOFSM). There are
several advantages of such an organization including the definition of indexing
and selection functions to select regions of interest as well as the state space
discretization of continuous complex dynamic systems [1].

The intent of the OOFSM as developed in [1] is to realize a discretized repre-
sentation of a continuous complex dynamic system. In particular, trajectories in
the continuous system are represented by a sequence of labeled transitions be-
tween states in the OOFSM, these labels are in fact based on the index (metric)
space. The goals of the original work include the understanding of the behavior of
the regions that trajectories pass through. In the OOFSM representation, these
regions can be identified by the indexing/selection functions. Ultimately, one of
the aims is to predict trajectory evolutions towards cascading failure states.

Sensor networks are especially designed for data acquisition. Sensor networks
can be wired or wireless, static or mobile, and may have other properties such
as autonomic, low-power budgets and small physical size [2]. Sensors may be
placed in a physical environment that is modeled by a dynamic system. In such
cases, the sensors provide observations of the partial or full state space of the
dynamic system.

V. Malyshkin (Ed.): PaCT 2007, LNCS 4671, pp. 111–118, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

112 B.J. d’Auriol et al.

The earlier work is extended in a new direction in this paper. First, we consider
the problem of observable data given an OOFSM representation. In particular,
we consider sensor network acquired data and treat these data points as obser-
vations. In this work, we generate the acquired data via simulation, although,
empirically obtained data could also be used. Our objectives are: a) representing
the observable data as a discrete labeled trajectory in an OOFSM, b) describing
the discrete regions of interest and/or behavior associated with these discrete
trajectories. We do not consider the problem of relating the observable data in
the discrete space back to a continuous system in this paper.

This paper is organized as follows. The next section, Section 2, reviews the
definition of OOFSM based on [3] and is provided here as the succinct for-
mal definition of the OOFSM abstraction. Section 3 describes the approach
and methodology used in this paper. Section 4 describes several applications of
the OOFSM applied to sensor acquired data. The relationship with Cellular Au-
tomata is discussed in Section 5. Technological aspects are discussed in Section 6.
Conclusions are given in Section 7.

2 Review [3]

Orthogonal Organized Finite State Machines (OOFSM) [1] represent a lattice
partitioned, and therefore a discretized, state space of a dynamic system. For-
mally, it is defined by M = (Y,L, V Y). A lattice partitioning L applied to an n
dimension state space X = {x1, x2, . . . , xn}, xi ∈ R leads to a set of discretized
states L : X → Y where Y = {y0, y1, . . . , yo−1} for some finite o. In general, L
defines a set of partition boundaries P = {pij |1 ≤ i ≤ n, 0 ≤ j ≤ o − 1} with
pij ∈ R

n−1 = (bl, bu)ij , bu > bl. Each pij is aligned normal with the correspond-
ing ith state variable; ι(b) denotes this value. A discrete direction vector field
vj = (. . . , ai, . . .) where ai =

⋃
k vjki

is the union of a set of discrete direction
vectors {vjk

| k ≥ 1} in state yj of Y ; ai ∈ {−1, 0, 1}. The intersection of a
trajectory e ∈ E with pj ∈ P for a fixed j derives vj ; the intersections of all
e ∈ E with pj ∈ P derives vj for a fixed j. Lastly, the set V R = {vj | j ∈ R} for
region R defines a region field; V Y denotes some general region field. A uniform
region field has the same region field for each yj ∈ R. For convenience, elements
of Y may be interchangeably expressed in terms of the dimension of the system.
Figure 1 illustrates an OOFSM for: n = 2, uniform unit L so that o = 16 and
P = {p10 , p20 , p11 , p21 , . . . p1j , p2j , . . . p115 , p215} such that p10 = (bl1(0,0) , bu1(0,0))
where ι(bl1(0,0)) = 0 and ι(bu1(0,0)) = 1 (i.e., the values on the x1 axis correspond-
ing with the lower and upper boundaries of the ‘vertical’ partition pair compris-
ing the ‘left’ and ‘right’ sides of state y0,0) and so forth with X = {x1, x2},
and V Y = V R1 ∪ V R2 where v0,3 = ({0}, {0}) defines the uniform region field
V R1 for R1 = {yk,3|0 ≤ k ≤ 3} and v0,0 = ({0}, {1}) defines the uniform
region field V R2 for R2 = {yk,l|0 ≤ k ≤ 3, 0 ≤ l ≤ 2} (i.e., there are two uni-
form region fields with the first being null (terminal states) associated with the
‘top row’ and the second being ‘up-wards only’ associated with the remaining
states).

OOFSM Application to Sensor Acquired Information 113

3 Approach and Methodology

The initial inputs are obtained from a sensor network. Such a sensor network
typically has many spatially distributed sensors that acquire data at specific
times. In general, the data has two fundamental properties: structure and value.
Its structure is derived from two possibilities, either the physical placement of the
sensors determines physical coordinates (e.g. x,y,z coordinates, GPS coordinates,
etc.) or the data itself has some apriori defined structure (e.g. vectors, tensors,
etc.) Its value refers to the semantics of the actual measurement. Values have
ranges (e.g. an interval in R). These properties have been noted elsewhere in the
literature, for example, in data visualization [4, 5].

Let the set D∗ = {D1, D2, . . .} denote a collection of temporal organized
data values where Di denotes all the sensor data at some ith time. And, D =
(ds

1, d
s
2, . . . , d

s
m1
, dv

1 , d
v
2, . . . , d

v
m2

) where ds
i , d

v
i denotes, respectively, structure and

value components and each ds
i , d

v
j such that 1 ≤ i, j ≤ m1,m2 is in the, respec-

tively, maximal measurement range of the associated sensor’s data organization
and data value.

If a dynamic system is known, than X and V Y are also given. Given X , then
di �→ xj for 1 ≤ i ≤ m and j ∈ [1..n], that is, there are m observable states in
an n dimensional state space, m ≤ n.

For the case where there is no dynamic system or it is unknown, both X and
V Y need be determined from the sensor data. Let X̄ denote the determined
space (the shift of notation provides the semantics that no underlying dynamic
system is involved). Consider the two cases:

1. X̄ is determined from the data’s structure: ds
i �→ xi for 1 ≤ i ≤ m1, n =

m1. Here, the structure states are observable and the state space directly
represents the organization of the data. L reflects the OOFSM structuring
imposed on the organization of the sensors. Transitions through this space
reflect ordered selections of the value elements. Let some arbitrary bijective
function f(D∗) �→ V R, that is f applied to the sensor acquired data results
in a set of state transitions. The choice for f is motivated by seeking logical
orderings of the sensor data subject to the nearest neighbor connections
mandated by the OOFSM.

2. X̄ is determined from the data’s value: dv
i �→ xi for 1 ≤ i ≤ m2, n = m2,

that is, all states are considered to be observable. L reflects the discretization
over the sensor measurements: in this paper we assume that the discretization
results in well-behaved transitions, for example, to ensure nearest-neighbor
state changes. In [1], a partial region field was discussed as a model for
transitions determined by a finite sub-set of all possible trajectories in the
underlying dynamic system. Similar here, we can say that D �→ yk for some
kth state and D∗ �→ V R where the region field is a partial field. The larger
D∗, the more state transitions may be defined and the more complete the
region field becomes.

Now, Y has been determined. Each state in Y is labeled; a simple practical
method is to select bl from all P in N

m (e.g. y0,0, y1,0, etc. in Figure 1).

114 B.J. d’Auriol et al.

x1

x2

0 1
0

1

bl1(0,3) bu1(0,3)

bl1(0,2)

bu2(0,3)

���

������
�

y0,0 y1,0

y0,3

� � � �

� � � �

� � � �

Fig. 1. Illustration of
state space definitions,
n = 2, o = 16 and
uniform unit partition L

Y

X

0 3 4 5 6 7 8 9 10

0

1

2

3

4

5

1 2

24.00

15.00

16.00

17.00

18.00

19.00

15.00

16.00

17.00

18.00

19.00

15.00

16.00

17.00

18.00

19.00

15.00

16.00

17.00

18.00

19.00

15.00

16.00

17.00

18.00

19.00

16.00

17.00

18.00

19.00

20.00

17.00

18.00

19.00

20.00

21.00

18.00

19.00

20.00

21.00

22.00

19.00

20.00

21.00

22.00

23.00

20.00

21.00

22.00

23.00

Z

Fig. 2. Temperature distribution in the corresponding
OOFSM

4 Applications to Sensor Acquired Data

This section consists of simulated examples as case studies. The first two case
studies are based on a simulation of 50 two-dimensional lattice-arranged tem-
perature sensors constructed with each sensor’s location placed such that the
location represents the center of the state determined by L = {boundaries in-
tersecting the axes at ordinal values}. Hence, the data’s structure consists of
x,y coordinates and its value is a scalar in R (we ignore the operating ranges of
sensors here). The third case study eliminates the structure and instead, con-
siders the state system to be composed of discretized ranges over each sensor’s
value. This more closely represents the view-point adopted by observable states
associated with a dynamic system.

4.1 Gradient

A temperature gradient is considered in this case study. The temperature val-
ues are distributed according to simple (linear) assumptions (since we are not
interested here in simulation accuracy with thermo-models). Figure 2 shows the
raw data temperature distribution in the corresponding OOFSM while Figure 3
shows a typical visualization of the temperature distribution in the OOFSM.
These figures are generated by AVS/Express visualization software. Neither the
raw data nor the visualization provide sufficient clarity regarding the possible
bifurcation in the system; as shown dramatically in Figure 4. In this figure, the
uniform vector fields corresponding to the transitions from low-values to high-
values are plotted; hence two regions of behavior are identified.

4.2 Contouring

A temperature contour is considered in this case study. The distribution, shown
in Figure 5, is somewhat modified from that used earlier (the change better clar-
ifies the results). Figures 6 and 7 show typical visualizations of the data, the first

OOFSM Application to Sensor Acquired Information 115

X

Y

0 3 4 5 6 7 8 9 10

0

1

2

3

4

5

1 2
Z

 24

 15

 16

 17

 18

 19

 20

 21

 22

 23

Fig. 3. Temperature visualization Fig. 4. Uniform vector fields in the
OOFSM

uses a standard scatter-to-uniform 2ed-order interpolator to fill-in data values
in-between the sensor points, and the second graphs the contours based on the
interpolated values. As before, AVS/Express software is used. The correspond-
ing OOFSM in which the contours are represented by state transitions only to
neighboring states of the same value is shown in Figure 8. The discontinuity in
the trajectory path between states 6,2 and 7,1 containing the data value of 17
occurs due to the non-neighboring transitions, exactly in this case, corner-wise.
A refined lattice partitioning would usually take care of this situation. Further-
more, we could allow the corner-wise transition to pass by the corresponding
neighboring states (e.g. via state 6,1 or 7,2) Note that there were many such
corner-wise transitions in the previous case study.

4.3 Temperature System

Let the lattice partitioning impose a discretization over the ranges of sensor ac-
quired temperatures. Since each sensor uniquely monitors its environment, each
sensor provides an independent temperature measurement. For each such mea-
surement, the discretization reflects a single dimension of the overall state space;
hence, the number of temperature dimensions equals the number of sensors. Such
high dimensional state systems are very common in dynamic systems.

For this discussion, we assume two sensors, hence a two-dimensional state
space. Let us choose a partitioning such that each state is unit temperature as
illustrated in Figure 9. This figure shows a hypothetical trajectory as might be
determined by a sequence of temperature measures over time.

5 Cellular Automata Discussion

There is a close relationship between the OOFSM described in this paper and
cellular automata (CA). In [6], four features are identified to characterize a
CA: geometry, cell neighborhoods, cell states and local transition rules for cell

116 B.J. d’Auriol et al.

Y

X

0 3 4 5 6 7 8 9 10

0

1

2

3

4

5

1 2

19.00

15.00

16.00

17.00

18.00

19.00

15.00

16.00

17.00

18.00

19.00

15.00

16.00

17.00

18.00

19.00

15.00

16.00

17.00

18.00

19.00

15.00

16.00

17.00

18.00

19.00

15.00

16.00

17.00

18.00

19.00

16.00

16.00

17.00

18.00

19.00

17.00

17.00

18.00

18.00

19.00

18.00

18.00

18.00

18.00

19.00

19.00

19.00

19.00

19.00

Z

Fig. 5. Temperature distribution in the
corresponding OOFSM

X

Y

0 3 4 5 6 7 8 9 10

0

1

2

3

4

5

1 2
Z

 15

 16

 17

 18

 19

Fig. 6. Temperature visualization, stan-
dard 2ed-order interpolation from the scat-
ter data

Fig. 7. Temperature visualization show-
ing contouring

Fig. 8. Uniform vector fields in the
OOFSM

state changes. The orthogonal structure of the OOFSM, i.e. as given by L,
corresponds with an n-dimension CA of the orthogonal neighborhood type. The
neighborhood is defined by all the transitions into a given cell state, that is, all
the states in the OOFSM with at least one discrete direction vector defining a
transition from that cell state to the current cell state. For example, in Figure 1,
the neighborhood of yi,j is yi,j−1 for 0 ≤ i ≤ 3, 1 ≤ j ≤ 3. Cell states and
the local transition rules are contextually defined by the applications. In this
paper, the cell states reflect properties of the sensor acquired data. The local
transition rule is a cell-centric interpretation of the factors that determines the
discrete direction vectors defining the neighborhood. This refers to f(D∗) for
Case 1 and D∗ for Case 2 of Section 3. This completes the informal description
of the OOFSM as a CA.

An example for the Gradient application discussed in Section 4.1 is given.
Recall, the sensor data is D∗ with temperature dv

1 and that f defines transitions
from low to high temperature values. Let tk = dv

1 for the kth cell state (a matter
of convenience). Then, the local rule may be defined as maxyk∈Y (tk) < tj where
Y denotes the set of states of the neighborhood. For the particular temperature

OOFSM Application to Sensor Acquired Information 117

Fig. 9. Two temperature sensor state space, a hypothetical trajectory is shown

values given in Figure 2, a specific local rule could be: select any neighbor and
add one to its state. The interpretation of local rule here suggests that the
local rule is representation-driven and not compute-driven. The state values are
already known, but the local rule is not. The process is to infer the local rule
from the known parameters.

6 Technological Aspects

Some brief comments about the concurrency inherent in the application of the
OOFSM to sensor acquired data are made in this section. A full treatment of the
concurrency inherent in the OOFSM, the related CA and associated processes
is beyond the scope of this paper.

Consider the computations needed for to determine Y . For Case 1 of Section 3,
without loss of generality, Y is computable by considering two states which share
a surface. Each such pairing is independent of another (assuming that concurrent
updates are handled in concept by appropriate semaphore locks). Hence, there is
a high degree of inherent fine-grained parallelism. For example, in the Gradient
application, Section 4.1, the pairings are: (yi,j , yi+1,j), (yi,j , yi−1,j), (yi,j , yi,j+1)
and (yi,j , yi,j−1). For Case 2 of Section 3, Y is computable by considering the time
sequences in D∗. When D∗ is known (as for example when the data is stored at a
centralized database), then there is inherent fine-grained parallelism between Di

and Di+1. However, when D∗ is available as a real-time stream, then the process
itself is inherently sequential due to the streaming. Each vk is local to the state
k and may be stored locally in a distributed-memory multicomputer. The issues
of partitioning and mapping fine-grained parallelism onto multicomputers have
been well investigated (see for example [7]); past experience suggests that further
performance analysis is needed.

7 Conclusion

The Orthogonal Organized Finite State Machine (OOFSM)was proposed in ear-
lier work as a mathematical model that supported representation and visual-
ization of dynamic systems. In this paper, its use is broadened by considering
the OOFSM representation of data acquired by sensors. The usefulness of this

118 B.J. d’Auriol et al.

OOFSM application is illustrated by several case studies. Specifically, gradients,
contouring and discrete trajectory path determination were studied. In addition,
this paper informally discusses the OOFSM as a Cellular Automata.

This paper concentrated on the ideas behind these novel application areas of
the OOFSM. Clearly, enhanced simulations and experimental results are needed
to provide realistic data sets which in turn would be used in realistic evaluations
of our approach. This constitutes the bulk of our intended future work.

Acknowledgements

This research was supported by the MIC (Ministry of Information and Com-
munication), Korea, under the ITFSIP (IT Foreign Specialist Inviting Program)
supervised by the IITA (Institute of Information Technology Advancement).

References

1. d’Auriol, B.J.: A finite state machine model to support the visualization of cmplex
dynamic systems. In: Proceedings of The, International Conference on Modeling,
Simulation and Visualization Methods (MSV’06), pp. 304–310. CSREA Press, Las
Vegas (2006)

2. Chong, C.-Y., Kumar, S.P.: Sensor networks: Evolution, opportunities, and chal-
lenges 9(8), 1247–1256 (2003)

3. d’Auriol, B.J., Carswell, P., Gecsi, K.: A transdimension visualization model for
complex dynamic system visualizations. In: Proceedings of The 2006 International
Conference on Modeling, Simulation and Visualization Methods (MSV’06), pp. 318–
324. CSREA Press, Las Vegas (2006)

4. Brodlie, K., Carpenter, L.A., Earnshaw, R.A., Gallop, R., Hubbolt, R., Mumford,
A.M., Osland, C.D., Quarendon, P. (eds.): Scientific Visualization: Techniques and
Applications. Springer, Heidelberg (1992)

5. Ware, C.: Information Visualization Perception for Design, 2nd edn. Morgan Kauf-
mann, San Francisco (2004)

6. Sarkar, P.: A brief history of cellular automata. ACM Computing Surveys 32(1),
80–107 (2000)

7. d’Auriol, B.J., Bhavsar, V.C.: Generic program concurrent modules for systolic
computations. In: Arabnia, H. (ed.) Proc. of the 1999 International Conference on
Parallel and Distributed Processing Techniques and Applications (PDPTA’99), pp.
2012–2018. Las Vegas, Nevada, USA (1999)

Parallel Broadband Finite Element

Time Domain Algorithm Implemented to
Dispersive Electromagnetic Problem�

Boguslaw Butrylo

Bialystok Technical University,
Wiejska 45D, 15-351 Bialystok, Poland

bogb@pb.edu.pl

Abstract. The numerical analysis of some broadband electromagnetic
fields and frequency-dependent materials using a time domain method is
the main subject of this paper. The spatial and time-dependent distri-
bution of the electromagnetic field is approximated by the finite element
method. The parallel form of the algorithm valid for some linear materi-
als, and the formulation of the FE code for a dispersive electromagnetic
problem are presented and compared. The complex forms of these al-
gorithms have an effect on the memory and computational costs of the
distributed formulation. The properties of the algorithm are estimated
using high performance cluster of workstations.

1 Introduction

Investigation of time-variable electromagnetic fields using high performance com-
puter systems is a useful tool for computer aided analysis and designing of
broad spectrum of electromagnetic systems (e.g. some microwave circuits, wire-
less communication networks, medical equipments) [1,2,3,4]. A typical problem
in computational electromagnetic (CEM) includes analysis of some broadband
electromagnetic waveforms and their interaction with some solid structures.

Ideally any CEM algorithm should model time-dependent electromagnetic
phenomena accurately and efficiently. The analysis of the propagated nonhar-
monic electromagnetic waves is possible owing to direct integration of partial
differential equations in time domain. In general case, the size of the model rel-
ative to the wavelength of the electromagnetic wave, as well as the implemented
schemes of numerical integration lead to a definition of a hard computational
problem. The CEM algorithm for broadband problems should also have enough
flexibility to represent complex properties of any material structure (including
geometry and material properties). Unfortunately these expectations tend to be
mutually exclusive. Depending on the aim of the analysis a compromise must be
find.
� The work has been performed under the Project HPC-EUROPA (RII3-CT-2003-

506079), with the support of the European Community - Research Infrastructure
Action under the FP6 Structuring the European Research Area Programme.

V. Malyshkin (Ed.): PaCT 2007, LNCS 4671, pp. 119–127, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

120 B. Butrylo

 Time domain (TD), broadband, full wave

()peeh +
∂
∂+=×∇ εγ
t

he μ
t∂

∂−=×∇

Nonlinear and broadband problem: ε, γ, μ=f(e, h), ε, γ, μ=f(ω).

Broadband, frequency domain (FD)

Frequency domain (FD), single frequency

Linear and broadband problem:
ε, γ, μ≠f(e, h), ε, γ, μ=f(ω).

Nonlinear, single frequency: ε, γ, μ=const.

()NB
n

NB
nn

NB
n

NB
n j PEEH ++=×∇ εωγ

NB
nn

NB
n j HE μω−=×∇

Span(ω)

() ()∫
+∞

−∞

= ωω
π

ω det tjQq
2

1

()∑
=

=
N

n
n

NB
nR

1

ωQQ

() ()()ωω QQ f
R

=

() ()∫
+∞

−∞

−= dtet tjωω qQ

Filters

Σ

D
om

ai
n

de
co

m
po

si
tio

n

(s
pa

tia
l,

m
od

el
 d

ec
om

po
si

tio
n)

O
pt

io
na

l t
as

k
de

co
m

po
si

tio
n

D
om

ai
n

de
co

m
po

si
tio

n

(f
re

qu
en

cy
 d

ec
om

po
si

tio
n)

+

pa
ra

lle
l v

er
si

on
 o

f
a

si
ng

le

fr
eq

ue
nc

y
pr

ob
le

m

Fig. 1. Dependency of the formulations of a CEM problem, including problem formula-
tion and form of the parallel algorithm. The q indicates the field quantity q ∈ {e,h,p}.

The CEM methods have evolved to more accurate and real-time algorithms
based on either frequency-domain (FD) or time-domain (TD) formulation of
the problem (Fig. 1). The direct integration of the Maxwell’s equations in time
domain is more suitable for complex analysis than any frequency domain formu-
lation. The numerical complexity of the algorithm increases, but the formulation
of time-domain algorithm is suitable for parallel analysis of electromagnetic prob-
lems in either shared or distributed memory computer system [1,4,5]. Both the
domain decomposition and task decomposition can be implemented in a parallel
version of the CEM-TD algorithm.

According to the Fourier’s theory, the time domain representation of any
complex electromagnetic waveform is equivalent to the related frequency domain
form. Analysis of the broadband EM phenomena forces definition of a multiplica-
tive frequency domain algorithm [5]. In this way, any full wave electromagnetic
problem must be reduced to a set of single-frequency problems. Unfortunately,
direct implementation of this scheme in numerical analysis of a large-scale EM
problem is not efficient. The size of the analyzed electromagnetic problem, and
infinite spectrum of some real signals are the main constraints. The split-step
frequency domain approach provides a powerful tool for analysis of some lin-
ear electromagnetic problems with a simple, reduced spectrum of the waveform,
and significantly reduced model of dispersity. The real spectrum of dispersive
material is sampled in frequency domain. The parallel implementation of the

Parallel Broadband Finite Element Time Domain Algorithm 121

single-frequency CEM algorithm can be developed with domain decomposition
and/or task decomposition paradigm [1,6].

The objective of this paper is a finite element time domain (FE-TD) method
in a parallel version. The effect of medium dispersion is incorporated in the
presented algorithm. Two forms of the parallel finite element-time domain al-
gorithm for linear and dispersive materials are presented and discussed. The
efficiency of these algorithms is analyzed. The memory cost and performance of
the FE-TD formulations for dispersive materials are presented. The properties
of the algorithm are validated using a cluster of workstations system.

2 Problem Formulation

The common form of the wave equation is derived from the time-dependent
Maxwell’s equations [7]. It describes the physical state of the analyzed system,
assuming linear and dispersionless properties of material structures

∇× 1
μ
∇×E + γ

∂E
∂t

+ f (t) + ε
∂2E
∂t2

= 0, (1)

where f(t) denotes imposed currents, γ, ε, μ represent electrical conductivity, per-
mittivity and permeability of the medium respectively. The distribution of the
field is expressed by the vector of electric field intensity e = e (x, y, z, t) =
Ex ·1x +Ey ·1y +Ez ·1z, defined in the four dimensional continuum. This form
of the constitutive equation is valid for a narrow-band analysis of the electro-
magnetic filed or a problem where, the properties of the media do not depend
on the frequency of the electromagnetic wave (Fig. 1).

Some widely implemented material structures have dispersive properties (e.g.
non-ideal dielectrics, composites, fiber-wires, biological tissues). An induced high
frequency polarization of molecules and particles changes the resultant spa-
tial distribution of electric flux density in this system, D (ω) = ε0ε∞E (ω) +
ε0χ (ω)E (ω), where ε0 is permittivity of free space, ε∞ is the infinite frequency
relative permittivity, and χ (t) is the electric susceptibility. Therefore, the time-
dependent distribution of electric field in the broadband formulation, assuming
dispersity of some materials, is stated by equation

∇× 1
μ
∇×E + γ

∂E
∂t

+ ε0ε∞
∂2E
∂t2

+ ε0
∂2

∂t2

(∫ t

0

χ (t− τ)E (t) dτ
)

= 0, (2)

where χ (t) = F−1 {χ (ω)} is a time domain form of frequency dependent sus-
ceptibility. In this formulation, the dispersity of the model is described by the
empirical, multipole resonance Lorentz model of susceptibility [7,8,9]

χ (t) = F−1

{
P∑

p=1

Δεpω
2
a,p

ω2
o,p + jωνp − ω2

}

=
P∑

p=1

Δεpω
2
a,p

ω2
d,p

e
−tνp

2 sin (ωd,pt)·u (t) , (3)

where P is the order of the model, Δεp is a decrement of permittivity for p-th
pole, ωa,p - plasma frequency, ωo,p - resonant frequency, νp - damping frequency,

ωd,p =
√
ω2

o,p − 0, 25ν2
p, and u(t) is the unitary step function.

122 B. Butrylo

The equation (2), after implementation of Galerkin method, is solved with the
finite element (FE) algorithm. The geometry of the model is discretized using the
first order tetrahedral, edge elements [1]. In this formulation of the FE method,
the distribution of electric field is approximated by circulation of electric field
along any edge of the model. Therefore, the total number of degrees of freedom
(NDOF) is equal to number of edges in the model (NE).

The convolution of susceptibility and time-dependent distribution of electric
field in the model is approximated by the PLRC (Piecewise Linear Recursive
Convolution) method [8,9]. The second order derivative of the convolution is
calculated using unconditionally stable Euler-backward scheme. The approxi-
mated form of the wave equation (1) or (2) is integrated in time domain using
the unconditionally stable, second order accurate Newmark-beta method [4,9].
Therefore the final form of matrix equation is given by

A ·En+1 =

(

2
M∑

m=1

T∞,m −
Δt2

2
S

)

·En −

−
(

M∑

m=1

T∞,m −
Δt

2
R− Δt

2

2
S

)

·En−1 +

+
M∑

m=1

P∑

p=1

(
2− e−ϕΔt

)
·T0,mCp,n −T0,mCp,n−1, (4)

where the A matrix is a linear combination of T∞,m, Rσ, and S matrices

A =
M∑

m=1

∫

V

ε∞,mUiUjdV +
Δt

2

∫

V

σUiUjdV +

+
Δt2

4

∫

V

1
μ

(∇×Ui) (∇×Uj) dV. (5)

Dispersity of any material in the model changes the form of the matrix equation.
A supplementary matrix associated with dispersity of the model is added in the
PLRC form

Ad = A +
M∑

m=1

Pm∑

p=1

T0,m

Δεpω
2
a,p

Δtκ2
pωd,p

(
Δtκp − 1 + e−κpΔt

)
. (6)

These additional components change the form of the resultant matrix. Simulta-
neously, the stability and convergence of the algorithm can drastically degrade.
The temporary value of convolution is expressed by equation

cp,n+1 = e−κpΔtcp,n +
P∑

p=1

En+1

Δεpω
2
a,p

Δtκ2
pωd,p

(
Δtκp − 1 + e−κpΔt

)
+

+
P∑

p=1

En

Δεpω
2
a,p

Δtκ2
pωd,p

(
1−Δtκpe

−κpΔt − e−κpΔt
)
. (7)

Parallel Broadband Finite Element Time Domain Algorithm 123

3 Distributed Formulation of the Problem

Concerning parallelization of the time-domain algorithm, a common 1D domain
decomposition paradigm is used. The set of edges in the FEM model is decom-
posed into non-overlapping sub-domains. Depending on degrees of freedom in the
FE model and implemented model of dispersion, the algorithm can be flexible
matched to a multi-computer platform [1,4].

The distributed FETD algorithm is elaborated by explicit parallelization of
the sequential code. The own, parallel implementation of preconditioned con-
jugate gradient (PCG) algorithm is used to solve the matrix equation (4) [10].
Since the resultant matrices A, R, S, T∞,n, and T0,n are sparse, they full repre-
sentation in the computer memory are squeezed with the CRS (Compressed Row
Storage) algorithm. However, these matrices remain the largest data structures
in the algorithm, and they are homogeneously decomposed between processing
units PE. The size of common matrices A, T, R, S for the linear problem, as
well as T∞,n, T0,n in dispersive formulation, makes data transfers between com-
puting units non-efficient or even impossible. These data structures are included
into the critical section of the algorithm (Fig. 2). The critical section of the
common FE-TD algorithm gathers the operations with some distributed parts
of matrices. The spatial decomposition of the matrices on either distributed or
shared memory environment is the general constraint of the presented algorithm.
The critical section of the algorithm consists of tasks, where one of the operands
is a part of local sub-matrix.

The implemented model of electromagnetic dispersion shapes the final form of
the distributed FE-TD algorithm. Dispersity of materials and broadband anal-
ysis of EM field yield the complex formulation of the FE-TD algorithm (Fig.
3). The broadband formulation of the electromagnetic phenomena requires to
solve the large scale matrix equation and step-by-step calculation of convolution
between time-dependent distribution of electric field and the complex-form time
dependent susceptibility (2). Two coupled sets of unknowns are defined. The first
one, typical for a common, linear version of the algorithm (1), consists of three
vectors of electromagnetic field in the successive time steps {En−2,En−1,En},
dim (En) = NDOF . The time variable vectors of convolutions form the set
of extraordinary variables, {C1,n−1,C1,n, · · · ,Cp,n−1,Cp,n, · · · ,CP,n−1,CP,n},
dim (Cp,n) = NDOF . The vectors of calculated electromagnetic field, as well as
the vectors of convolution {C1,n, · · · ,Cp,n−1} are duplicated in the computing
nodes. As some consequences, the computational cost of the algorithm drasti-
cally increases. If the number of the matrix-vector multiplications in the linear
problem is stated by equation N l

M×v = 3+NPCG the FE dispersive problem re-
quires Nnl

M×v = 3+NPCG +
∑M

m=1 Pm multiplications in each time step. TheM
denotes number of dispersive materials, and Pm - the order of dispersity for the
m-th material. The NPCG means the number of iterations in the implemented
iterative matrix solver (e.g. preconditioned conjugate gradient algorithm).

Finally, the structure of the distributed algorithm must be changed, since
some new bottlenecks are determined, and calculation of coupled unknowns
{En−2,En−1,En} and {C1,n−1, · · · ,CP,n} must be interlaced. The distributed

124 B. Butrylo

 GD, MD, BC

A1

z-1
A2

A3

IC

I1

I2

I3

z-1

Einc=f(t)

A4

z-1

Critical section

P
E

 c
o

m
p

u
ti

n
g

 n
o

d
es

 m1

92 m2
92

m3

R

S

92

i*92

92

450
450

450

27

27

27

174

83

83

83

83

1000

27

GD Geometry data of the FEM
model.

MD Material data.
BC Boundary condition.
IC Initial condition on time-

domain formulation.
A Assembling of T, R, and S

matrices.
A4 Assembling of incident wave

in each time-step.
m Matrix-vector dot product.
I Initialization and step-by-step

calculation of the E vector.
R Formulation of the right-

sided vector of equation (4),
(5) and (6).

S Iterative solver of matrix
equation [10].

Fig. 2. Graph of the finite element time domain algorithm for a linear narrow-band
EM problem. Weight coefficients of threads (nodes on the graph) and relations between
threads (thin arrows) are estimated for a medium sized FEM model NDOF = 337620.
Wide, gray, horizontal arrows indicate data transfers between processing units.

 GD, MD, BC

A1

z-1
A2

A3

IC

I1

I2

I3

z-1

z-1

Critical section

P
E

 c
o

m
p

u
ti

n
g

 n
o

d
es

 m1

92 m2

92
m3

R

S

92

i*92

92

450
450

450

27

27

27

83

83

83

83

1000

Einc=f(t)

A4
174

27

T2
T3

450

z-1

C(M*P)

A4(M*P)

m4

m5

P
E

 n
o

d
es

Critical section

450

83

83

Fig. 3. Graph of the FE-TD algorithm for a dispersive, broadband EM problem. The C
denotes initialization and step-by-step calculation of the (M · Pm) convolution vectors,
and A4 is the assembling task for the dispersive components of the A matrix.

version of the algorithm must bring together memory cost and distributed struc-
ture of data structures of the extended formulation and the computational cost
of some extraordinary subroutines.

Parallel Broadband Finite Element Time Domain Algorithm 125

4 Numerical Performance

The algorithms mentioned above are tested using NEC Xeon EM64T Cluster
with NPE = 64 computing nodes connected by the Infiniband network. The
distributed processing is supported by the MPI 2.0 standard. The final form of
the code is tuned and optimized with the aim to get the best performances on
this platform.

1,E+04

1,E+05

1,E+06

1,E+07

1,E+08

1,E+09

1,E+03 1,E+04 1,E+05 1,E+06
Degrees of freedom

NP=1, dispersion, order=5
NP=1, linear model
NP=16, dispersion, order=5
NP=16, dispersion, order=1
NP=16, linear model

S
iz

e
of

 m
em

or
y

Fig. 4. Comparison of the memory cost for linear and dispersive algorithms

The total memory cost depends on the number of computing units in the
cluster, and assumed dispersity of the model (Fig. 4). The number of computing
units NPE can be matched to the size of the model, but some extraordinary data
structures enlarge the memory cost of the distributed algorithm. The dispersive
form of the EM problem introduces some new data structures, therefore its
relative scalability is quite worse than the linear formulation. Increasing the
number of dispersive materials and the order of dispersity in the analyzed CEM
problem either the size of the FE model must be reduced or the number of
computing units in the COW should be enlarging.

Some improvements of computing time are found when the number of com-
puting units is less then 48 (Fig. 5). If NPE > 48, the speedup of the algo-
rithm degrades, since communication cost of the distributed solver exceeds prof-
its of parallel processing. The speedup of the elaborated algorithms depends
on the bandwidth of communication network in the multi-computer, memory
distributed system. Therefore, the calculated speedups increase linearly with
respect to number of processing units for some small and medium size COW
systems. The speedup curves are saturated, when the communication network
could not cope with some indispensable data transfers.

126 B. Butrylo

0

2

4

6

8

10

12

14

16

18

20

0 10 20 30 40 50 60 70
Number of processing nodes

Dispersive model, order 1

Dispersive model, order 3

Dispersive model, order 5

S
pe

ed
up

Fig. 5. Speedup of the FE algorithm as a function of the order of dispersity

5 Conclusions

Implementation of dispersive materials has an effect on memory cost and overall
performance of the distributed analysis. The number of interlaced and coupled
distributed tasks in the dispersive EM problem is larger than in the linear one.
The throughput of the network and the latency of the communication constitute
the limits of efficiency of the presented algorithms. The interdependences be-
tween decomposed data structures demand the simultaneous, step-by-step pro-
cessing of the electromagnetic field and the convolution vectors. It should be
stressed that, the distributed subtasks in the presented time domain linear and
dispersive algorithms are tightly coupled. Therefore, the implemented model
of communication is constrained by the mathematical formulation of the EM
problem. The consistency of numerical solution of electromagnetic phenomena
requires implementing some blocking communication commands, including the
point-to-point communication and broadcast commands. An alternative pattern
of communication with non-blocking commands has to be implemented with
some predefined barrier points in the algorithm. The locations of these synchro-
nization points are extorted by the causality of the leapfrog form of the time
domain algorithm (i.e. E0 ⇀ C0 ⇀ E1 ⇀ C1 ⇀ · · ·). They do not depend on
the properties of implemented distributed-memory platform.

Therefore, the dispersity of the EM model enlarges the memory as well as
computational cost of the FE-TD algorithm. The presented formulation of the
finite element time domain method for dispersive materials results in an I/O
bound algorithm.

References

1. Vollaire, C., Nicolas, L., Nicolas, A.: Parallel computing for the finite element
method. The European Physical Journal Applied Physics 1, 305–314 (1998)

2. Buyya, R.: High Performance Cluster Computing, vol. 2. Prentice Hall PTR, New
Jersey (1999)

Parallel Broadband Finite Element Time Domain Algorithm 127

3. Christopoulos, Ch.: Multi-scale modeling in time-domain electromagnetics. Inter-
national Journal of Electronics and Communications 57(2), 100–110 (2003)

4. Butrylo, B., Musy, F., Nicolas, L., Parrussel, R., Scorretti, R., Vollaire, C.: A survey
of parallel solvers for the finite element method in computational electromagnetics.
Compel 23(2), 531–546 (2004)

5. Navsariwala, U., Gedney, S.: An Efficient Implementation of the Finite-Element
Time Domain Algorithm on Parallel Computers Using a Finite-Element Tearing
and Interconnecting Algorithm. Microwave and Optical Technology Letters 16(4)
(1997)

6. Vollaire, C., Nicolas, L., Nicolas, A.: Finite Element and Absorbing Boundary
Conditions for scattering problems on a parallel distributed memory computer.
IEEE Transactions on Magnetics 33(2), 1448–1451 (1997)

7. Monk, R.: Finite Element Methods for Maxwell’s Equations. Oxford University
Press, Oxford (2003)

8. Edelvik, F., Strand, B.: Frequency dispersive materials for 3-D hybrid solvers in
time domain. IEEE Transactions on Antennas and Propagation 51(6), 1199–1205
(2003)

9. Maradei, F.: A frequency-dependent WETD formulation for dispersive materials.
IEEE Transactions on Magnetics 37(5), 3303–3306 (2001)

10. Butrylo, B., Nicolas, A., Nicolas, L., Vollaire, C.: Performance of Preconditioners
for the Distributed Vector Finite Element Time Domain Algorithm. IEEE Trans-
actions on Magnetics 41(5), 1716–1719 (2005)

Strategies for Development of a Parallel

Program for Protoplanetary Disc Simulation�

Sergei Kireev1, Elvira Kuksheva2, Aleksey Snytnikov1,
Nikolay Snytnikov1, and Vitaly Vshivkov1

1 ICMMG SB RAS, Novosibirsk, Russia
kireev@ssd.sscc.ru

2 BIC SB RAS, Novosibirsk, Russia

Abstract. Protoplanetary disc simulation must be done first, with high
precision, and second, with high speed. Some strategies to reach these
goals are presented in the paper. They include: the reduction of the 3D
protoplanetary disc model to quasi-3D, the use of fundamental Poisson
equation solution, the simulation in the natural (cylindrical) coordinate
system and computation domain decomposition. The domain decompo-
sition strategy is shown to reach the simulation goals the best.

1 Introduction

The origin and evolution of protoplanetary discs have been widely studied in
recent time (for a review see e.g. [1]). The problem of organic matter genesis in
the Solar System is a matter of special interest. In [2] the protoplanetary disc is
considered as a catalytic chemical reactor for the synthesis of primary organic
compounds.

N-body interaction in self-consistent gravitational field is one of the most
important problems in the study of physical processes in protoplanetary discs
[6]. The mathematical model of the interaction consists of the two equations:
Vlasov-Liouville collisionless kinetic equation and Poisson equation. Numerical
solution of Vlasov-Liouville equation is carried out by the Particle-in-Cell (PIC)
method [4,5].

The bottleneck of the numerical experiments is the solution of 3D Poisson
equation at each timestep. Moreover, it is necessary to trace the individual move-
ment of a large number of particles [7]. Finally, the 3D grid arrays of density,
potential and gravitational forces must be stored in the RAM.

The spatial resolution (that is, the computation grid size) must be high enough
to study the nonlinear processes such as formation of clumps [6]. The clumps
are thought to be probable planet embryos and their size is much lower than
� The present work was supported by Subprogram 18-2 of RAS Presidium Program

”Biosphere origin and evolution”, Subprogram Π-04 of RAS Presidium Program
”Stars and galaxies origin and evolution”, RFBR (grant 05-01-00665), SB RAS Pro-
gram on Supercomputers, Grant of Rosobrazovanie, contracts PHΠ .2.2.1.1.3653 and
PHΠ .2.2.1.1.1969.

V. Malyshkin (Ed.): PaCT 2007, LNCS 4671, pp. 128–139, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Strategies for Development of a Parallel Program 129

the computation domain size. Thus the formation of clumps would be simulated
incorrectly with low spatial resolution (on a coarse grid).

The above listed difficulties were partially removed by reducing the 3D model
of the disc to a quasi-3D one [8,9,10]. In the quasi-3D model the matter has no
vertical velocity, but the gravitational field distribution must still be considered
three-dimensional, that is why the model is called quasi-3D, not just 2D.

The quasi-3D model is probably valid in the case of the protoplanetary disc, its
thickness being by one order of magnitude less than its radius. Another stipula-
tion for the quasi-3D model of the disc is the presence of a large body in the centre
of the disc [12]. Thus the quasi-3D model is suitable to study the later stages of
the protoplanetary disc evolution. On the other hand, there are problems that
cannot be solved with the quasi-3D model. For example the reconstruction of
the observable spectral emission diagram (SED) of the protoplanetary disc [3]
can be done only by means of the full 3D simulation.

On the basis of the PIC method we have designed a number of numerical
implementations of mathematical model of protoplanetary disc that differ by
the Poisson equation solver [7,8,12,11]. It is necessary due to the following two
reasons:

– the problem lacks an analytical solution in a wide range of initial parameters
and the comparison of numerical experiments with different programs could
be used for the verification of the numerical solution,

– the designed parallel algorithms may work differently with various param-
eters of the numerical experiment such as the number of particles and the
number of grid nodes.

In the present paper we consider various strategies of parallel implementation
of the protoplanetary disc model depending on the features of the model. In
section 2 the considered protoplanetary disc model is presented and its numer-
ical implementation is briefly discussed. Then in section 3 the goals of parallel
implementation of the protoplanetary disc model are listed (section 3.2) and
the general method for reaching these goals is proposed (section 3.3). In further
sections the different strategies for implementation of the protoplanetary disc
model are presented.

All the numerical experiments were conducted with the supercomputer MVS-
1000M based on Alpha21264 processor in both Siberian Supercomputer Center
(Novosibirsk) and Joint Supercomputer Centre (Moscow). MPI library is used
to perform the interprocessor communications.

2 Protoplanetary Disc Model

2.1 Basic Equations

The dynamics of the dust component of a protoplanetary disc is described by
Vlasov-Liouville kinetic equation. The gravitational field is determined by Pois-
son equation. These equations have the following form:

130 S. Kireev et al.

⎧
⎪⎨

⎪⎩

∂f

∂t
+ v∇f + a

∂f

∂v
= 0

ΔΦ = 4πGρ,

(1)

where f(t, r,v) is the time-dependent one-particle distribution function along
coordinates and velocities, a = −∇Φ is the acceleration of unit mass particle.
G is the gravitational constant, Φ is the gravitational potential. Here we employ
the collisionless approximation of the mean self-consistent field. The detailed
description of the model could be found in [7,8,9,10].

The full-scale model of the protoplanetary disc also includes gas dynamics,
radiation, chemical reactions, coagulation of dust particles etc. But the present
paper is focussed on the two presented equations since their solution is the
bottleneck for parallel implementation.

2.2 Numerical Implementation of the Model

Protoplanetary disc simulation involves solution of the complex system of equa-
tions: Vlasov-Liouville kinetic equation and Poisson equation. Vlasov-Liouville
equation is widely [4] solved by the Particle-in-Cell method [5].

There are a lot of Poisson equation solvers (they can be found in [14]). However
for our model we have special requirements and restrictions. First of all, we
need to solve 3D dimensional Poisson equation on very fine grids. The fastest
techniques based on circular reduction (e.g. FACR, DCR) could not be used
on fine grids due to intrinsic numerical instability. Second, numerical method
must be easily parallelized. And finally, Poisson equation must be solved at
every timestep of the computational experiment. Thus the iterational methods
are worth using since they can capitalize on the potential from the previous
timestep into account.

The parallel programs that we have designed differ by the Poisson equation
solver in the first place. The following methods were employed:

– 3D Fast Fourier Transform (in the program with domain decomposition),
– Fast Fourier Transform with Successive Over-Relaxation (3D program in

cylindrical coordinates and quasi-3D program)
– and the solver based on the fundamental solution of Poisson equation.

In sequential program FFT is the fastest if the Poisson equation is solved once,
FFT with SOR is faster than mere FFT when there is a number of timesteps
in a sequence. Solver based on the fundamental solution is the slowest from the
three but it is parallelized the best.

3 Parallel Implementation of the Protoplanetary Disc
Model

3.1 Necessity of Parallelization

The computational resources required for the solution of the present problem
could be estimated, for example, in the following way.

Strategies for Development of a Parallel Program 131

The most interesting area in the simulation of the Solar System genesis is
situated inside the Mars orbit, its radius being 40 times smaller than the full
radius of the system (the radius of Pluto orbit). If 10 grid nodes are set at the
length of Mars orbit, which is at least necessary, then the total grid size is 400
nodes along radial direction in the cylindrical coordinate system. In such a way
we get an estimate of 4003 nodes for the 3D grid.

For the noise level to be less than 10% it is necessary to have more than 100
particles for a grid cell. Thus we get 6.4 billion particles, which is about 300 Gb
RAM (3 coordinates and 3 velocities for each particle in double precision).

Modern workstations are capable of numerical experiments with the maximal
number of grid nodes 1283 and the number of particles not more than 10 million.
And even this requires from two up to seven days [12].

Thus the parallel implementation of the mathematical model (1) is absolutely
necessary for simulation of the protoplanetary disc.

3.2 Goals of Parallelization

Goals for parallel implementation of the mathematical model of the protoplan-
etary disc are the following:

– Conduct the numerical experiments with both the number of grid nodes
and number of particles high enough to provide the desired precision of the
computation. Computational experiments of such a large size are usually
impossible for single processor workstations.

– Conduct a set numerical experiments (possibly including dozens of exper-
iments with different initial parameters) at a reasonable time. From our
point of view, this reasonable time for a set of numerical experiments aimed
at validation of a hypothesis should not exceed one month.

In such a way high values of speedup are not relevant for a parallel program
implementing the mathematical model of a protoplanetary disc. Moreover, the
concept of speedup itself should be refined. If it is considered as a sign of quality
of the parallel implementation of a mathematical model, it should be corrected.
The speedup is usually defined as a ratio of the computation time on a single
processor to the computation time on a multiprocessor system. But the problem
is that the single processor computations might be of no interest for a physicist.

The main requirement to the parallel program implementing the model of
the protoplanetary disc is the ability to distribute the computation uniformly
between the maximal number of processors. It is necessary to achieve the high
precision of computation by means of using large amounts of RAM, and to
achieve the high speed of computation by means of using a large number of
processors. To provide the ability to distribute the computation it is necessary
to have:

– uniform workload of processors
– minimal amount of interprocessor communications.

132 S. Kireev et al.

3.3 Strategies of Parallelization

It should be taken into account that different parallel implementations may result
in different computation times depending on the parameters of the numerical
methods. That is why we consider various parallelization strategies.

Special numerical methods should be selected for the parallel implementation
of a mathematical model. That is, the methods that could be naturally divided
into an arbitrary number of equal independent parts. It is one of the key ideas of
the assembly technology for parallel program synthesis [15]. This requirement is
satisfied by the PIC method for Vlasov-Liouville equation and Fourier Transform
method for Poisson equation.

The Discrete Fourier Transform reduces the 3D Poisson equation: (in cylin-
drical coordinate system)

1
r

∂

∂r

(

r
∂Φ

∂r

)

+
1
r2
∂2Φ

∂ϕ2
+
∂2Φ

∂z2
= 4πGρ (2)

to a set of independent 2D equations of potential harmonics (here denoted as
Hk(r, z)):

1
r

∂

∂r

(

r
∂H

∂r

)

+
1
r2

sin
πk

Nϕ
H +

∂2H

∂z2
= 4πGR,

k = 0, ..., Nϕ − 1

Hk(r, z) =
k=Nϕ−1∑

k=0

Φ(r, ϕ, z) cos
πkϕ

Nϕ
Rk(r, z) =

k=Nϕ−1∑

k=0

ρ(r, ϕ, z) cos
πkϕ

Nϕ

(3)
So it was quite natural to use this feature to parallelize the solution of Poisson

equation by assigning groups of harmonics to processors.
The PIC method [5] reduces the solution of Vlasov-Liouville kinetic equation

to the solution of movement equations for separate particles. Since the com-
putation of coordinates and velocities of a particle does not depend on other
particles, then the PIC method is the natural method for the parallel solution
of Vlasov-Liouville equation.

In such a way the possibility of parallelization must be present in the very
structure of the employed mathematical methods, as it is seen in formulae 3.

4 Parallel Program for Quasi-3D Disc Model

A parallel implementation of the 3D disc model would require interprocessor
communications involving 3D arrays. The easiest way to implement a parallel
model of the protoplanetary disc is to reduce the 3D model to quasi-3D. In quasi-
3D model the vertical motion in the disc is neglected, however, the gravitational
field must be considered three-dimensional.

Strategies for Development of a Parallel Program 133

Poisson equation is solved on a grid in cylindrical coordinate system in order
to take disc symmetry into account and rule out the non-physical structures
appearing in Cartesian coordinates. The details of the Poisson equation solver are
given in [8,13]. First, the FFT is applied along the angular coordinate and then
each harmonic of the potential is evaluated by the Successive Over-Relaxation
method.

The considered Poisson equation solver succeeds to completely avoid the data
exchange during the iteration stage. This is because equations for potential har-
monics do not depend on each other. After iteration stage the potential should
be gathered from all the processors for further computation. Therefore it is pos-
sible to divide the computation domain into completely independent subdomains
along angular wavenumbers.

Particles are also uniformly distributed between the processors with no de-
pendency of their spatial location. Since a particle might fly to any point of the
disc in the course of simulation every PE should possess the potential values for
the whole disc surface.

At each timestep data exchange is performed twice. First, after the conver-
gence has been reached the potential harmonics in the disc plain are gathered
for inverse Fourier transformation. Then the partial density fields, computed in
each PE, are added up and sent to all processors.

These all-to-all communications are only possible because the model is quasi-
3D: 2D arrays are sent from one processor to another instead of 3D arrays in
the case of a full 3D model.

The 2D equation systems for potential harmonics require different number
of iterations for convergence, as figure 1 shows. Here the number of iterations
depends on the conditionality of the equation system matrix. It means that the
processors would have different workload when provided with the same num-
ber of harmonics. Thus, initially equal workload can not be provided for all
the processors. There are two ways to solve this problem: first, to use faster

Fig. 1. Number of SOR iterations depending on wavenumber

134 S. Kireev et al.

methods when the convergence rate is slow, and second, to use dynamic load
balancing. Dynamic load balancing here means to move some harmonics from
the overloaded processor.

As a result of the reduction of the 3D model to the quasi-3D one we obtain a
parallel program that is quite easy to implement and also capable of production
of reasonable physical results. Nevertheless, in the quasi-3D model the processor
workload is non-uniform and the speedup is not very high: 5 on 32 processors
for grid size 400× 512× 200 nodes with 20 million particles. The worktime for
one timestep of simulation is 25 seconds on one processor for the given model
size. The speedup is low because of the restictions of the Poisson equation solver.
Thus a new solver should be introduced to increase the speedup.

5 Parallel Program Based on the Fundamental Solution
of Poisson Equation

Poisson equation has its fundamental solution in the form:

Φ(τ) =
∫
ρ(τ ′)
|R| dτ

′ (4)

where |R| = |τ − τ ′|, Φ(τ) is the potential that is to be computed at the point
τ . Let the two-dimensional computation domain be defined by the radius RN

in polar coordinates. Then a uniform 2D grid is introduced for the potential Φ
with grid steps hr and hϕ:

{
ri = hr · i, i = 0, 1, , Nr, hr = RN

Nr

ϕj = hϕ · j, j = 0, 1, , Nϕ, hϕ = 2·π
Nϕ

(5)

In the nodes of the defined grid the integral in (4) is replaced by the sum:

Φi′,j′ =
∑

i

∑

j

Mi,j

Ri,j,i′,j′
(6)

Φi‘,j‘ is evaluated by summation of point mass potentials, the masses are set in
the centres of the grid cells. In such a way masses form their own grid that is
shifted relatively to the potential grid and Ri,j,i‘,j‘ - is the distance from the
node (i‘, j‘) of the Φ grid to the node (i, j) of the mass grid.

The evaluation of potential by the formula (6) could be easily divided between
processors, for example, as follows:

Φi′,j′ =
i=Nr/Nproc∗(rank+1)∑

i=Nr/Nproc∗rank

∑

j

Mi,j

Ri,j,i′,j′
(7)

here Nproc is the number of processors, rank is the rank of current processor
(rank = 0, ..., Nproc − 1). The present method makes processor workload com-
pletely uniform, and consequently the speedup of the parallel program is high:
see table 1.

Strategies for Development of a Parallel Program 135

Table 1. Worktime for different number of processors for a grid with Nr = 400,
Nϕ = 400 nodes

Number of processors Worktime, minutes

1 75

12 5.55

25 2.63

50 1.36

100 0.75

200 0.49

Unfortunately for small number of processors the evaluation of potential with
formula (7) is much slower than with the method described in the section 4.
Moreover, both described programs are capable of simulation of the protoplan-
etary disc dynamics only for some restricted set of problems.

6 3D Parallel Program in Cylindrical Coordinate System

As it was mentioned in section 3.1, there are problems requiring full 3D sim-
ulation. Thus a numerical model was implemented with the matter posessing
vertical component of the velocity [12].

Poisson equation is solved by a combination of the FFT applied to the angular
coordinate and the SOR applied to the separate potential harmonics as in section
4. As it was mentioned above in section 4, one of the difficulties here is the
non-uniform workload of the processors due to different computation time for
different harmonics. This difficulty is present in 3D case as well as in quasi-3D,
despite these model have lots of differences, for example in boundary conditions,
density distribution etc.

Thus it is necessary to design an algorithm for distribution of harmonics to
make processor workload close to uniform. Taking into account that dynamic
load balancing might have negative effect due to the increase of interprocessor
communications, we have decided to make static load setting. This load setting
algorithm is based on the experimental data about the computation time for
each harmonic:

– A separate processor is assigned for the evaluation of the harmonic with
wavenumber m = 0.

– Each processor (except the above mentioned one) has harmonics with both
low and high wavenumbers. Each harmonic was evaluated by one processor

This simple algorithm provided processor workload close to uniform. In table 2
the computation time is given for different parts of Poisson equation solver. The
part of the solver that is parallelized is the evaluation of harmonics assigned
to a processor. But as it is seen from table 2 that the most time-consuming
parts are the FFTs for density and potential and also the gathering of evaluated

136 S. Kireev et al.

Table 2. Computation time (in seconds) for different parts of Poisson equation solver
at a timestep for one processor

Number of FFT for Evaluation of Gathering FFT for Total
processors density harmonics of harmonics potential time

10 0.3 0.7 0.65 0.4 2.05

harmonics (data transmission between processors) since they work with 3D data
arrays.

It should be noticed that the difficulty with long computation of the FFTs
arises only in 3D case because Fourier Transform has to be applied to the whole
3D arrays of density and potential. It means that further improvement of the
parallel program implementing 3D model of protoplanetary disc is only possible
by means of decomposition of computation domain.

7 3D Parallel Program Based on Decomposition of the
Computation Domain

Domain decomposition is applied to fulfil the requirements to the parallel imple-
mentation of the protoplanetary disc model given in 3.2. Moreover, the particles
belonging to one subdomain are distributed between the processors each holding
grid arrays for the subdomain.

The decomposition is done in the straightforward way - by dividing the com-
putation domain into equal parts along one of the coordinate planes as shown
in figure 2. In this case each layer has only two adjacent layers. As a result, the
exchanging of particles with adjacent layers is very simple.

Due to the features of protoplanetary disc simulation most particles are sit-
uated near the disc plane. The disc is rotating around the axis parallel to Z
and passing through the centre of the disc. This is why the planes dividing the
computation domain go along YZ plane. Thus we avoid the initially non-uniform
distribution of particles between processors, which may happen if the domain
was divided along XY plane. In the present implementation the computation
domain is divided into layers of nearly equal thickness with partial overlay of
boundaries.

Poisson equation is solved in Cartesian coordinate system on a uniform grid.
Such a simple grid enables us to employ a sufficiently fast solver - 3D Fast Fourier
Transform. To discretize the second derivatives in Poisson equation a 27-point
stencil is used. The FFT on a multiprocessor system is performed by the free
FFTW library.

To provide the uniform distribution of particles between processors every layer
is assigned to a group of processors as shown in figure 3. The grid values in the
whole layer (potential, density etc.) are stored in all the processors of the group
and the particles of the layer are uniformly distributed between the processors
of the group. Each group has a head processor. The division of processors into
groups is static and takes into account the distribution of particles in the whole

Strategies for Development of a Parallel Program 137

Fig. 2. Decomposition of the 3D computation domain

Fig. 3. Assignment of subdomains to groups of processors

computation domain. In the course of computation the particles fly from one
layer to another, and they should be transmitted from one group of processors
to another. The algorithm of selection of sender and receiver processors keeps
the uniform distribution of particles between processors of a group.

Figure 4 shows that when a subdomain is worked up by a group of processors
(line ”c”) worktime is a bit longer than when each subdomain is worked up
by one processor (line ”b”). But in the first case it is possible to compute the
model of a larger size and this is the main goal of parallel implementation of
protoplanetary disc model, as it was stated in section 3.2.

138 S. Kireev et al.

Fig. 4. Worktime for the program with domain decomposition. ”a” - no domain de-
composition, ”b” - one processor for each subdomain, ”c” - a group of processors for
each subdomain.

The 2D distribution of density, potential etc., obtained by either quasi-3D
or fully 3D programs are nearly identical in the cases when quasi-3D model is
correct. So the fully 3D model in necessary to trace the vertical movement.

8 Summary

The program for the quasi-3D model may be thought to be a prototype for a full
parallel implementation of the protoplanetary disc model. The program based on
fundamental solution achieves good results as a parallel implementation of the
disc model (good speedup) due to the ultimate simplification of the model. The
3D model in cylindrical coordinate system definitely shows all the difficulties
of the full 3D implementation of the protoplanetary disc model. The domain
decomposition program satisfies the requirements for the protoplanetary disc
model the best: it is full 3D, it has virtually no limits for grid size and number
of particles and it can reasonably reduce the computation time by increasing the
number of processors.

References

1. Woolfson, M.M.: The Origin and Evolution of the Solar System. IoP Publishing,
Bristol (2000)

2. Snytnikov, V.N., Dudnikova, G.I., Gleaves, J.T., Nikitin, S.A., Parmon, V.N., Stoy-
anovsky, V.O., Vshivkov, V.A., Yablonsky, G.S., Zakharenko, V.S.: Space chemical
reactor of protoplanetary disk. Adv. Space Res. 30(6), 1461–1467 (2002)

3. D’Alessio, P., Calvet, N., Hartmann, L., Lizano, S., Canto, J.: Accretion disks
around young objects. II. Tests of well-mixed models with ISM dust. Astrophysical
Journal 527, 893–909 (1999)

Strategies for Development of a Parallel Program 139

4. Hockney, R.W., Eastwood, J.W.: Computer Simulation Using Particles. IOP Pub-
lishing, Bristol (1988)

5. Grigoryev Yu, N., Vshivkov, V.A., Fedoruk, M.P.: Numerical Particle-in-Cell Meth-
ods. Theory and Applications. VSP (2002)

6. Nikitin, S.A., Snytnikov, V.N., Vshivkov, V.A.: Ion-acoustic type instability in
protoplanetary disk. Plasma in the Laboratory and in the Universe. In: AIP Conf.
Proc. vol. 703, pp. 280–283 (2004)

7. Snytnikov, V.N., Vshivkov, V.A., Neupokoev, E.V., Nikitin, S.A., Parmon, V.N.,
Snytnikov, A.V.: Three-Dimensional Numerical Simulation of a Nonstationary
Gravitating N-Body System with Gas. Astronomy Letters 30(2), 124–138 (2004)

8. Kuksheva, E.A., Malyshkin, V.E., Nikitin, S.A., Snytnikov, A.V., Snytnikov, V.N.,
Vshivkov, V.A.: Numerical Simulation of Self-Organisation in Gravitationally Un-
stable Media on Supercomputers. In: Malyshkin, V. (ed.) PaCT 2003. LNCS,
vol. 2763, pp. 354–368. Springer, Heidelberg (2003)

9. Kuksheva, E.A., Malyshkin, V.E., Nikitin, S.A., Snytnikov, V.N., Vshivkov, V.A.:
Supercomputer Simulation of Self-Gravitating Media. Future Generation Com-
puter Systems 21, 749–757 (2005)

10. Snytnykov, A.: Parallel gravitational solver for protoplanetary disc simulation. Sci-
ence and Technology, 2003. In: Proceedings KORUS 2003. The 7th Korea-Russia
International Symposium, vol. 2, pp. 390–395 (2003)

11. Kuksheva, E.A., Snytnikov, V.N.: Parallel implementation of the fundamental so-
lution for Poisson equation. Vychislitel’nye technologii (in Russian) 10(4), 63–71
(2005)

12. Vshivkov, V.A., Snytnikov, N.V., Snytnikov, V.N.: Simulation of three-dimensional
dynamics of matter in gravitational field with the use of multiprocessor computer.
Vychislitel’nye technologii (in Russian) 11(2), 15–27 (2006)

13. Snytnikov, A.V., Vshivkov, V.A.: A Multigrid Parallel Program for Protoplanetary
Disc Simulation. In: Malyshkin, V. (ed.) PaCT 2005. LNCS, vol. 3606, pp. 457–467.
Springer, Heidelberg (2005)

14. Demmel, J.W.: Applied Numerical Linear Algebra. SIAM (1997)
15. Kraeva, M.A., Malyshkin, V.E.: Assembly Technology for Parallel Realization of

Numerical Models on MIMD-multicomputers. Future Generation Computer Sys-
tems 17(6), 755–765 (2001)

Generation of SMACA and Its Application in

Web Services

Anirban Kundu, Ruma Dutta, and Debajyoti Mukhopadhyay

Web Intelligence & Distributed Computing Research Lab, Techno India Group
(West Bengal University of Technology)

EM 4/1, Sector V, Salt Lake, Calcutta 700091, India
{anik76in, rumadutta2006, debajyoti.mukhopadhyay}@gmail.com

Abstract. Web Search Engine uses forward indexing and inverted in-
dexing as a part of its functional design. This indexing mechanism helps
retrieving data from the database based on user query. In this paper,
an efficient solution to handle the indexing problem is proposed with
the introduction of Nonlinear Single Cycle Multiple Attractor Cellu-
lar Automata (SMACA). This work simultaneously shows generation
of SMACA by using specific rule sequence. Searching mechanism is done
with linear time complexity.

1 Introduction

Most people today can hardly imagine life without the Internet [3,4]. It provides
access to information, news, email, shopping, and entertainment. World Wide
Web (WWW) has brought a huge information at door-step of every user. The
World Wide Web Worm (WWWW) was one of the first Web Search Engines
which was basically a storage of huge volume of information. To handle these
informations, proper indexing has been done in several ways [1,2]. This work
reports an efficient scheme for designing an n-bit Single Cycle Multiple Attrac-
tor Cellular Automata (SMACA) [8,11] for handling the forward indexing and
inverted indexing in a fast and inexpensive way. It is built around nonlinear
scheme. Generated SMACAs have been used for information storage which re-
quires special attention considering the huge volume of data in Web to be dealt
with by the Search Engines [5,6]. The major contributions of this paper can be
summarized as follows: (1) Design of an n-bit SMACA; (2) Usage of SMACA
in forward indexing; (3) Usage of SMACA for replacing inverted indexing; (4)
Searching mechanism using SMACA.

2 Cellular Automata (CA) Preliminaries

An n cell CA consists of n cells (Figure 1(a)) with local interactions [7]. It evolves
in discrete time and space. The next state function of three neighbourhood CA
cell (Figure 1(b)) can be represented as a rule as defined in Table 1 [9]. First
row of Table 1 represents 23 = 8 possible present states of 3 neighbours of ith

V. Malyshkin (Ed.): PaCT 2007, LNCS 4671, pp. 140–152, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Generation of SMACA and Its Application in Web Services 141

i+1 n−1ii−10 1

i−1 i i+1

(a) An n cell CA with null boundary

(b) The i th cell configured with rule R i

Logic for

Next State

Rule R i

Fig. 1. Local Interaction between Cellular Automata Cells

Table 1. Truth Table of sample rules of a CA cell showing the next state logic for
the Minterms of a 3 variable boolean function -The 8 minterms having decimal values
0, 1, 2, 3, 4, 5, 6, 7 are referred to as Rule Minterms (RMTs)

Note : Set of Minterms T = {7, 6, 5, 4, 3, 2, 1, 0} represented as {T(7), T(6), T(5), T(4),
T(3), T(2), T(1), T(0)} (T(m) = m, m = 0 to 7) in the text, are noted simply as q.

Present states of 3-neighbours 111 110 101 100 011 010 001 000 Rule

(i − 1), i, and (i + 1) of ith cells (7) (6) (5) (4) (3) (2) (1) (0) Number
(Minterms of a 3 variable T(7) T(6) T(5) T(4) T(3) T(2) T(1) T(0)

boolean function)

0 1 0 1 1 0 1 0 90
1 0 0 1 0 1 1 0 150

Next state of ith cell 0 1 1 1 1 0 0 0 120
0 0 0 0 1 1 0 0 12
1 1 0 1 0 0 1 0 210

cell - (i-1), i, (i+1) cells. Each of the 8 entries (3 bit binary string) represents
a minterm of a 3 variable boolean function for a 3 neighbourhood CA cell. In
subsequent discussions, each of the 8 entries in Table 1 is referred to as a Rule
Min Term (RMT). The decimal equivalent of 8 minterms are 0, 1, 2, 3, 4, 5, 6,
7 noted within () below the three bit string. Each of the next five rows of Table
1 shows the next state (0 or 1) of ith cell. Hence there can be 28 = 256 possible
bit strings. The decimal counterpart of such an 8 bit combination is referred to
as a CA rule [9,10]. The rule of a CA cell can be derived from Table 1 of the ith

cell.

2.1 Definitions

Definition 1: Reachable state - A state having 1 or more predecessors is a reach-
able state.
Definition 2: Non-reachable state - A state having no predecessor (that is, r=0)
is termed as non-reachable.

142 A. Kundu, R. Dutta, and D. Mukhopadhyay

Definition 3: Transient state - A non-cyclic state of a non-group CA is referred
to as a transient state. Definition 4: Attractor Cycle - The set of states in a cycle
is referred to as an attractor cycle.
Definition 5: Self-Loop Attractor(SLA) - A single cycle attractor state with self-
loop is referred to as SLA.
Definition 6: Rule Vector(RV) - The sequence of rules < R0R1 · · ·Ri · · ·Rn+1 >,
where ith cell is configured with rule Ri.

3 Generation of SMACA and Its Application in Indexing

Synthesis of SMACA demands formation of a rule vector with group and non-
group rules in specific sequence. The method to identify such a sequence is
described in the following discussions. A scheme is outlined here to identify
the sequence of rules in the rule vector that makes the CA a SMACA. The
rule vector of an n-cell CA is denoted as <R0, R1, · · ·, Ri, Ri+1, · · ·, Rn−1>,
where ith cell is configured with Ri. A non-linear [12,13] SMACA consists of
2n number of states where n is the size of SMACA. The structure of a non-
linear SMACA has attractors (self-loop or single length cycle), non-reachable
states, and transient states. The attractors form unique classes (basins). All
other states reach the attractor basins after certain time steps. To classify a set
of k classes, (k-1) number of attaractors are used, each identifying a single class.
Consider, k=4 for a particular situation, i.e., four attractors are required. To
manage this situation, ‘00’, ‘01’, ‘10’ & ‘11’ may be considered as attractors for
classification of distinct states into 4 categories. Instead of using four attractors,
three attractors may be used. So, we may consider ‘00’, ‘01’, ‘10’ as attractors
and the 4th attractor need not be specified. If we put concerned states over these
three attractors, remaining states can be considered under the unspecified (4th)
attractor. To get an illustrative idea, follow [10,11]. Figure 2 shows an arbitrary
example of Non-linear SMACA with its irregular structure. States 1 & 9 are
attractors. States 3, 5, 7, 11, 13 & 15 are transient states. All other states are
Non-reachable states.

It is found through exhaustive experimentation that there are fifteen such
classes for all the rules which can be used to form SMACA in a specific sequence.
These classes are denoted as {I, II, III, IV, V, VI, VII, VIII, IX, X, XI, XII, XIII,
XIV and XV} in Table 2. Table 3 dictates the rule of (i+1)th cell from the class
of ith cell. The table is formed in such a way that SMACA is formed if and
only if the relationship between Ri and Ri+1 is maintained. Since the design
is concerned with null boundary CA, there are 222 = 16 effective rules for the
left most (R0) as well as the right most (Rn−1) cells. The RMTs 4, 5, 6 &
7 can be treated as don’t care for R0 as the present state of left neighbor of
cell 1 is always 0. So, there are only 4 effective RMTs (0, 1, 2, & 3) for R0.
Similarly, the RMTs 1, 3, 5 & 7 are don’t care RMTs for Rn−1. The effective
RMTs for Rn−1 are 0, 2, 4 & 6. R0 and Rn−1 are listed in Table 4 & Table 5
respectively.

Generation of SMACA and Its Application in Web Services 143

0

3

5

7

4

2

12

13

11

8

1
14

10

15

6

9

Fig. 2. Structure of a SMACA with Rule Vector (RV) <4 102 53 85>

Table 2. SMACA Class Table

Class Rules

I 0, 16, 32, 48, 64, 80, 96, 112, 128, 144, 160, 176, 192, 208, 224, 240

II 1, 17, 33, 49, 65, 81, 97, 113, 129, 145, 161, 177, 193, 209, 225, 241

III 2, 18, 34, 50, 66, 82, 98, 114, 130, 146, 162, 178, 194, 210, 226, 242

IV 4, 20, 36, 52, 68, 84, 100, 116, 132, 148, 164, 180, 196, 212, 228, 244

V 5, 21, 37, 53, 69, 85, 101, 117, 133, 149, 165, 181, 197, 213, 229, 245

VI 6, 22, 38, 54, 70, 86, 102, 118, 134, 150, 166, 182, 198, 214, 230, 246

VII 7, 23, 39, 55, 71, 87, 103, 119, 135, 151, 167, 183, 199, 215, 231, 247

VIII 8, 24, 40, 56, 72, 88, 104, 120, 136, 152, 168, 184, 200, 216, 232, 248

IX 9, 25, 41, 57, 73, 89, 105, 121, 137, 153, 169, 185, 201, 217, 233, 249

X 10, 26, 42, 58, 74, 90, 106, 122, 138, 154, 170, 186, 202, 218, 234, 250

XI 11, 27, 43, 59, 75, 91, 107, 123, 139, 155, 171, 187, 203, 219, 235, 251

XII 12, 28, 44, 60, 76, 92, 108, 124, 140, 156, 172, 188, 204, 220, 236, 252

XIII 13, 29, 45, 61, 77, 93, 109, 125, 141, 157, 173, 189, 205, 221, 237, 253

XIV 14, 30, 46, 62, 78, 94, 110, 126, 142, 158, 174, 190, 206, 222, 238, 254

XV 15, 31, 47, 63, 79, 95, 111, 127, 143, 159, 175, 191, 207, 223, 239, 255

3.1 Synthesis of SMACA

The synthesis algorithm generates the rule vector R = < R0, R1, · · · , Rn−1 >
for an n-cell SMACA, where Ri is the rule with which the ith CA cell is to be
configured. The characterization of SMACA points to the fact that the design
of SMACA for any arbitrary n boils down to:

I. Form the classes of rules - that is, formation of Table 2 to Table 5, and
II. Find the class of (i + 1)th cell rule depending on the rule of ith cell and its
class.

Task I : Construction of Table 2 to Table 5 involves one time cost.
Task II : The class of (i + 1)th cell rule is determined from the rule Ri and its
class. Based on the rule class table (Table 2 to Table 5), we sequentially assign
a rule Ri+1 to the (i+ 1)th CA cell (i = 1, 2, · · ·, (n-1)) to form the rule vector
R = < R0, R1, · · · , Ri, · · · , Rn−1 >. The R0 is selected randomly from Table 4
and Rn−1 from Table 5. Based on Task II, Algorithm 1 is further designed.

144 A. Kundu, R. Dutta, and D. Mukhopadhyay

Table 3. Relationship of Ri and Ri+1

Class of Ri Ri+1

I 0-2, 4-18, 20-34, 36-50, 52-66, 68-82, 84-98, 100-114, 116-130,
132-146, 148-162, 164-178, 180-194, 196-210, 212-226, 228-242, 244-255

20, 22, 25, 28, 29, 30, 38, 40-41, 44-46, 52, 54, 56-57, 60-62, 69, 71,
II 75, 77, 79, 84-87, 89, 91-95, 101-111, 116-127, 135, 138-139, 142-143,

148-151, 153-159, 166-175, 180-191, 197, 199, 202-203, 205-207, 212-215,
217-223, 229-239, 244-255

0-2, 4-6, 8-10, 12-14, 16-18, 20-22, 24-26, 28-30, 32-34, 36-38, 40-42,
44-46, 52, 54, 56-57, 60-62, 64-66, 68-70, 72-74, 76-77, 80-82, 84-86,

III 88-89, 92-93, 96-98, 100-102, 104-106, 108-109, 116, 118, 120-121, 124-125,
128-130, 132-134, 136-138, 140, 142, 144-146, 148-150, 152-154, 156, 158,
160-162, 164, 166, 168-170, 172, 174, 180, 182, 184-185, 188, 190, 192-194,

196-197, 200, 202, 208-210, 212-213, 224-226, 232, 234

IV 0-2, 4-18, 20-34, 36-50, 52-66, 68-82, 84-98, 100-114, 116-130, 132-146,
148-162, 164-178, 180-194, 196-210, 212-226, 228-242, 244-255

0-2, 4-6, 8-10, 12-14, 16-18, 20-22, 24-26, 28-29, 32-34, 36-38, 40-42,
V 44, 46, 64-66, 68-74, 76-82, 84-96, 98, 100-111, 116-119, 122-130, 132-134,

136-145, 148-162, 164-175, 181, 183-194, 196-209, 212-224, 226, 228-239, 244-255

0-14, 16-26, 28-30, 32-38, 40-46, 48-50, 52-54, 56-58, 60-62, 64-77, 80-89,
VI 92-93, 96-102, 104-109, 112-113, 116-117, 120-121, 124-125, 128-140, 142, 144-154,

156, 158, 160-164, 166, 168-172, 174, 176, 178, 180, 182, 184, 186, 188, 190,
192-203, 208-215, 224-227, 232-235

0-2, 4-6, 8-10, 12-14, 16-18, 20-22, 24-26, 28-30, 32-34, 36-38, 40-42, 44-46,
VII 64-77, 80-82, 84-86, 88-89, 92-93, 96-107, 128-140, 142, 144-155, 160-162, 164,

166, 168-170, 174, 192-203, 208-215, 224-227, 232-235

VIII 0-2, 4-18, 20-34, 36-50, 52-66, 68-82, 84-98, 100-114, 116-130, 132-146, 148-162,
164-178, 180-194, 196-210, 212-226, 228-242, 244-255

20-23, 28-31, 40-47, 52-63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83-87, 89, 91-95,
IX 97, 99, 101-111, 113, 115-127, 130-131, 134-135, 138-139, 142-143, 146-151, 153-159,

162-163, 166-175, 178-191, 193-195, 197-199, 201-203, 205-207, 209-215, 217-223,
225-227, 229-239, 241-255

0-2, 4-6, 8-10, 12-14, 16-18, 20-21, 24-26, 28-29, 32-34, 36-38, 40, 42, 44, 46, 64-66,
X 68-74, 76-82, 84-98, 100-106, 108-111, 116-119, 121-134, 136-146, 148-150, 152-162,

164-175, 181-194, 196-209, 212-224, 226, 228-239, 244-255

65, 67, 69, 71, 73, 75, 77, 79, 84-87, 89, 91-95, 97-99, 101-103, 105-107, 109-111,
XI 116-127, 130-131, 134-135, 138-139, 142-143, 145-147, 149-151, 153-155, 157-159, 166-175,

180-191, 193-195, 197-199, 201-203, 205-207, 209-215, 217-223, 225-227, 229-239, 244-255

0-2, 4-17, 20-21, 24-32, 34, 36-40, 42, 44-47, 64-66, 68-82, 84-96, 98, 100-104, 106,
XII 108-112, 114, 116-120, 122, 124-130, 132-145, 148-149, 152-162, 164-177, 180-181, 184-194,

196-210, 212-226, 228-242, 244-255

XIII 0-47, 64-255

XIV 0-47, 64-255

XV 0-47, 64-255

For the formation of SMACA, the synthesis scheme is achieved through Al-
gorithm 1.

Algorithm 1. SMACA Synthesis
Input : n (CA size), Tables (2, 3, 4 & 5)
Output : A SMACA - that is, rule vector R = < R0, R1, · · · , Rn−1 >
Step 1 : Pick up the first rule R0 randomly from Table 4, and set the class of R1

C := Class of R1 (C ∈ {I, II, III, IV, VII, VIII, XI, XIII, XIV, XV} of Table 4)
Step 2 : For i := 1 to n-2; repeat Step 3 and Step 4

Generation of SMACA and Its Application in Web Services 145

Table 4. First Rule Table (R0)

Rules for R0 Class of R1

0 I
1 II
2 III
4 IV
7 VII
8 VIII
11 XI
13 XIII
14 XIV
15 XV

Table 5. Last Rule Table (Rn−1)

Rule Class for Rn−1 Rules for Rn−1

I 0, 4, 16, 21, 64, 69, 84, 85

II 69, 84, 85

III 0, 4, 64

IV 0, 4, 16, 21, 64, 69, 84, 85

V 0, 4, 64, 69, 84, 85

VI 0, 1, 4, 16, 64

VI 0, 4, 64

VIII 0, 4, 16, 21, 64, 69, 84, 85

IX 21, 69, 81, 84, 85

X 0, 4, 64, 69, 84, 85

XI 69, 84, 85

XII 0, 4, 64, 69, 84, 85

XIII 0, 1, 4, 64, 69, 81, 84, 85

XIV 0, 1, 4, 64, 69, 81, 84, 85

XV 0, 1, 4, 64, 69, 81, 84, 85

Step 3 : From Table 2 pick up a rule as Ri arbitrarily for Class C
Step 4 : Find Class C for the next cell rule using Table 3
Step 5 : From Table 5 pick up a rule as Rn−1

Step 6 : Form the rule vector R = < R0, R1, · · · , Rn−1 >
Step 7 : Stop

The complexity of Algorithm 1 is O(n).

Example 1 : Synthesis of 4-cell SMACA:
Consider, rule 2 is selected as R0. Therefore, the class (obtained from Table 4)
of next cell rule is III. From class III of Table 2, rule 178 is selected randomly
as R1. Since, rule 178 is of class III; so, from Table 3, the next state value can
be easily found by selecting a random value as rthi+1 rule. Say, rule 44 is selected
as R2. From Table 2, rule 44 is of class XII. The class of last cell is, therefore,

146 A. Kundu, R. Dutta, and D. Mukhopadhyay

XII. Rule 64 is selected randomly for R3 from Table 5. Therefore, the SMACA
is R = < 2, 178, 44, 64 >.

Collection of Tokens

Inverted Index File (instead of Forward Index File)
SMACA for each website

(for 1st three characters of each Token)
SMACA

Fig. 3. Pictorial Represention of Our Approach

Definition 7: Token - Minimum term by which one or more dictionary words can
be managed while creating/modifying database of Search Engine. For example,
“traverse” is a token managing “traversal”, “traverses”, “traversed”, etc..
Definition 8: Key/State value - A unique number is assigned to every Web-page
for representing the Web-pages as states of SMACA. This is known as Key/State
value.
Definition 9: Conflict - Traversal from one state to another within a SMACA
depends on its RMT (as shown in Table 1 for Rule 90, 150, etc.). While gener-
ating a state of SMACA, if any mismatch happens, one or many bit position of
the current state will not reach the next predefined state(0/1) as per the RMT
table of concerned rule vector. This situation is known as Conflict.

Non-linear SMACA is used (generated by Algorithm 1) for replacing forward
indexing, and inverted indexing. Tokens are generated in conventional manner
like other Web Search Engines.

Mainly four algorithms are used to accomplish our objective in four steps.
These steps are as follows:

(a) generation of SMACA for each Website;
(b) generation of inverted indexed file;
(c) replacing inverted indexed file by SMACA;
(d) searching mechanism.

Figure 3 depicts pictorial represention of our current research work. It is
clearly shown in the figure that step (a) and step (b) are done concurrently
to reduce the generation time of Search Engine.

The next four algorithms will describe our new approach step by step:

Algorithm 2. SMACA Generation for Forward Indexing
Input : A set of tokens of Web-pages of a Website
Output : Set of SMACAs
Step 1 : Generate key values of Web-pages

Generation of SMACA and Its Application in Web Services 147

Step 2 : Assign key values of Web-pages as self-loop attractors of the SMACA
Step 3 : Generate key values of tokens
Step 4 : Assign key values of tokens as non-reachable state, or, transient state
of the SMACA
Step 5 : If conflict occurs goto Step 3
Step 6 : Generated SMACA
Step 7 : Stop

Definition 10: Website Identification Number (WSID) - Unique identification
number has been alloted to each Website. This is known as WSID.

Algorithm 3. Inverted Indexed File Generation
Input : Token
Output : Inverted indexed file
Step 1 : Generate WSID
Step 2 : Search for token whether it already exists in inverted indexed file
Step 3 : If successful, link the WSID with the token
Step 4 : Else, make a new entry in inverted indexed file and link the WSID with
the token
Step 5 : Stop

Definition 11: SMACA-ID - Unique identification number has been alloted to
each generated SMACA. This is known as SMACA-ID.

Question: Why do first three characters of token take into consideration while
generating SMACA-ID?

Answer: After vigorous searching through WWW, it has been found that
a token of any Web-page consists of a minimum of three characters. Less than
three character words are generally the “stop-words”. That’s why, we have taken
first three characters of token into consideration for generating SMACA-ID. For
example, “sachin” and “sacrifice” both tokens have same first three characters
“sac”. So, Algorithm 4 generates a SMACA-ID for a specific SMACA within
which both the tokens reside as the states. WSIDs of the Websites, within
which the related tokens appear, will be assigned as attractors of that particular
SMACA.

Algorithm 4. SMACA Generation from Inverted Indexed File
Input : Inverted Indexed File
Output : Set of SMACAs equivalent to inverted indexed file
Step 1 : For each combination of first three characters of token, generate SMACA-
ID from the input file
Step 2 : Assign WSIDs for which first three characters of related token appear,
as attractors of SMACA
Step 3 : For each token matching first three characters, generate key value
Step 4 : For each token, concatenate WSIDs and generated key value of token as
a state value
Step 5 : Assign each state value as a non-reachable or transient state of SMACA
Step 6 : If conflict occurs goto Step 2

148 A. Kundu, R. Dutta, and D. Mukhopadhyay

Step 7 : Store generated SMACAs with corresponding SMACA-ID
Step 8 : Stop

Algorithm 5. Users Search
Input : Users’ query
Output : Desired Web-pages
Step 1 : When query is submitted tokens are generated for the words in query
Step 2 : First three characters of each token are extracted
Step 3 : These three characters are encoded and SMACA-IDs are generated
Step 4 : With these generated SMACA-IDs, the Searcher searches the corre-
sponding SMACA (replacing inverted indexed file) from the storage
Step 5 : State values are generated from the tokens
Step 6 : Applying these SMACAs with the state values, the corresponding WSIDs
are found
Step 7 : The Searcher searches for the SMACAs (replacing forward indexing) for
these WSIDs
Step 8 : Applying these SMACAs with the state values previously generated by
tokens, the corresponding Web-page for each Website (attractor) is found
Step 9 : These Web-pages are extracted from the repository and displayed to the
user
Step 10 : Stop

4 Experimental Results

This section reports a detailed study on nonlinear Cellular Automata based
designing on Storage of Hypertext data while building a Web Search Engine.
Our experiment shows that it will take less storage space and less time while
searching through Internet / Intranet.

For experimental purpose, we have considered a huge number of Websites
within which we have shown the details of four Websites and only four Web-
pages of each Website as a sample study.

1400

1 2 3 4 5 6 7 8

1300

1200

1100

1000

900

800

700

600

500

400

300

200

100

1600

1500

Number of Websites

N
u

m
b

er

o
f

 B
y

te
s

Convensional Approach

Our Approach using SMACA

Fig. 4. Space required for Forward Indexing

Generation of SMACA and Its Application in Web Services 149

1 2 3 4 5 6 7 8

10000

20000

30000

40000

50000

60000

70000

80000

N
u

m
b

er

o
f

 B
y

te
s

Number of Websites

Our Approach

Convensional Approach

Fig. 5. Space required for Inverted Indexing

List of Websites & corresponding Web-pages with details are given below:

(1) AceWebTech
http://www.acewebtech.com/index.htm (35 bytes) (No. of tokens = 129)
http://www.acewebtech.com/webservices/website maintenance .htm (62 bytes)
(No. of tokens = 222)
http://www.acewebtech.com/pofile.htm (36 bytes) (No. of tokens = 279)
http://www.acewebtech.com/webservices/services.htm (50 bytes) (No. of tokens
= 260)
To store all these 4 Web-pages we need a CA of size = 13 with four(4) number
of attractors.

In Forward Indexing:
Total space required in conventional way = (35+62+36+50) bytes = 183 bytes.
Maximum space required in our approach = (13x3) bytes = 39 bytes.

(2) AnimalSafari
http://www.animalsafari.com/index.htm (37 bytes) (No. of tokens = 183)
http://www.animalsafari.com/html/Admissions.htm (47 bytes) (No. of tokens
= 241)
http://www.animalsafari.com/html/Attractions.htm (48 bytes) (No. of tokens
= 3)
http://www.animalsafari.com/html/Park Lore.htm (46 bytes) (No. of tokens =
277)
To store all these 4 Web-pages we need a CA of size = 13 with four(4) number
of attractors.

In Forward Indexing:
Total space required in conventional way = (37+47+48+46) bytes = 178 bytes.
Maximum space required in our approach = (13x3) bytes = 39 bytes.

(3) Maps of India
http://www.mapsofindia.com/outsourcing-to-india/history-of-outsourcing.html
(75 bytes) (No. of tokens = 498)

150 A. Kundu, R. Dutta, and D. Mukhopadhyay

Table 6. Experimental Results on Time required for Searching

No. Of Website
Search Samples (Time in Seconds)

1 2 6 8

Ace 0.016 0.016 0.016 0.019

Ace + reliable 0.016 0.016 0.018 0.019

Ace + reliable +forum 0.016 0.016 0.018 0.018

Ace + reliable + forum + Flash 0.016 0.016 0.018 0.018

Hyena 0.023 0.025 0.037

Hyena + Encyclopedia 0.024 0.024 0.035

Hyena + Encyclopedia + Unfortunately 0.023 0.024 0.038

Hyena + Encyclopedia + Unfortunately + mancaus 0.023 0.024 0.038

Hyena + Encyclopedia + Unfortunately + mancaus + Ace 0.025 0.024 0.040

Kanniyakumari 0.036 0.053

Peninsular 0.030 0.032

choice 0.018

Encyclopedia + Kanniyakumari 0.039

Encyclopedia + Kanniyakumari + Wolfram 0.039

http://www.mapsofindia.com/reference-maps/geography.html (56 bytes) (No. of
tokens = 302)
http://www.mapsofindia.com/maps/india/india.html (48 bytes) (No. of tokens
= 2388)
http://www.mapsofindia.com/stateprofiles/index.html (51 bytes) (No. of tokens
= 259)
To store all these 4 Web-pages we need a CA of size = 15 with four(4) number
of attractors.

In Forward Indexing:
Total space required in conventional way = (75+56+48+51) bytes = 230 bytes.
Maximum space required in our approach = (15x3) bytes = 45 bytes.

(4) Tourism of India
http://www.tourism-of-india.com/adventure-tours-to-india.html (61 bytes) (No.
of tokens = 133)
http://www.tourism-of-india.com/festival-tours-of-india.html (60 bytes) (No. of
tokens = 158)
http://www.tourism-of-india.com/historical-places-in-india.html (63 bytes) (No.
of tokens = 525)
http://www.tourism-of-india.com/kolkata.html (44 bytes) (No. of tokens = 585)
To store all these 4 Web-pages we need a CA of size = 14 with four(4) number
of attractors.

In Forward Indexing:
Total space required in conventional way = (61+60+63+44) bytes = 228 bytes.
Maximum space required in our approach = (14x3) bytes = 42 bytes.

Generation of SMACA and Its Application in Web Services 151

In Inverted Indexing:
Total space required for all the four Websites in conventional way = 35797 bytes.

Maximum space required for all the four Websites in our approach = 23765
bytes.

The space required for Forward Indexing and Inverted Indexing are shown in
Figure 4 & Figure 5 respectively.

The time required for Searching is shown in Table 6 with some examples.

5 Conclusion

In a general Search Engine, forward indexing and inverted indexing files are
used for searching. A new methodology is discussed here to minimize storage re-
quirement by using non-linear SMACA while building forward and / or inverted
indexed file. This approach processes users’ query in linear time complexity while
searching the Web through a Search Engine. Using Cellular Automata in stor-
ing Search Engine indexing data is a tricky approach that has been successfully
implemented in this work offering better results in form of space efficiency.

References

1. Brin, S., Page, L.: The Anatomy of a Large-Scale Hypertextual Web Search En-
gine. In: Proceedings of the Seventh International World Wide Web Conference,
Brisbane, Australia (April 1998)

2. Arasu, A., Cho, J., Garcia-Molina, H., Paepcke, A., Raghavan, S.: Searching the
Web, ACM Transactions on Internet Technology, vol. 1(1) (August 2001)

3. Flake, G.W., Lawrence, S., Giles, C.L., Coetzee, F.M.: Self Organization and Iden-
tification of Web Communities. IEEE Computer 35(3), 66–71 (2000)

4. Glover, E.J., Tsioutsiouliklis, K., Lawrence, S., Pennock, D.M., Flake, G.W.: Using
Web Structure for Classifying and Describing Web Pages. In: WWW2002, pp. 7–
11. Honolulu, Hawaii, USA (May 2002)

5. Chakrabarti, S., Dom, B.E., Kumar, R., Raghavan, P., Rajagopalan, S., Tomkins,
A., Gibson, D., Kleinberg, J.: Mining the Web’s Link Structure. IEEE Com-
puter 1999, 60–67 (1999)

6. Mukhopadhyay, D., Singh, S.R.: Algorithm for Automatic Web-Page Clustering
using Link Structures. In: Proceedings of the IEEE INDICON 2004, Conference,
IIT Kharagpur, India, pp. 472–477 (December 20-22, 2004)

7. Neumann, J.V.: The Theory of Self-Reproducing Automata. In: Burks, A.W. (ed.)
University of Illinois Press, Urbana and London (1966)

8. Sipper, M.: Co-evolving Non-Uniform Cellular Automata to Perform Computa-
tions. Physica D 92, 193–208 (1996)

9. Wolfram, S.: Theory and Application of Cellular Automata. World Scientific, Sin-
gapore (1986)

10. Chaudhuri, P.P., Chowdhury, D.R., Nandi, S., Chatterjee, S.: Additive Cellular
Automata. In: Theory and Applications, vol. 1, IEEE Computer Society Press,
Los Alamitos (1997)

152 A. Kundu, R. Dutta, and D. Mukhopadhyay

11. Maji, P., Shaw, C., Ganguly, N., Sikdar, B.K., Chaudhuri, P.P.: Theory and Ap-
plication of Cellular Automata For Pattern Classification. Fundamenta Informat-
icae 58, 321–354 (2003)

12. Das, S., Kundu, A., Sikdar, B.K.: Nonlinear CA Based Design of Test Set Generator
Targeting Pseudo-Random Pattern Resistant Faults. In: Asian Test Symposium,
pp. 196–201 (2004)

13. Das, S., Kundu, A., Sen, S., Sikdar, B.K., Chaudhuri, P.P.: Non-Linear Celluar
Automata Based PRPG Design (Without Prohibited Pattern Set). In: Linear Time
Complexity, Asian Test Symposium, pp. 78–83 (2003)

Enhancing Fault-Tolerance of Large-Scale MPI

Scientific Applications

G. Rodŕıguez, P. González, M.J. Mart́ın, and J. Touriño

Computer Architecture Group, Dep. Electronics and Systems
University of A Coruña, Spain

{grodriguez,pglez,mariam,juan}@udc.es

Abstract. The running times of large-scale computational science and
engineering parallel applications, executed on clusters or Grid platforms,
are usually longer than the mean-time-between-failures (MTBF). There-
fore, hardware failures must be tolerated to ensure that not all computa-
tion done is lost on machine failures. Checkpointing and rollback recovery
are very useful techniques to implement fault-tolerant applications. Al-
though extensive research has been carried out in this field, there are few
available tools to help parallel programmers to enhance their applications
with fault tolerance support. This work presents an experience to endow
with fault tolerance two large MPI scientific applications: an air quality
simulation model and a crack growth analysis. A fault tolerant solution
has been implemented by means of a checkpointing and recovery tool, the
CPPC framework. Detailed experimental results are presented to show
the practical usefulness and low overhead of this checkpointing approach.

Keywords: Fault tolerance, checkpointing, parallel applications, MPI.

1 Introduction

Checkpointing has become a widely used technique to provide fault tolerance by
periodically saving the computation state to stable storage, so that this state
can be restored in case of execution failure.

One of the most remarkable properties of general checkpointing techniques
is granularity. Checkpointing can be performed from two different granularity
levels: data segment level and variable level. On data segment level the entire
application state is saved (data segment, stack segment and execution context),
recovering it when necessary. Most of fault-tolerance tools present in the bib-
liography [1,2,3,4,5] perform data segment level checkpointing. This approach
presents a general advantage: its transparency from the user’s point of view,
since the application is seen as a black box. However, saving the application
state entirely leads to lack of portability, as a number of non-portable structures
will be saved along with application data (as application stack or heap).

A variable level approach saves only restart-relevant state to stable storage.
Many fault tolerant solutions implement variable level checkpointing by manu-
ally determining the data to be saved, and inserting code to save that data on

V. Malyshkin (Ed.): PaCT 2007, LNCS 4671, pp. 153–161, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

154 G. Rodŕıguez et al.

disk and to restart the computation after failure. The code becomes as portable
as the original application and, provided that checkpoints are saved in a portable
format, the application can be restarted on different platforms. Unfortunately,
this method requires a data-flow analysis, which can be a tedious and error-prone
task to be performed by the user. Thus, a recent approach [6], developed by the
authors, tries to automatize a variable level checkpointing of message-passing
parallel applications by means of a checkpointing library and a compiler that
instruments MPI code.

The purpose of this work is to develop fault tolerant solutions for two different
computationally intensive MPI codes, an air quality model [7] and a crack growth
analysis [8]. A variable level checkpointing approach is followed, implemented
through the use of our checkpointing and recovery tool, CPPC.

The structure of this paper is as follows. Section 2 introduces the problem
of endowing parallel applications with fault tolerance, and gives an overview
of the CPPC tool and how it solves the major issues. Section 3 describes the
applications used for the tests. Experimental results about the use of the CPPC
tool are presented in Section 4. Finally, Section 5 concludes the paper.

2 Checkpointing and Recovery of Parallel Applications:
The CPPC Tool

There are several issues to be solved in implementing checkpointing solutions for
parallel applications, such as consistency, portability, memory requirements, or
transparency. CPPC is a checkpointing infrastructure that implements scalable,
efficient and portable checkpointing mechanisms. This section details various
aspects of CPPC’s design associated with major issues.

2.1 Global Consistency

Consistency is a key issue when dealing with the checkpoint of a parallel program
using the message-passing paradigm. The state of a parallel application is defined
as the set of all its processes states. There are two situations that require actions
to be performed in order to achieve a correct restart: existence of in-transit
messages (sent but not received), and existence of ghost messages (received but
not sent) in the set of processes states stored.

Checkpoint consistency has been well-studied in the last decade [9]. Ap-
proaches to the consistent recovery can be categorized into different protocols:
uncoordinated, coordinated and communication-induced checkpointing; and
message logging.

In uncoordinated checkpoint protocols the checkpoint of each process is exe-
cuted independently of the other processes, leading to the so called domino effect
(process may be forced to rollback up to the beginning of the execution). Thus,
these protocols are not used in practice. In coordinated checkpoint protocols,
all processes coordinate their checkpoints so that the global system state com-
posed of the set of all process checkpoints is coherent. Communication-induced

Enhancing Fault-Tolerance of Large-Scale MPI Scientific Applications 155

checkpoint tries to take advantage of uncoordinated and coordinated checkpoint
techniques. Based on the uncoordinated approach, it detects risk of inconsistent
state, and forces processes to checkpoint. While this approach seems to be very
interesting theoretically, in practice it turns out to be quite inefficient.

Message logging saves messages with checkpoint files in order to replay them
for the recovery. The main disadvantage of log-based recovery is its high storage
overhead.

CPPC achieves global consistency by using spatial coordination, rather than
temporal coordination. Checkpoints are thus taken at the same relative code
points by all the processes (assuming SPMD codes). To avoid problems caused
by messages between processes, checkpoint directives must be inserted at points
where it is guaranteed that there are no in-transit, nor ghost messages. These
points are called safe points. For an automatic identification of safe points, a
static analysis of interprocess message flow is needed. This automatization is
currently under development.

2.2 Portability

The availability of the application to be executed across multiple platforms plays
an important role in current trends towards new computing infrastructures, such
as heterogeneous clusters and Grid systems.

A state file is said to be portable if it can be used to restart the computation
on an architecture (or OS) different from that where the file was generated on.
This means that state files should not contain hard machine-dependent state,
which should be recovered at restart time using special protocols.

The solution used in CPPC is to recover non-portable state by means of the
re-execution of the code responsible for creating such opaque state in the original
execution. Hence, the new code will be just as portable as the original code was.
Moreover, in CPPC the effective data writing will be performed by a selected
writing plugin implementation, using its own format. This enables the restart on
different architectures, as long as a portable dumping format is used for program
variables. Currently, a writing plugin based on HDF5 is provided. HDF5 [10] is
a general purpose library and file format for storing scientific data in a portable
way. The CPPC HDF5 plugin allows the generated checkpoint files to be used
across multiple platforms. CPPC-generated HDF5 files are much like binary files,
except that all data are tagged to make conversions possible when restarting on
different platforms.

2.3 Memory Requirements

The solution of large large scientific problems may need the use of massive com-
putational resources, both in terms of CPU effort and memory requirements.
Thus, many scientific applications are developed to be run on a large number of
processors. The checkpointing of this kind of applications would lead to a great
amount of stored state, the cost being so high as to become impractical.

156 G. Rodŕıguez et al.

CPPC reduces the amount of data to be saved by including in its compiler
a live variable analysis in order to identify those variable values that are only
needed upon restart. Besides, the HDF5 library can accommodate data in a
variety of ways, including a compressed format based on the ZLib library [11].
This, or other compression algorithms, can be included in a writing plugin with-
out recompiling the CPPC library. A multithreaded dumping option [12] is also
provided by the CPPC tool to improve performance when working with large
datasets. A new thread handles checkpoint file creation while the application
continues normal execution.

2.4 Transparency

This property is measured in terms of user effort to insert checkpoint support into
the application. On the one hand, data segment level approaches are completely
transparent to programmers, as they do not need much information about the
applications being treated. On the other hand, variable level strategies have to
get some metadata about the application in order to operate correctly, and they
usually get it from the programmer.

The CPPC tool appears to the user as a compiler tool and a runtime library
which help achieve the goal of inserting fault tolerance into a parallel appli-
cation in an almost transparent way. The library provides checkpoint-support
routines, and the compiler tool seeks to automatize the use of the library. The
user must insert only one compiler directive into the original application (the
cppc checkpoint pragma) to mark points in the code where the relevant state
will be dumped to stable storage in a checkpoint file. The compiler performs a
source-to-source transformation, automatically identifying both the variables to
be dumped to the checkpoint file and the non-portable code to be re-executed
upon restart; and it also inserts the necessary calls to functions of the CPPC
library, as well as flow control code needed to recover the non-portable state.

3 The Applications

In this section, two large-scale scientific applications are described: an air quality
model and a crack growth simulation. Both applications were found to be good
candidates for using the CPPC tool. Originally, none of them provided fault-
tolerance. However, being long running critical applications, both would benefit
from this feature.

The STEM-II Model. Due to the increasing sources of air pollutants, the
development of tools to control and prevent the pollutants’ accumulation has
become a high priority. Coal-fired electrical power plants constitute one of the
most significant sources of air pollutants, thus its study is a key issue in pollution
control specifications. The STEM-II model [13] is used to know in advance how
the meteorological conditions, obtained from a meteorological prediction model,
would affect the emissions of pollutants by the power plant of As Pontes (A
Coruña, Spain) in order to fulfill EU regulations.

Enhancing Fault-Tolerance of Large-Scale MPI Scientific Applications 157

Air quality models can be mathematically described as time-dependent, 3D
partial differential equations. The underlying equation used is the atmospheric-
diffusion equation. The numerical solution of this equation consists of the integra-
tion of a system of coupled non-linear ordinary differential equations. STEM-II
solves this system using a finite element method (FEM).

The sequential program consists mainly of four nested loops, a temporal loop
(loop t) and a loop for each dimension of the simulated space (loop x, loop y
and loop z). The main modules of the code are: horizontal transport, vertical
transport and chemical reactions, and I/O module. The model requires as input
data the initial pollutant concentrations, topological data, emissions from the
power plant and meteorological data. The initial pollutant concentrations and
topological data are read only once, at the beginning of the simulation. The
meteorological data and the emissions from the power plant are time-dependent
and must be read each 60 iterations, that is, each new hour of simulation. The
output consists of spatially and temporally gaseous and aqueous concentrations
of each modeled specie, reaction rates, in and out fluxes, amount deposited and
ionic concentrations of hydrometeor particles. As this model is computationally
intensive, it has been parallelized using MPI [7].

Crack Growth Analysis Using Dual BEM (DBEM). Cracks are present
in all structures, usually as a result of localised damage in service, and may grow
by processes such as fatigue, stress-corrosion or creep. The growth of the crack
leads to a decrease in the structural strength. Thus, fracture occurs, leading to
the failure of the structure.

The Boundary Element Method (BEM) has been acknowledged as an alterna-
tive to FEM in fracture mechanic analysis. BEM reduces the dimensionality of
the problem under analysis through the discretization of the boundary domain
only.

Despite the reduction of dimensionality using BEMs instead of FEMs, the
crack growth analysis leads to a large number of discretized equations that grow
at every step when the crack growth is evaluated. Analysis of real structural
integrity problems may need the use of large computational resources, both in
terms of CPU and memory requirements.

The boundary element code to assemble the linear equations is essentially a
triple-nested DO loop. The external loop is over the collocation nodes, the middle
loop is over the boundary elements, and the internal loop is over the Gauss
points. Coarse grain parallelization can be achieved by distributing collocation
nodes among processors [8].

Although assembling the linear equations is a key task in the simulation pro-
cess, the bottleneck of the crack growth analysis is the solution of the resultant
dense linear system. The traditional method for the solution of a dense linear
system would be the application of the Gauss elimination method. However, as
the problem size increases the use of iterative methods is demanded. This ap-
plication uses the GMRES iterative method, regarded as the most robust of the
Krylov subspace iterative methods.

158 G. Rodŕıguez et al.

Table 1. Applications’ summary

running on 4 nodes
Tested Programming Number of Lines of Memory Disk

application Language files Code requirements quota

STEM F77 149 9609 180MB 560MB

DBEM F77 45 13164 370MB 170MB

4 Experimental Results

In this section, the results of applying the CPPC tool to the large-scale appli-
cations described in the previous section are presented. Results include check-
pointing overhead, restart overhead, portability and checkpoint file size. Tests
were performed on a cluster of Intel Xeon 1.8 Ghz nodes, 1GB RAM, connected
through an SCI network.

Table 1 summarizes the two tested applications: the air quality simulation
model (from now on referred to as STEM) and the crack growth simulation
(DBEM).

CPPC treats the applications as black boxes, and automates the insertion of
checkpoint-support routines provided by the CPPC library, identifying the vari-
ables to be dumped and the non-portable code to be re-executed upon restart,
and inserting flow control code. The cppc checkpoint is the only directive not
yet automated, and thus the programmer must find a safe point in the origi-
nal code for the checkpointing file dumping. Safe points can be easily found in
both codes, since they follow the SPMD paradigm. This point has been found
at the end of the outer loop (loop t) in the STEM code. In these experiments it
executes 1440 iterations of the outer loop, which corresponds to 24 hours of real-
time simulation. In the DBEM code, the checkpoint directive has been placed
at the beginning of the main loop in the GMRES solver. In these experiments
DBEM performs a crack growth simulation on a mesh of 496 collocation nodes,
which involves the solution of a dense linear system of 1494 equations.

Figure 1 shows the execution times for both applications. Results are shown
for the original execution, execution with CPPC checkpointing instrumentation,
and two executions including different checkpoint frequencies. CPPC instrumen-
tation includes calls to CPPC library routines, such as CPPC initialization or
variable registration routines, and flow control code. As can be seen in the figure,
the overhead introduced by the CPPC instrumentation remains under 5% for
both applications.

The overhead of a single checkpoint file dumping depends on the amount
of data to be stored and the format used for the data storage. Results shown
in Figure 1 were obtained using HDF5 format. Early tests were carried out
with one checkpoint file dumping each 60 iterations (labeled as “1/60” in the
figure). Then, more tests were performed increasing the checkpoint frequency
up to one checkpoint each ten iterations (labeled as “1/10”). Increasing the
checkpoint frequency did not noticeably vary the total execution time, since

Enhancing Fault-Tolerance of Large-Scale MPI Scientific Applications 159

Fig. 1. Execution times in failure-free tests

once the instrumentation overhead is introduced, the multithreaded technique
hides the overhead of the data dumping step.

These results have been obtained assuming no failures during the execution.
In other case, the restart time should be also considered in the total execution
time. Restart overhead is less important than checkpointing overhead. The ap-
plication is expected to be restarted only in case of failure and, in long running
applications, it will be always better than to re-execute the application from the
beginning. Results for restart execution times can be seen in Figure 2. The total
restart time is divided in two sections: overhead due to the checkpoint file read
and overhead due to state recovery. Results labeled as “native” correspond to
those obtained when restarting an application from checkpoint files generated in
the same platform. In order to perform also a portability test, these applications
were executed on an HP Superdome located at the Galician Supercomputing
Center (Intel Itanium 2 nodes at 1.5Ghz, 3GB RAM, connected through Infini-
band) with its proprietary Fortran compiler and MPI implementation. Check-
point files created in this platform were used to restart the applications on the
SCI cluster, thus allowing the comparison of restart times using both native
and imported files (native and cross-platform results, respectively, in Figure 2).
Reading time increases if data transformations are needed, since they will take
place at application restart. Results have shown that the overhead introduced is
low enough to be negligible, even in the cross-platform case.

As pointed out in Section 2, when dealing with large-scale applications, check-
pointing could lead to a great amount of state stored. Hence, techniques to reduce
the checkpoint file size are of capital importance. Table 2 compares CPPC gener-
ated file sizes to those obtained using a segment level approach. As can be seen,
CPPC achieves very important size reductions by performing a live variable anal-
ysis (the number of live variables registered by CPPC are shown in the table).
Table 2 also shows chekpoint file generation time (dumping time) when using
the CPPC tool. Results of dumping time with and without the multithreading

160 G. Rodŕıguez et al.

Fig. 2. Restart overhead

Table 2. Checkpoint file generation results

Segment level CPPC
Tested ckpt-file ckpt-file registered dumping time (s)

application size size variables absolute multithread

STEM 187 MB 121 MB 156 0.42 0.18

DBEM 290 MB 145 MB 178 0.91 0.52

option demonstrate that the checkpoint file generation has a minimal influence
on the performance of long running applications.

5 Conclusions

Currently, there are several solutions available that deal with checkpointing of
parallel applications. However, most of them implement data segment level ap-
proaches, which present serious drawbacks for real scientific applications, such as
memory requirements or portability. Thus, development of new tools to provide
variable level solutions with a high level of transparency from the user’s point
of view becomes a great challenge.

In this paper a variable level checkpointing tool, CPPC, has been tested with
two large-scale scientific applications. CPPC resolves major issues in implement-
ing scalable, efficient and portable checkpointing by using a variable level, non-
coordinated, non-logging, portable approach. Experimental results have demon-
strated the efficacy of this approach, in terms of execution times, checkpointing
overhead, memory requirements, portability and usability.

CPPC version 0.5 can be downloaded at http://cppc.des.udc.es.

Acknowledgments. This work has been supported by the Ministry of Education
and Science of Spain (ref: TIN-2004-07797-C02 and FPU grant AP-2004-2685),

http://cppc.des.udc.es

Enhancing Fault-Tolerance of Large-Scale MPI Scientific Applications 161

Galician Government (ref: PGIDIT04TIC105004PR) and CYTED Program (ref:
506PI0293). We gratefully thank CESGA (Galician Supercomputing Center) for
providing access to the HP Superdome computer.

References

1. Bosilca, G., Bouteiller, A., Cappello, F., Djilali, S., Fedak, G., Germain, C., Her-
ault, T., Lemarinier, P., Lodygensky, O., Magniette, F., Neri, V., Selikhov, A.:
MPICH-V: Toward a scalable fault tolerant MPI for volatile nodes. In: Proceed-
ings of the 2002 ACM/IEEE Supercomputing Conference, pp. 1–18 (2002)

2. Louca, S., Neophytou, N., Lachanas, A., Evripidou, P.: MPI-FT: Portable fault
tolerance scheme for MPI. Parallel Processing Letters 10(4), 371–382 (2000)

3. Agbaria, A., Friedman, R.: Starfish: Fault-tolerant dynamic MPI programs on clus-
ters of workstations. In: 8th IEEE International Symposium on High Performance
Distributed Computing, pp. 167–176 (1999)

4. Rao, S., Alvisi, L., Vin, H.: Egida: An extensible toolkit for low-overhead fault
tolerance. In: 29th International Symposium on Fault-Tolerant Computing (FTCS-
29), pp. 48–55 (1999)

5. Bronevetsky, G., Marques, D., Pingali, K., Stodghill, P.: Automated application-
level checkpointing of MPI programs. In: ACM SIGPLAN Symposium on Principles
and Practices of Parallel Programming (PPOPP), pp. 84–94 (2003)

6. Rodŕıguez, G., Mart́ın, M., González, P., Touriño, J.: Controller/precompiler for
portable checkpointing. IEICE Transactions on Information and Systems E89-D(2),
408–417 (2006)

7. Mart́ın, M., Singh, D., Mouriño, J., Rivera, F., Doallo, R., Bruguera, J.: High
performance air pollution modeling for a power plant environment. Parallel Com-
puting 29(11-12), 1763–1790 (2003)

8. González, P., Cabaleiro, J.C., Pena, T.F., Rivera, F.F.: Dual BEM for crack growth
analysis in distributed-memory multiprocessors. Advances in Engineering Soft-
ware 31(12), 921–927 (2000)

9. Elnozahy, E., Alvisi, L., Wang, Y., Johnson, D.: A survey of rollback-recovery
protocols in message-passing systems. ACM Computing Surveys 34(3), 375–408
(2002)

10. National Center for Supercomputing Applications: HDF5: File Format Specifica-
tion [last accessed May 2007] http://hdf.ncsa.uiuc.edu/HDF5

11. Gailly, J., Adler, M.: Zlib home page [last accessed May 2007] http://
www.zlib.net

12. Li, K., Naughton, J.F., Plank, J.S.: Low-latency concurrent checkpointing for paral-
lel programs. IEEE Transactions on Parallel and Distributed Systems 5(8), 874–879
(1994)

13. Carmichael, G., Peters, L., Saylor, R.: The STEM-II regional scale acid deposition
and photochemical oxidant model - I. An overview of model development and
applications. Atmospheric Environment 25A(10), 2077–2105 (1991)

http://hdf.ncsa.uiuc.edu/HDF5
http://www.zlib.net
http://www.zlib.net

Study of 3D Dynamics of Gravitating Systems

Using Supercomputers: Methods and
Applications�

Nikolay Snytnikov1, Vitaly Vshivkov1, and Valery Snytnikov2

1 Institute of Computational Mathematics and
Mathematical Geophysics SB RAS,

630090, prosp. Lavrentieva, 6, Novosibirsk, Russia
{nik,vsh}@ssd.sscc.ru
http://www.ssd.sscc.ru

2 Boreskov Institute of Catalysis SB RAS,
630090, prosp. Lavrentieva, 5, Novosibirsk, Russia

snyt@catalysis.nsk.su

Abstract. We describe parallel numerical code for solving problems of
stellar dynamics. The code is based on numerical solving of Poisson
and Vlasov equations in cylindrical coordinates using particle-in-cells
method. The code is designed for use on supercomputers with distributed
memory. We consider different possible strategies of parallelization ac-
cording to initial technical parameters of numerical methods and physical
conditions of the model. We present results of numerical simulations for
the following problems of stellar dynamics: investigation of influence of
central potential on the vertical motions of thin gravitating disk; stabil-
ity of uniform sphere with anisotropic distribution of velocity; numerical
approximation of equilibrium states of gravitating systems.

1 Introduction

Problems of stellar dynamics — investigation of stellar systems formation, their
equilibrium and stability, appearance of spirals and bars — require to solve N-
body problem in self-consistent gravitational field [1]. Its mathematical model
consists of collisionless Vlasov equation for distribution function of matter (here-
inafter, DF) and Poisson equation for gravitational potential. Numerical solving
is based on particle-in-cells method [2] (also called particle-mesh).

Complexity of this numerical model is conditioned by three-dimensions and
non-stationarity of the problem. It’s required to compute individual motions of
huge number of particles, to solve 3D Poisson equation and to store 3D mesh
functions of potential, gravitational forces and density of matter as 3D arrays
in computer’s RAM. At the same time the number of particles and nodes of

� The present work was supported by Grant of Rosobrazovanie, contract
RNP.2.2.1.1.1969; Grant of Rosobrazovanie, contract RNP.2.2.1.1.3653.

V. Malyshkin (Ed.): PaCT 2007, LNCS 4671, pp. 162–173, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Study of 3D Dynamics of Gravitating Systems Using Supercomputers 163

the mesh should be sufficient to provide reliability of the simulation results1.
That’s why numerical simulations for considered class of problems are close to
computer’s capabilities. Hence there is a strong requirement to develop effective
parallel algorithms and to employ supercomputers.

Mentioned difficulties can be partially overcome with the help of quasi-3D
model [3], special approximation of 3D model, which neglects vertical motions
of the matter (however it’s still needed to solve 3D Poisson equation). This
approximation is especially useful to overcome problem with storing 3D data,
because on each time step only values of mesh functions in plane z = 0 (where
matter has non-zero density) are needed. It seems, that quasi-3D approximation
is suitable in the presence of massive central gravitational field and initial DF
in the form of thin disk, that is the case of circumstellar disk model. However
for the large class of problems, such as investigation of globular clusters and sys-
tems with distinct vertical motions of matter or non-uniform vertical structure,
completely 3D model msut be studied.

In the present paper we describe parallel numerical algorithms for investiga-
tion of 3D dynamics of gravitating systems. We consider possible approaches to
the parallelization of numerical methods according to their technical parame-
ters (number of mesh nodes and particles) and initial physical conditions of the
problem. With the help of implemented parallel code we are able to perform
numerical simulations for important problems of stellar dynamics. We present
some applications:

– investigation of influence of central potential on the vertical motions of thin
gravitating disk,

– stability of uniform sphere with anisotropic distribution of velocity,
– approach to study equilibrium states of gravitating systems.

2 Mathematical Model of 3D Dynamics of Gravitating
Systems

The foundation of numerical model of 3D dynamics of gravitating systems is
collisionless Vlasov equation for DF and Poisson equation for self-consistent
gravitational potential [1].

Collisionless Vlasov equation has the following form:

∂f

∂t
+ u

∂f

∂r
−∇Φ∂f

∂u
= 0, (1)

where f(t, r,u) is time-dependent DF of coordinates r and velocities u. Grav-
itational potential satisfies Poisson equation, which has the following form in
chosen cylindrical coordinates:

1
r

∂

∂r

(

r
∂Φ

∂r

)

+
1
r2
∂2Φ

∂φ2
+
∂2Φ

∂z2
= 4πGρ. (2)

1 E.g. there are very few supercomputers in the world allowing to carry out experi-
ments with the number of particles equal to number of stars in Galaxy ∼ 1011.

164 N. Snytnikov, V. Vshivkov, and V. Snytnikov

System is completed with equation for density of matter:

ρ(t, r) =
∫

u

f(t, r,u)du. (3)

To obtain non-dimensional parameters there are chosen distance R0, mass M0

and gravitational constant G. R0 and M0 could be either radius of galaxy and
its mass or typical dimension of circumstellar disk and mass of protostar. Cor-
responding values of velocity V0, time t0 and potential Φ0 could be noted in the
following way:

V0 =
√
GM0

R0
, t0 =

R0

V0
, Φ0 = V 2

0 .

Important criterion of accuracy of obtained solution is verification of conserva-
tion laws: mass, momentum, angular momentum, energy.

3 Numerical Methods

In this section we briefly describe used numerical methods for solving sys-
tem (1) – (3). More detailed description can be found in [4].

3.1 Vlasov Equation

Vlasov equation (1) for DF f(t, r,u) is solved with the help of particle-in-cells
method [2]. Space cylindrical domain is divided by mesh into cells. The mesh
then is used during solving Poisson equation (2). In the initial moment particles
are put in cells in such way, that their number in cell corresponds to the density
of matter in cell. Equations of motion for separate particle are:

dvi

dt
= −∇Φ

mi
,
dri

dt
= vi, (4)

where vi, ri – velocity and coordinates of particle with number i. Particles,
which have coordinate r and located in volume V (r), determine DF f(t, r,u)
and density ρ(r) = 1

V (r)

∑
mj .

Then density function ρ(t, r) is restored using multilinear interpolation of
particles’ masses into the nodes of the mesh.

3.2 Poisson Equation

Potential function, solution of Poisson equation, is approximated on an intro-
duced mesh with the help of finite-difference methods using seven-spot pattern.
Boundary conditions for gravitational potential are defined as:

Φ|Γ = − Mdisk√
r2 + z2

. (5)

Study of 3D Dynamics of Gravitating Systems Using Supercomputers 165

It corresponds to the case when total mass of the matter is located at the center
of the system. Such an approximation of boundary conditions helps to avoid
direct summation of potential produced by particles for each boundary node of
the mesh.

Obtained system of linear equations (SLE) is solved with FFT applied to the
azimuthal coordinate. As a result we obtain Kmax independent SLE for complex
functions of wave harmonics of potential, where Kmax is number of azimuthal
nodes of the mesh. Then each system is solved using relaxation method applied
to radial coordinate and sweeping procedure applied to vertical axis. After that
mesh function of potential is restored using FFT applied to known values of
potential harmonics.

The solving method was chosen for the two reasons. First, it’s known to
be effective for the Laplace equation [3] (which, in fact, is used in quasi-3D
model instead of Poisson equation). The second reason is the possibility of par-
allelization, since SLE for complex functions of wave harmonics can be treated
completely separate. However, there are some difficulties, which are related to
ill-conditioning of the system [4]. The most ill-conditioned system is the one cor-
responding to the harmonics with wave number 0. The use of simple relaxation
method is related to the fact that initial approximation for the next time step
can be taken from previous one.

Finally restoring of mesh functions for forces is done using leap-frog finite-
difference method.

4 Parallelization Techniques

For numerical experiments and study non-stationary 3D dynamics of gravitating
matter it’s required to integrate system (1) – (3) on a large time scales. At the
same time sufficiently small spatial step must be provided in order to investigate
non-linear structures such as spirals, rings, bending instabilities, which are much
smaller than computational domain; hence, fine meshes must be applied.

In spite of its reliability described numerical model is rather time- and memory-
consuming. Modern PC can processnumerical simulations with the following tech-
nical parameters: number of mesh nodes is 1283, and number of particles not more
than 107. It’s needed from 2 up to 7 days to complete one numerical experiment2.
The only way to employ meshes with greater number of particles is to develop
and implement effective parallel algorithms for solving both Poisson and Vlasov
equations.

The main challenge for parallelization is concerned with some restrictions
from physical point of view: density modification in one point of space implies an

2 Maximum numbers of mesh nodes and particles can be estimated in the following way.
5 3D arrays are used for 3 forces, density and potential, 3 3D arrays are needed for
harmonics storing and temporary data. So it’s needed about 400 Mb of RAM to store
1283 double-precision 3D arrays. Since each particle has 3 space coordinates and 3
velocities it’s needed about 500 Mb to store arrays for 107 particles. Amount of RAM
in modern PC rarely exceeds 1 Gb.

166 N. Snytnikov, V. Vshivkov, and V. Snytnikov

instant response in modification of gravitational potential in other space points.
In other words, it does not matter, how to decompose the computational domain,
or what procedures are parallelized; at each time step it’s needed to exchange
3D data with values of density and potential between processors. It can be op-
timized, for example, with some techniques of apriori estimations what compu-
tational subdomains have density equal to zero and so on. But such techniques
are heuristics and can not be applied for general problem.

In the following sections we describe implemented parallel algorithms which
are suitable for a large class of initial physical conditions. Possible directions of
further development are also discussed.

4.1 Poisson Equation

Parallelization of solving Poisson equation is based on an independence of solving
systems of linear equations (SLE) for complex functions of wave harmonics of
potential. SLEs are divided into groups and assigned to corresponding processors.

It’s known [3] that implementation of similar parallel algorithm for solving
Laplace equation has a difficulty: different time is needed for solving different
SLE due to ill-conditioning of SLE for wave harmonics with small numbers; it
may leads to non-uniform loading of processors. The same problem was observed
during development of solving methods for Poisson equation. Fig. 1 shows distri-
butions for logarithm of time needed for solving SLE for the first time step (a),
and for mean time of thousand time steps (b). Almost all time is taken by SLE
for harmonics with wave number 0, which is the most ill-conditioned. Then com-
putation time is distributed with the obvious rule — the most time is needed for
solving SLE for harmonics with wave numbers close to zero (Fig. 1, (b)). Based

Fig. 1. Logarithm of solving time for SLE (vertical axis) depending on wave number
of harmonics (horizontal axes) is represented: (a) on the first time step, (b) average
for thousand time steps

on this experimental data, we have implemented the algorithm of distribution
harmonics between processors in the following way:

– SLE for harmonics with wave number 0 is assigned to the separate processor
with number procRank = 0,

Study of 3D Dynamics of Gravitating Systems Using Supercomputers 167

– Processor with number procRank > 0 solves group of SLEs with numbers
m = procRank+i∗(procNb−1), where procNb is total number of processors
(less than total number of harmonics), i –integer.

Tabl. 1 shows timing distribution for separate procedures of Poisson equation
solving algorithm. This algorithm takes 3D array for mesh function of density as
input and returns 3D array for potential as output (storing harmonics values for
using them on the next time step). Solving harmonics’ SLE is parallelized proce-
dure and its speed-up factor is about 34 with 40 employed processors. So there
is no need to apply more complex technique such as algorithm of dynamic load-
balancing as in [3]. At the same time total speed-up factor of Poisson equation

Table 1. Typical distribution of computation time for separate procedures of solving
algorithm of Poisson equation for one of the processors on 10-th time step. Number of
SLE is 256, dimension of SLE is 212 × 146.

Number of FFT for Harmonics’ SLE Gathering of FFT for Total
processors density, sec solving, sec harmonics, sec potential, sec time, sec

1 0.3 6.8 — 0.4 7.5

10 0.3 0.7 0.65 0.4 2.05

40 0.3 0.2 0.42 0.4 1.32

solving is about 3.7 with employed 10 processors and 5.7 with 40. The reason
of such a weak speed-up factor is that bottlenecks are non-parallelized parts:
FFT applied to 3D mesh functions, and gathering of harmonics. These parts
can not be parallelized with the help of standard tools, because of increasing of
interprocessor communications.

The possible optimization of FFT is domain decomposition technique. It’s
needed to apply FFT for 3D mesh functions defined only on subdomain nodes.
However optimization possibilities of harmonics’ gathering procedure have fun-
damental restriction imposed by physical statement of problem which was men-
tioned at the beginning of the section 4.

4.2 Vlasov Equation

Since computation of DF (coordinates and velocities for each particle) on the
next time step requires only computed mesh function of gravitational potential
and does not depend on coordinates of other particles, it is a source of natural
parallelism. There could be applied two different strategies of parallelization.

First strategy is based on domain decomposition technique: each processor is
treated its own space subdomain; computation of particles’ coordinates, which
are located in a subdomain, is assigned to corresponding processor. The obvious
advantage of this algorithm is the theoretical opportunity of arbitrary number
of mesh nodes, because it’s needed to store 3D arrays only for mesh functions
defined in its subdomain. On the other hand it requires to transfer some particles

168 N. Snytnikov, V. Vshivkov, and V. Snytnikov

between processors at each timestep, because particles change coordinates and
subdomains during evolution. Also it’s needed to take into account possible lo-
calization of density (and, hence, huge number of particles) in small subdomains,
re-dividing domain and reassigning new subdomains to processors.

Second strategy, implemented for the present moment, consists of the follow-
ing: particles are distributed on processors in correspondance to their numbers
without taking into account their coordinates. Then each processor computes
coordinates of its particles on the next time step. The advantage of this algo-
rithm is that it does not require redistribution of particles during solving. At the
same time there is a restriction for the number of nodes of the mesh (not more
than 256×512×256) due to the storing 3D arrays for the whole domain. But for
meshes of average size (the most typical one is 256× 256× 256) this algorithm
is the most efficient. This strategy is limited only to collisionless models, since
taking into account possible collisions of particles implies interactions between
processors and exchanging data with each other.

4.3 Performance Measuring

Testing of implemented parallel algorithm was done on MVS-1000 in Siberian
Supercomputer Center and on MVS-1500 in Moscow Joint Supercomputer Cen-
ter. The greatest number of mesh nodes was 256 × 512 × 256 and number of
particles 109 with 200 processors. Fig. 2 shows speed-up factor for typical simu-
lations with mesh nodes 212×256×146 and number of particles 108. It’s shown
an estimation of computation time for sequential simulation (number of proces-
sors equal to 1), since simulation requirs more than 5 Gb of RAM. The ratio of
solving Poisson equation and Vlasov equation was 30% and 70% correspondingly
for the simulation with 40 processors.

The greatest speed-up factor was obtained on 20 processors and decreased
with increasing of number of processors because of the discussed problems with
the parallelization of Poisson equation.

It’s necessary to mention that with increasing number of particles it’s recom-
mended to increase number of processors. E.g., for simulations involving 4× 108

it’s natural to use from 40 up to 80 processors.

5 Applications

In this section we describe results of numerical simulations on supercomputers.
First of all it is interesting to investigate the reliability of quasi-3D model,

which is widely used for simulations of circumstellar disk [3]. A typical feature
of circumstellar disk is a massive central body. In the subsection 5.1 we describe
results of study of influence of central body on the vertical motions of thin disk.

Second series of numerical experiments (presented in subsection 5.2) are de-
voted to the investigation of equilibrium and stability of gravitating systems, the
one of the fundamental problems of stellar dynamics [1,5]. Analytical solving of
given class of problem has obvious restriction: it’s needed to simplify a problem

Study of 3D Dynamics of Gravitating Systems Using Supercomputers 169

Fig. 2. Speed-up factor depending on number of processors. Technical parameters:
212 × 256 × 146 mesh nodes, 108 particles.

and to consider only special class of systems, e.g., which have spherical or axis
symmetry, constant density and so on. The real DF of stellar systems are more
complex, and it seems that they can be restored only with numerical simulations.
Besides, it’s needed to restore DF with good accuracy, that implies employing
huge number of particles.

With the help of implemented parallel code it’s possible to numerically in-
vestigate equilibrium DF in the most general way without restrictions for the
form of distribution functions, which were typical for earlier attempts [6]. We
propose an approach for investigation of different kinds of equilibrium distribu-
tions with the help of solving non-stationary problem, that requires to observe
the evolution of the gravitating system during a lot of rotations. Starting from
given distribution, orbits of particles are intermixed during their evolution, so
the whole system moves to stationary state. Obtained function is considered as
equilibrium.

5.1 Influence of Central Body on the Vertical Motions of Thin Disk

The following axisymmetric function of surface density is used for initial state:

z = 0, σ(r) =

⎧
⎨

⎩
σ0

√

1−
(

r
R0

)2

, r ≤ R0,

0, r > R0;
z �= 0, f(t, r,u) = 0.

(6)

where σ0 is derived from the condition that the total mass of disk is equal to
M0.

Initial velocities of particles correspond to the circular rotation around origin.
Dispersions of radial and vertical velocities cr and cz are set in accordance with
Gauss distribution.

The following parameters are constants: sum of masses of the disk and central
body Mdisk +Mcb = 7.0, value of initial dispersion of radial velocity cr = 0.12.
As variable parameters we take initial value of vertical dispersion cz in the range
0.0001÷ 1.0 and ratio kM in the range kM = Mcb

Mdisk
= 0.0÷ 6.0.

170 N. Snytnikov, V. Vshivkov, and V. Snytnikov

In the case of kM ≤ 1.5 at earlier stage of evolution there are observed clus-
terization accompanied by bending of the disk (non-symmetric distribution of
matter w.r.t. the plane z = 0). At later stages a lot of matter are thrown from
the plane of the disk.

In the case of massive central body kM ≥ 2.0, and small vertical dispersion
0.0001 ≤ cz ≤ 0.2, at the first stage there are observed spirals (Fig.3 a,b). Then
disk evolves to the quasi-stationary state (Fig.3 b). Strong non-symmetries of
DF is not observed. More of that, at later stages of evolution disk has almost
constant height. Further increasing of kM leads to increasing of stability of the
disk both in vertical and radial directions.

So, employing quasi-3D model is suitable for simulations with initial distribu-
tions of matter in the form of thin disk and in presence of massive central body,
that is the case of circumstellar disk.

Fig. 3. Logarithm of surface density for the points of time t = 1.0 (a), t = 4.0 (b)
t = 15.0 (c) in the planes z = 0 (upper) and y = 0 (lower). Computation parameters:
kM = 4.0, cz = 0.01.

5.2 Approach to the Investigation of the Equilibrium States of
Gravitating System

Stability of uniform sphere with anisotropic distribution of velocities.
Good demonstration of reliability of the implemented numerical model for inves-
tigation of equilibrium states is Einstein’s model. In the initial step matter has
the form of sphere with the uniform density. Each particle has a circular rotation
around origin with arbitrary direction. Total angular momentum of the system
is equal to zero. It’s one of the models with analytically proved properties of
equilibrium and stability [1].

Numerical simulations with this initial distribution showed the same result.
The evolution of the system was observing during the several rotations of parti-
cles around the origin and no fluctuations of density were noticed.

Study of 3D Dynamics of Gravitating Systems Using Supercomputers 171

Fig. 4. Diagrams of rotation curve (a) and surface density for the points of time t = 0.0,
t = 2.0 and t = 24.0. Initial parameters: M0 = 1.0, cr = 0.5, cz = 0.09, cφ = 0.

Evolution of thin disk with exponential surface of density. Let us con-
sider approach proposed in the section 5 in the case of evolving thin disk with
exponential density surface, which is usually used for approximation of surface
density of real galaxies [7]:

σ(r) =
{
σ0e

− r
L , r ≤ R0,
0, r > R0;

(7)

where σ0 is derived from the condition that total mass is equal to M0, L is a
parameter of density scale. Initial velocities of matter are chosen in accordance

Fig. 5. Diagrams of rotation curve (a) and surface density for the points of time t =
0.0, t = 12.0 and t = 18.4. Initial distribution – approximation of the equilibrium
distribution function, M0 = 0.83.

172 N. Snytnikov, V. Vshivkov, and V. Snytnikov

with Gauss distribution with given dispersions cr, cz, cφ and mean values corre-
sponding to the rotation around origin.

Numerical simulations showed that the distribution function defined in such a
way is not an equilibrium one. At the same time after sufficiently great number of
rotations the system evolves to the equilibrium state (Fig. 4), with the ellipsoid
in central region, which rotates with constant angular velocity. On the Fig. 4
there are shown diagrams of rotation curve and surface density.

Then, obtained distribution function is approximated with the help of axisym-
metric mesh functions of surface density, azimuthal velocity, and dispersions of
velocities. At that we take into account matter only in central region of the do-
main (r < 3R0). This approximation is suitable because total mass of excluded
matter is less than 20% and it has a weak impact on the dynamics of matter in
central region. As it is shown on the Fig. 5 the obtained approximation is close
to equilibrium state.

6 Conclusion

We have implemented parallel numerical code, based on particle-in-cells method
and designed to study 3D dynamics of gravitating systems. Parallel imple-
mentation is effective for simulations with number of mesh nodes less than
212× 256× 146 and number of particles ∼ 108. To use finer mesh we discussed
possible strategy based on domain decomposition technique.

Using parallel code we are able to study a large class of gravitational physics
problems, that is demonstrated with apllications: investigation of central body
influence to the vertical dynamics of thin disk and study equilibrium and sta-
bility of gravitating system. To provide fine accuracy and large time scales for
numerical simulations, there is a fundamental requirement to use supercomput-
ers.

References

1. Fridman, A.M., Polyachenko, V.L.: Ravnovesie i ustoychivost’ gravitiruyushchikh
sistem. (Moscow: Nauka; revised English ed. 1984 Physics of gravitating Systems,
Vol.1: Equilibrium and Stability), Springer, Heidelberg (1976)

2. Hockney, R.W., Eastwood, J.W.: Computer Simulation Using Particles, p. 540.
McGraw-Hill, New York (1981)

3. Kuksheva, E.A., Malyshkin, V.E., Nikitin, S.A., Snytnikov, A.V., Snytnikov, V.N.,
Vshivkov, V.A.: Numerical Simulation of Self-Organisation in Gravitationally Un-
stable Media on Supercomputers. In: Malyshkin, V. (ed.) PaCT 2003. LNCS,
vol. 2763, pp. 354–368. Springer, Heidelberg (2003)

4. Vshivkov, V.A., Snytnikov, V.N., Snytnikov, N.V.: Simulation of three-dimensional
dynamics of matter in gravitational field with the use of multiprocessor computer.
Computational Technologies (in Russian) 11(2), 15–27 (2006)

Study of 3D Dynamics of Gravitating Systems Using Supercomputers 173

5. King, I.R.: Introduction to Classical Stellar Dynamics (in Russian), p. 214. URSS,
Moscow (2002)

6. Barnes, J., Goodman, J., Hut, P.: Dynamical instabilities in spherical stellar systems.
The Astrophysical Journal 300, 112–131 (1986)

7. Morozov, A.G., Khoperskov, A.V.: Physics of the disks (In Russian) http://
www.astronet.ru:8101/db/msg/1169400

http://www.astronet.ru:8101/db/msg/1169400
http://www.astronet.ru:8101/db/msg/1169400

Transient Mechanical Wave Propagation in

Semi-infinite Porous Media Using a Finite
Element Approach with Domain Decomposition

Technology

Andrey Terekhov1, Arnaud Mesgouez2, and Gaelle Lefeuve-Mesgouez2

1 Institute of Computational Mathematic and Mathematical Geophysics,
Prospect Akademika Lavrentjeva, 6, Novosibirsk, 630090, Russia

2 UMR Climate, Soil and Environment, University of Avignon, France,
Faculté des Sciences, 33 rue Louis Pasteur, F-84000 Avignon,

Phone: +33(0)490144463; Fax: +33(0)490144409
arnaud.mesgouez@univ-avignon.fr

Abstract. In this paper, the authors propose a numerical investigation
in the time domain of the mechanical wave propagation due to an im-
pulsional load on a semi-infinite soil. The ground is modelled as a porous
saturated viscoelastic medium involving the complete Biot theory. An
accurate and efficient Finite Element Method using a matrix-free tech-
nique is used. Two parallel algorithms are used: Geometrical Domain
Decomposition (GDD) and Algebraic Decomposition (AD). Numerical
results show that GDD algorithm has the best time. Physical numerical
results present the displacements of the fluid and solid particles over the
surface and in depth.

1 Introduction

The study of the mechanical wave propagation in porous media is a subject of
great interest in diverse scientific fields ranging from environmental engineering
or vibration isolation to geomechanics. At the macroscopic scale, the medium is
considered as a two-phase continuum. The Biot theory is known as the reference
theory to deal with the macroscopic mechanical wave propagation phenomenon,
see Biot [1] or Coussy [2] for instance.

Theoretical works are restricted to simple geometries. Consequently, they have
to be completed by numerical approaches such as Finite Element or Boundary El-
ement Methods, allowing the study of more complex problems to better represent
the ground. The difficult study of transient regimes in geomechanics has been
treated numerically by several authors but only for specific cases, Zienkiewicz
and Shiomi [3], Simon et al. [4] and Gajo et al. [5] for example. In particular, in
many cases, the tortuosity and the physical damping parameters are not taken
into account.

Moreover, even with an efficient and optimized finite element code, only a
restricted range of problems can be treated. As a matter of fact, solution of

V. Malyshkin (Ed.): PaCT 2007, LNCS 4671, pp. 174–183, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Transient Mechanical Wave Propagation in Semi-infinite Porous Media 175

practical problems (for instance, realistic 3D geometries, and problems with
short pulse load needing fine meshes for representing well the high frequencies)
usually requires millions of degrees of freedom. This is often virtually out of capa-
bilities of contemporary sequential computers either because of lack of memory
or abundantly long computation time. In all these cases, parallel programming
techniques may be a good solution to overcome the computational complexity.

In this paper, the authors propose a parallelized version of a finite element
C++ code specifically developed at the Climate Soil and Environment Labo-
ratory to study transient wave propagation. This approach includes the whole
Biot theory with all the couplings which represent the interactions between the
solid and fluid phases. The sequential version has previously been presented at
ICCS 2005, Mesgouez et al. [6].

Two parallelization techniques have been achieved: the first one uses an alge-
braic grid partitioning and the second one a Geometrical Domain Decomposition.
MPI standard library is used to exchange data between processors. Numerical
results, obtained for a two-dimensional problem, include the analysis of speed-up
and efficiency on several super computers.

2 Mechanical and Numerical Works

2.1 Spatial Scales and Macroscopic Approach

When we focus our attention on the description of a porous medium, the first
question to be put is that of the spatial scale of analysis: indeed, two approaches
are conceivable. The first one is situated at the microscopic scale. The charac-
teristic length size is the dimension of the pore. In this configuration, the solid
matrix is partially or completely filled with one or several viscous fluids. One
geometric point is thus located in one of the different identifiable solid or fluid
phases. Mechanical equations of each phase and mixture with compatible inter-
face conditions are written. They correspond to those of linear elasticity in the
solid and to the equations of Stokes in the fluid. This approach deals with prob-
lems like interface modelling or description of microscopic geological structures.
Homogenization is then obtained through asymptotic developments or averag-
ing procedures and leads to a macroscopic description of the porous medium,
see Terada and al. [8] or Coussy et al. [9] for instance. We obtain thus the fa-
mous set of macroscopic mechanical equations for a representative elementary
volume. In this macroscopic spatial description, the porous medium is seen as
a two-phase continuum. This scale, we study here, is well adapted to most of
practical geomechanical problems.

Writing ui and Ui respectively the macroscopic solid and fluid displacements
components, Biot’s equations can be written with usual notations as follows:

σij,j = (1− φ)ρsüi + φρf Üi (1)

p,i = − φ
K (U̇i − u̇i) + ρf (a− 1)üi − aρf Üi (2)

σij = λ0vεkkδij + 2μvεij − βpδij (3)
−φ (Uk,k − uk,k) = βuk,k + 1

M p. (4)

176 A. Terekhov, A. Mesgouez, and G. Lefeuve-Mesgouez

σij are the total Cauchy stress tensor components and p is the pore pressure.
The soil’s characteristics are: λ0v and μv (drained viscoelastic equivalent Lamé
constants), ρs and ρf (solid grains and fluid densities), φ (porosity),K (hydraulic
permeability representing the viscous coupling), a (tortuosity standing for the
mass coupling),M and β (Biot coefficients including the elastic coupling). In this
problem, the unknowns to be determined are the solid and fluid components of
displacements.

2.2 Finite Element Formulation and Numerical Resolution

To determine the solid and fluid displacements in the ground, we develop a
numerical code based on the finite element method for the space integration,
coupled to a finite difference method for the time integration. The main steps
are:

– some boundary and initial conditions are associated to the previous partial
differential system. Some modifications on the field equations are done in
order to lead to a Cauchy’s problem.

– integral forms are obtained using the weighted residual method. They are
then spatially and analytically discretized and lead to a time differential
system. The global differential system to be solved can be written as

[M]
d

dt
{W (G)}+ [K]{W (G)} = {F (G)}. (5)

[M] and [K] are respectively the global mass and stiffness matrices. {W (G)}
and {F (G)} are the global vectors of unknowns and solicitation. With the
developed technique, the mass matrix is diagonal and can be easily inverted.

– the backward finite difference method modified with an upward time param-
eter is used to obtain an approximate solution of the problem.

2.3 Structure of the Code and Parallelization

The sequential code called FAFEMO (Fast Adaptive Finite Element Modular
Object), developed to solve the previous problem, constitutes an efficient code
to deal with transient 2D problems and small 3D ones. The use of a matrix
free technique, not necessary for small cases, becomes interesting for huge 3D
configurations. An expert multigrid system is also used to optimize the problem
size and yields a modification of the global matrices at each time step. The two
previous techniques lead to a high performance level both for the storage and
the CPU costs. The C++ code is organized in three classes connected by a single
heritage: element, elementary matrices and building-resolution classes.

More informations on the finite element formulation and the sequential version
of FAFEMO can be found in reference [10].

For huge problems, the elementary vectors have to be calculated and assem-
bled for each time step since they are too expensive in terms of Input/Output
cost to be stored. In order to treat 3D problems and to perform intensive 2D

Transient Mechanical Wave Propagation in Semi-infinite Porous Media 177

parametric studies, we propose and compare two parallel algorithms to reduce
the time calculation.

The Unix/Linux gprof tool draws a time profile of the sequential code. For a
two-dimensional application, the elapsed time is divided as presented in Table
1, for each of the three classes.

Table 1. Time profile of the 2D sequential code

reading of the data files elementary matrices building-resolution
and element class class class

7.45% 90.60% 1.95%

The part which is the largest consumer of elapsed time clearly appears to
be the elementary matrices class. This can be explained as the elementary ma-
trices have to be calculated for each time step. Besides, as we use a matrix
free technique with a diagonal mass matrix, the resolution part is more efficient
and needs little computational time. Moreover, the process of construction of
the elementary matrices and vectors [Ke], [Me] and {fe} is iterative and inde-
pendent element by element. This independent and time-consuming loop can
thus be divided into several processors by distributing the n elements between
p quasi-equitable parts. A good load balancing is thus obtained.

2.4 Algebraic Decomposition (Grid Partitioning)

Firstly we propose grid partitioning based on algebraic decomposition which is
performed randomly without any geometric factors. Several advantages are:

– unlike the domain decomposition method, this technique does not need any
particular interface management. This is particularly important when an
expert multigrid system is activated, or when the geometry is changed.

– moreover, when the size of the grid is modified, the algebraic distribution
of the elements leads to an equitable load balancing between processors at
each time step.

– another advantage of this approach is that the implementation is as close to
the original sequential solver as possible.

The main disadvantage of Algebraic Decomposition is that this algorithm does
not take into account information concerning geometrical properties of the do-
main and all the information has to be communicated to a master processor.

The parallelization of the FAFEMO code corresponds to a SPMD program-
ming model with in this configuration an algebraic distribution of the differ-
ent finite elements of the grid. MPI standard library is used to exchange data
concerning the elementary matrices between master and slave processors. The
architecture of the parallelized version of the code is summarized on figure 1.

You can find more information and some numerical results obtained by the
authors on Algebraic Decomposition in [7] .

178 A. Terekhov, A. Mesgouez, and G. Lefeuve-Mesgouez

Element class

Elementary matrixes class

Parallelization

Elements 1 to n/p:
Processor 1

Elements (1-1)’ n/p to
|’n/p: Processor |

Communications

Elements (p-1)’ n/p to
n/p: Processor p

Master processor

Master processor

Master processor Building resolution class

Solver

Sleve processors

Fig. 1. Structure of the parallelized version of the C++ finite element code

2.5 Domain Decomposition

One of the most widespread parallel algorithms for solving problems with finite
elements method is the method of Domain Decomposition, which main advan-
tage is the use of information about geometrical form of area. Communication
operations are used only between neighboring domains. Therefore, the number
of communications is smaller than when we use algebraic decomposition. More-
over, global memory can be distributed between processors because we know
precisely how much memory each processor needs. Thus, in this case, we can
store the elementary matrices and vectors.

In the following, we propose to use DD technique. The main idea is to divide
area into several nonintersecting domains.

First, we convert the mesh into graph-format (see Metis documentation [11]).
Then, we use freeware soft for graph partitioning (Chaco [12], Metis [11]). These
programs realize graph partitioning algorithms, for instance: linear, internal-
KL, multilevel-KL, spectral. They associate each vertex of the graph with the
number of the domain it belongs to. In our problem, each vertex of the graph
corresponds to a node of an element. Before executing the FAFEMO program,
we create the communication map, which describes communication messages
between domains. For instance, figure 2 presents a simple part of the mesh. Two
numbers are associated to each node of the mesh: the first number is the global
number of the node, the second number is the number of the domain. Let’s
consider some cases with various numbering elements:

1. If the nodes of one element belongs to the same domain, we do not need to
exchange information between domains.

2. For an element presenting two identical domain numbers, for example (10,
a), (11, b), (12, b), processor ”a” needs to transfer data to processor ”b”
and processor ”b” needs to transfer data to processor ”a”.

Transient Mechanical Wave Propagation in Semi-infinite Porous Media 179

3. For an element with nodes belonging to three different domains, for instance
(11, a), (12, b), (13, c), processor ”a” needs to transfer data to processors
”b” and ”c”, etc.

(5,1)

(6,1)

(7,1)(8,2)

(2,2)

(1,2)

(4,2)

(3,2)

(9,1)

(10,1)

Fig. 2. Example of grid with marked nodes

Thus, in figure 2, the dark grey part represents data to be exchanged be-
tween the neighboring domains. High efficiency of the given algorithm is reached
because exchanges only occur between neighboring domains.

3 Results

In this section, numerical results are presented for 2D problems involving 25,617
(Test 1) and 100,620 (Test 2) nodes to estimate the performance of the paral-
lelized version of the FAFEMO+DD code. Two supercomputers were used:

1. Supercomputer Zeus (IBM sp4) is installed at the National Computer Cen-
ter of Higher Education (CINES, Montpellier, France). This cluster is based
on IBM Power4 1.3 GHz. Each node has 32 processors. The total num-
ber of nodes is 9. These nodes are connected by Switch Hight Performance
(HPS).

2. Supercomputer MBC15000-MB is installed at the Joint Supercomputer Cen-
ter (Moscow, Russia). It is a cluster based on PowerPC 970+ 2.2 GHz with
4 GB Shared RAM. Nodes are connected by high speed Myrinet 2000 net-
work (2Gb/S) and two GigabitEthernet. The peak performance of this su-
percomputer equals 8.13 Teraflops. Total amount of the RAM equals 1848
GBytes.

180 A. Terekhov, A. Mesgouez, and G. Lefeuve-Mesgouez

3.1 Test 1

In this paragraph, we consider the solution of equations (1-4) for the dimen-
sionless 2D geometry presented in figure 3. The applied solicitation is a vertical
impulse of very short duration which dimensionless value is 0.2 (corresponding
to 2 ms). The grid is selected according to the studied points and the duration
of the study. The boundary is then modelled with Dirichlet conditions, imposing
a zero displacement for each of the two phases.

The space (Ω) is of dimensionless radial size r = 3.5 (corresponding to 70 m).
It is built in a grid with 50,626 triangular elements and 25,617 nodes with 8
degrees of freedom, which is on the whole 204,936 degrees of freedom. One side
of the space grid triangle has a step dx = 0.03. In the following, we give only
dimensionless values; the three mechanical quantities chosen for this problem
are: μ = 1010 Pa, ρs = 2, 600 kg m−3 and η =0.01 s, from which we deduce
reference length and time: lref =19.5 m and tref = 0.01 s.

The characteristics of the ground have been chosen from a bibliographical
study. The papers used are in particular those of Gajo et al. [5], Akbar et al. [13]
and Dvorkin and Nur [14]. The dimensionless mechanical values are as follows:
drained viscoelastic equivalent Lamé constants λ∗0v = 0.556 and μ∗v = 0.833; first
Biot coefficient M∗ = 0.5267; second Biot coefficient β =0.72; density of solid
grains ρ∗s =1; density of fluid component ρ∗f = 0.3846; hydraulic permeability
coefficient K∗ = 0.65; porosity φ = 0.4; tortuosity coefficient a = 1.2; damping
coefficient η∗ = 0.1.

The equations (1-4) are solved using Backward Step Method for Cauchy’s
problem and Finite Element Method for spatial approximation. The time step
is 0.002 and the study duration is 3.

Figures 6-8 present speed-up, efficiency, elapsed time obtained on the two
supercomputers. For the MBC-15000MB, speed-up is a linear function whereas
for IBM supercomputer Zeus the non linear part can be explained by architec-
ture of processors. We assume that all frequently used data are put in cache
memory which leads to a non linear increasing speed-up and an increasing effi-
ciency. Moreover, the chosen scale magnifies the irregularities of the curve. This

Fig. 3. Example of geometry

Transient Mechanical Wave Propagation in Semi-infinite Porous Media 181

Fig. 4. Test 1. Speed-up on MBC-
15000MB obtained with AD

Fig. 5. Test 1. Efficiency on MBC-
15000MB obtained with AD

Fig. 6. Test 1. Speed-up on MBC-
15000MB and Zeus obtained with GDD

Fig. 7. Test 1. Efficiency on MBC-
15000MB and Zeus obtained with GDD

Fig. 8. Test 1. Elapsed time in seconds on
MBC-15000MB and Zeus obtained with
GDD

Fig. 9. Test 2. Speed-up on MBC-
15000MB obtained with GDD

182 A. Terekhov, A. Mesgouez, and G. Lefeuve-Mesgouez

Fig. 10. Test 2. Efficiency on MBC-
15000MB obtained with GDD

Fig. 11. Test 2. Elapsed time in seconds
on MBC-15000MB obtained with GDD

picture shows better results for Geometrical Domain Decomposition than the
ones obtained by Algebraic Decomposition method, see figure 4-5.

3.2 Test 2

For this test, we use the same physical and numerical parameters as in Test 1,
but we change the numbers of nodes and elements: number of elements equals
100, 620 and number of nodes 199, 142. Figures 9-11 present the speed-up, effi-
ciency and elapsed time for large numbers of processors. We can say that results
are not good because the grid is too small for the use of many processors. If
we calculate the number of nodes per processor, we obtain about 5000 − 1000
nodes. We use GID generator which does not allow to create very large grids
for supercomputers. In further work, we will introduce huger grids using parallel
mesh generator. Some physical parameters studies using FAFEMO code can be
found in [10].

4 Conclusion

A parallelized finite element code has been presented to study wave propagation
phenomena in poroviscoelastic grounds. In fact, the applications are wider and
can concern for instance porous bones or foams. Besides, the code can treat all
propagation wave phenomena: a version studying electromagnetic wave propa-
gation has been developed in the same way.

Two parallel algorithms were compared and has shown that Domain Decom-
position Method gives better results for huge problems.

References

1. Biot, M.A.: Theory of propagation of elastic waves in a fluid-saturated porous solid.
I- Low-frequency range. The Journal of the Acoustical Society of America 28(2),
168–178 (1956)

Transient Mechanical Wave Propagation in Semi-infinite Porous Media 183

2. Coussy, O.: Mécanique des milieux poreux. Ed. Technip, Paris (1991)
3. Zienkiewicz, O.C., Shiomi, T.: Dynamic behaviour of saturated porous media: the

generalized Biot formulation and its numerical solution. International Journal for
Numerical and Analytical Methods in Geomechanics 8, 71–96 (1984)

4. Simon, B.R., Wu, J.S.S., Zienkiewicz, O.C., Paul, D.K.: Evaluation of u-w and
u-π finite element methods for the dynamic response of saturated porous media
using one-dimensional models. Int. J. Numer. Anal. Methods Geomech 10, 461–482
(1986)

5. Gajo, A., Saetta, A., Vitaliani, R.: Evaluation of three and two field finite element
methods for the dynamic response of saturated soil. Int. J. Numer. Anal. Methods
Geomech 37, 1231–1247 (1994)

6. Mesgouez, A., Lefeuve-Mesgouez, G., Chambarel, A.: Simulation of transient me-
chanical wave propagation in heterogeneous soils. In: Sunderam, V.S., van Albada,
G.D., Sloot, P.M.A., Dongarra, J.J. (eds.) ICCS 2005. LNCS, vol. 3514, pp. 647–
654. Springer, Heidelberg (2005)

7. Mesgouez, A., Lefeuve-Mesgouez, G., Chambarel, A., Fougere, D.: Numerical mod-
eling of poroviscoelastic grounds in the time domain using a parallel approach. In:
Alexandrov, V.N., van Albada, G.D., Sloot, P.M.A., Dongarra, J.J. (eds.) ICCS
2006. LNCS, vol. 3992, pp. 50–57. Springer, Heidelberg (2006)

8. Terada, K., Ito, T., Kikuchi, N.: Characterization of the mechanical behaviors of
solid-fluid mixture by the homogenization method. Comput. Methods Appl. Mech.
Eng. 153, 223–257 (1998)

9. Coussy, O., Dormieux, L., Detournay, E.: From Mixture theory to Biot’s approach
for porous media. Int. J. Solids Struct. 35, 4619–4635 (1998)

10. Mesgouez, A., Lefeuve-Mesgouez, G., Chambarel, A.: Transient mechanical wave
propagation in semi-infinite porous media using a finite element approach. Soil
Dyn. Earth. Eng. 25, 421–430 (2005)

11. http://www-users.cs.umn.edu/∼karypis/metis
12. Hendrickson, B., Leland, R.: The Chaco User’s Guide: Version 2.0. Tech Report

SAND94-2692 (1994)
13. Akbar, N., Dvorkin, J., Nur, A.: Relating P-wave attenuation to permeability.

Geophysics 58(1), 20–29 (1993)
14. Dvorkin, J., Nur, A.: Dynamic poroelasticity: a unified model with the squirt and

the Biot mechanisms. Geophysics 58(4), 524–533 (1993)

http://www-users.cs.umn.edu/~karypis/metis

The Location of the Gene Regions Under

Selective Pressure: Plato Algorithm
Parallelization

Yuri Vyatkin1, Konstantin Gunbin1,
Alexey Snytnikov2, and Dmitry Afonnikov1

1 Institure of Cytology and Genetics SB RAS
Lavrentyev aven., 10, 630090, Novosibirsk, Russia

{vyatkin,genkvg,ada}@bionet.nsc.ru
2 Institute of Computational Mathematics and Mathematical Geophysics SB RAS

Lavrentyev aven., 6, 630090, Novosibirsk, Russia
snytav@ssd.sscc.ru

Abstract. The number of sequenced genes is dramatically increasing
with that of international genomic projects. The gene sequence infor-
mation proved to be helpful in predictions of protein structure, pro-
tein function and mutations targeted at improving the biological and
biotechnological properties of proteins. Processing of the immense in-
formation stored in the databases demands high-throughput computa-
tional approaches. Here, we performed a parallelization of the algorithm
for analysis of nucleotide substitutions in gene sequences from different
organisms previously implemented in the PLATO program. The results
demonstrated that the parallelization of the algorithm provides linear
speedup of the PLATO program.

Keywords: gene evolution, maximum likelihood, algorithm, parallel
computing.

1 Introduction

Gene sequence information is accumulating at an accelerating pace at genomic
centers worldwide. The incremental number of sequenced genes stored in the
databases in now over 60 millions for more than 165,000 organisms (http://www.
ncbi.nlm.nih.gov/Genbank/). Analysis of the sequences provides clues to pre-
diction of the function of genes, their evolutionary features, structure of the
proteins they encode, also mutation effect on their structure.

An important problem in comparative analysis of genomic sequences from dif-
ferent organisms is detection of genes or their parts that possess specific modes
of nucleotide substitutions with significant deviations in the evolutionary pa-
rameters resulted from selective forces due to their specific origin, structure, or
function. Therefore, the obtained information is helpful in detecting genes of
functional importance. Grassly and Holmes [1] have proposed a method for the

V. Malyshkin (Ed.): PaCT 2007, LNCS 4671, pp. 184–187, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

http://www.ncbi.nlm.nih.gov/Genbank/
http://www.ncbi.nlm.nih.gov/Genbank/

The Location of the Gene Regions Under Selective Pressure 185

detection of gene regions evolving anomalously using the likelihood approach im-
plemented in the PLATO program (http://evolve.zps.ox.ac.uk/software/
Plato/main.html). Due to use of computation of the likelihood and the Monte
Carlo sampling to estimate statistical significance of likelihood deviation, the
original program was time- and labor-consuming. This became critical in large
scale evolutionary analyses. In this work, we perform parallelization of the
PLATO algorithm and apply the modified program to analysis of gene sequences
of the myostatin family [2].

2 Methods and Algorithms

The PLATO algorithm is based on the likelihood approach [3]. With this method,
the occurrence probability of a sequence, in a given evolutionary model, defined
by parameters such as phylogenetic tree topology, nucleotide substitution rate
and probability, is estimated. It is assumed that nucleotides mutate indepen-
dently, thus the likelihood of the sequence is the product of the likelihood for
each nucleotide site, and their logarithms are summed up. To identify the anoma-
lously evolving regions, the function was calculated for a window scanning along
a sequence:

Q =

∑i<(sp+s)
i=sp lnLi

s

/ ∑i<sp
i=1 lnLi +

∑i=n
i=(sp+s) lnLi

n− s . (1)

For the sequence of the length n and the sliding window of the length s starting
from the site sp the logarithmic likelihoods, Li, for each site i are summed over
the region within the window; the sum is divided by the length of the region. The
denominator contains the average likelihood for the nucleotide sites except the s
region. Thus, the value Q is a measure of the mean likelihood for the particular
window relative to the mean likelihood for the rest of the sequence. The gene
regions with high Qs correspond to the regions with the least likelihoods and
are most likely subject to anomalous evolution (due to natural selection, genetic
recombination etc.). Authors used Monte Carlo simulation to estimate statistical
significance of the Q parameter using Z-score technique [1].

Work with the PLATO program requires laborious calculations to estimate
likelihood function in sequence sites. PLATO calculates the Q value for the
window s from 5 nucleotides to n/2 in length, for all windows starting form
the sp position along the sequence (1 ≤ sp ≤ n− s+ 1). The Q values for each
position and window length form the matrix. The calculation of the matrix is the
most time consuming part of the algorithm. In our parallel implementation, the
matrix element calculation was equally distributed among the processors as jobs.
This distribution is done automatically, depending on how many processors are
accessible to the program. Thus, each processor contains a piece of the resulting
matrix after finishing its job. The pieces are assembled into the matrix, which is
then sent to all the processors so that each contains a full copy of the similarity
matrix for the sequences being analyzed by the sliding window. Parallelization
is done using the MPI library.

http://evolve.zps.ox.ac.uk/software/Plato/main.html
http://evolve.zps.ox.ac.uk/software/Plato/main.html

186 Y. Vyatkin et al.

1

Fig. 1. Performance of the PLATO par-
allel version. The number of processors
used for PLATO implementation on the
myostatin gene family is plotted along the
X axis. Calculation time (sec) is plotted
along the Y axis.

Nucleotide site index

180 360 540 720 900

2

Fig. 2. Results of the PLATO algorithm
analysis of the myostatin family genes.
The X axis corresponds to the nucleotide
site number at the position of myostatin.
The Z-score calculated using PLATO is
plotted along the X axis. The functional-
ity of the myostatin sequence is shown in
the graph: LAP, black, TGF-b, grey rect-
angles.

Aligned nucleotide sequences of related genes from several organisms, also
phylogenetic tree topology, are PLATO input. PLATO outputs a list of gene
regions whose evolutionary mode was anomalous as opposed to the rest of the
gene.

Here, we analyse the evolutionary features of the genes of the myostatin fam-
ily. The myostatins are negative regulators of skeletal muscle development and
regarded as good drug targets. There was reason expect that therapeutics that
modulate skeletal muscle growth would be useful for disease conditions such as
muscular dystrophy, sarcopenia, cachexia, even diabetes [2]. The myostatins are
secreted from the cell in the non-active dimer form, noncovalently bound at their
N-ends containing the so-called LAP (Latency Associated Peptide) domains. For
conversion to the active form, proteins are activated by detachment of the TGF-b
(functional domain) and LAP from each other, which occurs through site-specific
proteolysis of the LAP domain [4]. The domains TGF-b and LAP accomplish
different functions. Using the PLATO program, we analyse here the evolutionary
modes of the myostatin gene regions to compare their evolutionary features.

Multiple alignment of myostatins contains 44 sequences 1002 nucleotides in
length. The PHYML program was utilized to reconstruct the phylogenetic tree [5].

3 Results

The original PLATO version did not allow to analyse the myostatin family be-
cause work with such long sequences was unstable. Before proceeding to paral-
lelization, the code was improved. The parallel version of PLATO is more stable
and calculation time under multiprocessor mode is significantly reduced.

The Location of the Gene Regions Under Selective Pressure 187

Calculations using the parallel version of PLATO ran at PC-clusters with
different numbers of CPUs. The program was developed and bug-fixed on MVS-
1000 at the Siberian Supercomputer Center in Novosibirsk (128 Alpha 21264
processors), most calculations were done on MVS-15000 at the Joint Supercom-
puter Center in Moscow (900 PowerPC 970FX processors). The more processors
were employed per task, the less time it took to complete the calculations (Fig.
1); for example, 256 processors did the job in 15 seconds (for comparison, one
processor did it in 45 minutes). The tests have shown the linear speedup of the
program relative to the number of processors.

Analysis of sequences in the myostatin family genes carried out using the
modified PLATO program demonstrated that the Q value Z-score is greater
than the value of 3 for the N-end LAP domain, and it is 0 for the TGF-b domain
(Fig. 2). The significant deviation of the Q parameter in the region of the LAP
domain may be due to the positive selective pressure, as previously reported [6],
[7].

Acknowledgments. This work was supported by the program Promotion of
Scientific Potential in Higher Education Institutions of Russian Federal Agency
on Education, project 2.1.1.4935, program 10002-251 /P-25 /155-270 /200404-
082 ”Biosphere Origin and Evolution” of the Presidium of the Russ. Acad. Sci.,
CRDF grant RUX0-008-NO-061, and grants 05-04-49141-a, 05-07-98012-p from
Russian Foundation of the Basic Research.

References

1. Grassly, N.C., Holmes, E.C.: A likelihood method for the detection of selection and
recombination using nucleotide sequences. Molecular Biololy Evolution 14(3), 239–
247 (1997)

2. Tsuchida, K.: Activins, myostatin and related TGF-beta family members as novel
therapeutic targets for endocrine, metabolic and immune disorders. Current Drug
Targets – Immune, Endocrine, Metabolic Disorders 4(2), 157–166 (2004)

3. Felsenstein, J.: Evolutionary trees from DNA sequences: a maximum likelihood ap-
proach. Journal of Molecular Evolution 17(6), 368–376 (1981)

4. Lee, S.J.: Regulation of muscle mass by myostatin. Annual Reviev Cellellular De-
velopment Bioliology 20, 61–86 (2004)

5. Guindon, S., Lethiec, F., Duroux, P., Gascuel, O.: PHYML Online: a web server for
fast maximum likelihood-based phylogenetic inference. Nucleic Acid Research 33
(Web Server issue), W557–W559 (2005)

6. Tellgren, A., Berglund, A.C., Savolainen, P., Janis, C.M., Liberles, D.A.: Myostatin
rapid sequence evolution in ruminants predates domestication. Molecular Phyloge-
netics Evolution 33(3), 782–790 (2004)

7. Kerr, T., Roalson, E.H., Rodgers, B.D.: Phylogenetic analysis of the myostatin gene
sub-family and the differential expression of a novel member in zebrafish. Evolution
Development 7(5), 390–400 (2005)

Object Serialization and Remote Exception

Pattern for Distributed C++/MPI Application

Karol Bańczyk, Tomasz Boiński, and Henryk Krawczyk

Gdańsk University of Technology, Faculty of Electronics, Telecommunication and
Informatics, ul. Gabriela Narutowicza 11/12, 80-952 Gdańsk

{aban,tobo,hkrawk}@eti.pg.gda.pl

Abstract. MPI is commonly used standard in development of scientific
applications. It focuses on interlanguage operability and is not very well
object oriented. The paper proposes a general pattern enabling design of
distributed and object oriented applications. It also presents its sample
implementations and performance tests.

Keywords: MPI, object serialization, remote exception handling.

1 Introduction

MPI[1] is a widely accepted standard for message passing in scientific applica-
tions. It focuses on interlanguage compatibility (FORTRAN, C, C++) rather
than on leveraging a single language constructs. Nevertheless, in many C++ ap-
plications a more object oriented, MPI based network interface (later referred to
as connector) would be desireable. Although bindings for C++ were introduced
to MPI [1], more sophisticated features are often needed for practical use.

This work focuses on object serialization and remote exception handling. The
former is a mechanism for converting objects between their in-memory repre-
sentations and a stream of bytes. The latter allows us to transmit exceptions
occurring in a remote server process to the calling client process. Some example
applications are also shown.

The paper consists of five sections: Section 2 define design goals; Section 3
presents the proposed pattern; Sections 4 and 5 provide sample implementations
and Section 6 discusses certain experimental results.

2 Design Goals

The connector should provide methods for collective and for point-to-point com-
munication as well the possibility to receive exceptions that occurred remotely.
A remote exception should be handled in the same way as any local exception.
An application satisfying those features could be implemented without any new
communication layer. Most of the design goals could be achieved using either
the SR language [5] or its Java based ancestor, JR [6] [4], or else MPI wrappers
for Java (like mpiJava [10]).

V. Malyshkin (Ed.): PaCT 2007, LNCS 4671, pp. 188–193, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Object Serialization and Remote Exception Pattern 189

It is risky to write a sophisticated program in a language, such as SR, which
has small community around it and few available libraries. Java serialization
mechanisms has negative impact on overall performance (which is confirmed by
the below mentioned results). Similarly, the mpiJava, as a wrapper around C,
introduces additional overhead. So we decided to create the C++ application
and implement simplified versions of suitable Java oriented mechanisms.

3 Architecture of Application Pattern

The assumed architecture is depicted in Fig. 1. with two lower layers: Object
Lifecycle Management (OLM) and Object Serialization (OS), both inspired by
Java’s mechanisms, i.e. reflection and serialization. The former enables class
identification and memory management for objects. The letter provides methods
for writing and reading objects to/from a stream of integers.

Serialization, though inspired by Java[8], is a simple solution. Per class imple-
mentation is needed for each serializable object, no security issues are considered
and the serialized stream contains no matadata. This solution requires more de-
velopment time, but reduced serialization time. Similarly, in Java a per class
implementation is also needed, if performance issues are a concern.

The connector transmits serializable Message objects between the nodes. It
uses MPI as its underlying network communication library but also Object Se-
rialization with Object Lifecycle Management for converting object messages
to/from byte sequences required by MPI.

Every exception occurring during handling procedures is caught by the com-
munication layer, transmitted through the network to the appropriate node and
thrown the next time that node invokes a method on the communication layer.

Fig. 1. Application architecture pattern

4 Implementation

4.1 Basic Classes

In the proposition each serializable class has to be subclass of the IntSerializ-
ableObject class and has to implement writeToInts and readFromInts methods.
A special Exception class was also defined. Unfortunately, it is impossible to
transmit the original exception object itself. The C++ specification [7] states

190 K. Bańczyk, T. Boiński, and H. Krawczyk

that the memory for the temporary copy of the exception being thrown is allo-
cated in an unspecified way thus allowing each compiler implementation to do
it differently. This conflicts with the idea of ObjectFactory and could lead to
uncontrollable memory leaks if not handled properly. Both the abovementioned
Message class and Exception class needs to be serializable.

Some sublasses of Message are defined: SimpleMessage used for wrapping
requests and responses; CarrierMessage employed in transmitting any number
of different objects of the IntSerializableObject type in one communication at-
tempt; and ExceptionMessage used for wrapping and transmitting exceptions.

Any of given classes can be further subclassed by any number of more spe-
cialized ones to better suite the given solution.

4.2 Serialization

Here is and example ofserialization algorithm: two objects, containing fields f1
and f2, wrapped into CarierMessage, will be serialized in the following way:

1. CarrierMessage class Id is written so that Object Factory will be able to
recreate it;

2. CarrierMessage’s writeToInts method is invoked in such a way that:
(a) the object’s Id is written so that recipient can deduct meaning of this

message, i.e. if it is a message with results or a control message,
(b) number of contained objects is written (here 2),
(c) for each of the objects its class Id is written and its writetoInts method

is invoked; this method stores Id and fields of that object.

Then, the message is being send and after receiving the serialized object it is
recreated as follow:

1. Class Id is read and used for recreating the object, CarrierMessage in this
case;

2. CarrierMessage readFromInts method is executed; this method:
(a) restores value of it’s Id,
(b) reads number of contained objects,
(c) each contained object is being recreated and it’s readFromInts method

is employed.

4.3 Remote Exceptions

Exceptions were added to MPI C++ bindings. However, they only apply to
MPI communication operations so a more general solution for user aplication
exceptions is needed.

Fig. 2 presents the algorithm for remote exception handling. When an excep-
tion on a remote node occurs and cannot be handled locally on that node, it is
caught and wrapped into an ExceptionMessage object. That object is serializable
and thus can be transmitted through the network. After that it is deserialized
and thrown again on the target node. Later, on a proper solution for the problem,
it can be transmitted to the node where the exception originated.

Object Serialization and Remote Exception Pattern 191

Fig. 2. Remote exception handling algorithm

5 Application Examples

5.1 Assertions

Assertions are a well-known method for finding bugs in software[2]. If a con-
dition is not fulfilled on a single node the standard C++ assert macro silently
terminates, leaving the other nodes completely unaware of that fact.

We created our own version called xassert. When the assertion fails on one
node, the process throws an Exception. It reaches the master node and causes
a standard fatal error handling procedure that can, for example, send all the
slaves a termination message and gracefully shut down the whole system.

5.2 Exceptions Thrown in a Slave Node

We developed a master-slave applications designed to solve timetabling problem
[3]. Exceptions thrown within slave nodes may sometimes be handled locally,
like buffer overflow errors, otherwise have to be passed to master. When, for
example, a slave node cannot generate random individuals for given input data,
an exception needs to be passed to the master node, where the user is notified
about the problem and can apply the solution for it. This approach can be used
in any type of client/server approach.

6 Test Results

This section shows the results proving serialization’s efficiency. All presented
tests were performed on a 10 node cluster. Each node consists of 4 Intel Xeon
CPU 2.80GHz and has 4GB of RAM. The nodes are connected via gigabit eth-
ernet network. Measured latency was around 100 microseconds.

192 K. Bańczyk, T. Boiński, and H. Krawczyk

6.1 Serialization’s Overhead

Table 1. compares time (in microseconds) of preparation of MPI message buffer
with serialized objects by means of the proposed serialization mechanisms to
writing to a raw integer buffer. For this test we have created a serializable class
containing a vector of integers of agiven length. No actual sending is performed.

Table 1. Serialization time in microseconds

Vector size With serialization Without serialization With/Without ser.

1 1.62 0.20 8.10

10 2.74 0.21 13.05

100 4.84 0.40 12.10

1000 10.46 1.37 7.64

Average: 10.22

The average serialization is 10.22 times slower than writing data directly to
integer vector. Nevertheless, it is by one level of magnitude shorter than the
latency time, and it simplifies and structurizes the code, which makes the per-
formance loss is acceptable.

6.2 Comparison to Java

Java offers very good methods of serialization and remote exception handling.
These methods, however, introduce additional overhead both in terms of needed
time and size of the result. For this test, a simplified connector was imple-
mented in Java. Also two realizations of serialization were provided: normal
(standard java.util.ArrayList class with standard serialization) and optimized
(using com.sosnoski.util.array.IntArray [9], an array optimized for storing inte-
gers and custom read and write methods).

Table 2. Java and C++ serialization comparison

Vector size Standard Java Optimized Java C++

10 32.00 25.00 2.74

100 107.00 16.00 4.84

1000 1180.00 43.00 10.46

The results are presented in Table 2. (in microseconds). Java serialization
is slower than the proposed C++ implementation, especially when using stan-
dard Java classes. Although simpler to code, optimized Java serialization is 4 to
10 times slower than C++ implementation. Additionally, C++ application in
general has smaller memory requirements.

Object Serialization and Remote Exception Pattern 193

7 Conclusions

The object serialization presented in the paper proved to be efficient and simple
for implementation. All types of objects are being serialized in the same manner
thanks to usage of integers as a common way of representing data. It allowed
us to transport a wide range of objects between nodes. The presented solution
provides full transparency both from object’s and application’s point of view. In
all those aspects it is similar to Java solutions yet faster and simpler.

The proposed remote exception handling, is simple but requires forming a
special Message objects for each type of exception sent. Those, however, can be
coded once and included into a library for future reuse.

In addition to design goals, introduction of a Connector makes applications,
built with this patter in mind, extendable. Communication performance and
reliability tuning becomes very easy as only changes to Connector needs to be
done.

References

1. Message Passing Interface Forum: MPI-2: Extensions to Message-Passing Interface.
Message Passing Interface Forum (1997)

2. Andrew, H., David, T.: The Pragmatic Programmer: From Journeyman to Master.
Addison Wesley Longman, Redwood City (2000)

3. Bańczyk, K., Boiński, T., Krawczyk, H.: Parallelisation of genetic algorithms for
solving university timetabling problems. In: PARELEC 2006, pp. 325–330. IEEE
Computer Society, Los Alamitos (2006)

4. Chan, H.N., et al.: An Exception Handling Mechanism for the Concurrent Invo-
cation Statement. In: Cunha, J.C., Medeiros, P.D. (eds.) Euro-Par 2005. LNCS,
vol. 3648, pp. 699–709. Springer, Heidelberg (2005)

5. SR Language: http://www.cs.arizona.edu/sr/
6. JR Language: http://www.cs.ucdavis.edu/∼olsson/research/jr/
7. National Committee for Information Technology Standards: International Stan-

dard ISO/IEC 14882, Programming Language - C++ Approved by NCITS as an
American National Standard, http://www.ncits.org/standards/pr14882.htm

8. Java Serialization Specification, version 1.5: http://java.sun.com/j2se/1.5.0/
docs/guide/serialization/spec/serialTOC.html

9. Sosnoski, D.: Type-Specific Collections Library. http://www.sosnoski.com/
opensrc/tclib/index.html

10. mpiJava: http://www.hpjava.org/mpiJava.html

http://www.cs.arizona.edu/sr/
http://www.cs.ucdavis.edu/~olsson/research/jr/
http://www.ncits.org/standards/pr14882.htm
http://java.sun.com/j2se/1.5.0/docs/guide/serialization/spec/serialTOC.html
http://java.sun.com/j2se/1.5.0/docs/guide/serialization/spec/serialTOC.html
http://www.sosnoski.com/opensrc/tclib/index.html
http://www.sosnoski.com/opensrc/tclib/index.html
http://www.hpjava.org/mpiJava.html

Improving Job Scheduling Performance with

Dynamic Replication Strategy in Data Grids

Nguyen Dang Nhan1, Soon Wook Hwang1, and Sang Boem Lim2

1 Korea Institute of Science and Technology Information,
Daejeon, Republic of Korea

{ndnhan, hwang}@kisti.re.kr
2 Konkuk University,

Seoul, Republic of Korea
sblim@konkuk.ac.kr

Abstract. Dealing with a large amount of data in Data Grids makes the
requirement for efficient data access more critical. In this paper, we pro-
posed a new approach to replication problem by organizing the data into
several data categories that it belongs to. This organizing will help im-
proving placement strategy of data replication. We studied our approach
in combination with scheduling issue and evaluating it through simula-
tion. The result shows that our strategy has improved the scheduling
performance by 30%.

1 Introduction

Data Grid is an integrating architecture that allows the connection of hundreds of
geographically distributed computers and storage resources located in different
part of the world to facilitate sharing of data and resources [4]. Dealing with
large amount of data that are geographically spread causes many challenges to
Data Grid. One of them is how the scheduling efficiently work with the amount
of data and the impact of replication to the scheduling performance.

1.1 Motivation

Replication and scheduling problem has been studied separately for a long time.
However those of Data Grid have just recently received attention from researchers.
Effective job scheduling in Data Grid has its own complicated characteristics since
it deals with a large amount of data input in the dynamic environment of Grid. The
decision of where and when to execute a job is made by considering the job require-
ment and current status of The Grid, here are computational, storage and network
resources. In Data grid, the performance is greatly influenced by the data’s locality
[5]. A good scheduling strategy will allow shorter access to required data, therefore
reduces the data access time. Vice versa, replication strategy that allows placing
data in a wisely manner will offer a faster access to files require by grid jobs, hence
increases the job execution.

V. Malyshkin (Ed.): PaCT 2007, LNCS 4671, pp. 194–199, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Improving Job Scheduling Performance 195

1.2 Related Works

There are some recent works that address the problem of scheduling and/or
replication of Data Grid, and their combination. The importance of data locality
in job scheduling problem was first proposed by Ranganathan and Foster [5]. The
authors propose Data Grid architecture and evaluate the scheduling performance
in combination with replication. Even though the architecture and algorithms
are simple, results of this study show the importance of data locality in job
scheduling.

In OptorSim [1,2], data replication is combined with job scheduling in a two-
stage optimization mechanism. Our proposed architecture, however, is the com-
bination of the two mentioned above. Some more recent works by Chakrabati,
et al. [6] or Tang Ming et al. [7] improved the previous works by integrating the
scheduling and replication strategy to improve the scheduling performance.

Having analyzed these works, the author found two shortcomings. The first
one is the relationship among data and between the data and job using them.
Instead of relying on the grid capability, we approach the problem from the
job and data property. The second issue is that the important role of Dataset
Scheduler was not fully recognized.

This paper is organized as followed: Section 2 describes the scheduling issue,
section 3 goes in detail the replication strategy, of which the simulation results
are presented in Section 4. Section 5 summarizes the paper.

2 Scheduling Strategy

Scheduling strategy is relied on the estimation of completion time of a job:

ETTCj,i = max{DTf(j),i, QTj,i)}+ EETj,i . (1)

This estimation equation is similar to what was introduced in [7]. In the
real case, the work of obtaining QTj,i - queuing time in site i - is quite simple.
Suppose that j-1 is the last job in site i’s queue. We can realize that QTj,i =
ETTCj−1,i. Resource broker can communicate with local scheduler to obtain
ETTCi−1,j. Data transferring time DTf(j),i can also be estimated by the Grid
status information as described in [7].

3 Dynamic Replication

We assume that Data Grid is used for some fields of study, such as Physics,
Biology, Chemistry, Meteorology, etc. These fields can be divided into sub-fields,
for example biology can be divided to cell biology, molecular of biology, cell
technology, etc. Data in Data Grid must belong to one of these fields. The reason
behind this assumption is that data in one field rarely or never be used in other
fields. By doing so, we can form a hierarchical tree of data category, on which we
define the relationship between data in same category and relationship between

196 N.D. Nhan, S.W. Hwang, and S.B. Lim

nearby categories. Our idea is to gather the data that are ”related” to each other
into the small region so that the job that uses such data will be executed within
that region in order to lower data transfer cost. Considering current data and
scenario, we can just define a flat category system, including a set of category.
Data in one category can only be used with data in the same one.

With the above assumption, we define an strategy called Dynamic Data Repli-
cation Strategy (DR) to solve the replication question (which data to be repli-
cated and where to place the replica) in following sections.

3.1 Replica Decision

In order to decide which file needs to be replicated, we use a metric call average
number of access of a file as indicated in [7]. In replication mechanism, each
replication server maintains data accesses record. When it is time to replicate
data, all replication servers send the access records to the central replication
manager. The manager will aggregate and create a summarized access record for
every unique file identifier (FID). Each item NOA(f) on the record indicates
the times that a file with unique ID f is accessed on the whole grid system. Once
the average number of accesses is calculated, if a replica is accessed more than
the average, it needs to be replicated.

– Compute average number of access:

NOA =
∑

∀f

NOA(f)/N . (2)

N : number of distinguished data file (number of FID) in Grid system.
NOA(f): number of access of file f

– For every file f that satisfies:

NOA(f)
NOR(f)

× |f | > NOA× |f | . (3)

(NOR(f): number of replicas of file f on the whole grid system; |f | is average
file size of all files in the system)
create new replica for f at site chosen by Replication Placement Strategy.

3.2 Replica Placement

As described above, our strategy is to place replicated files that belong to the
same category close to each other so that job of the same category will be
executed nearby. Then, the cost of transferring files will be reduced. We call this
strategy Dynamic Replication Placement (DP).

To measure how close a replica is to the data in the same category, we define
a new concept: Dis(i.e. Distance).

Improving Job Scheduling Performance 197

– Distance is measured from site D to site D1 for a file f (of category C) is
defined as time to transfer all files that belong to C on D1 to D: If D is the
same as D1, then Dis(f,D1) = 0. Else:

Dis(fD, D1) = ±

⎛

⎝
∑

fi∈D1,fi∈C

|fi|

⎞

⎠ /BWD,D1 . (4)

Dis(fD,D1) carries sign +(−) when D1 does (does not) contain a replica of
f . It means the further the distance of the two replicas of one file, the better
it is. However, they are close enough to other files of the same category.

– Similarly, distance for a replica f (of category C) on site D to all files of C
is time to transfer all files belongs to category C on the Grid system to D:

Dis(fD) =
∑

∀Di

Dis(fD, Di) . (5)

Lower Dis(fD) indicates that fD is closer to other files in the same category.

To choose a site to place a new replica, Dis(f,D) for each site in the Grid
system is evaluated. Site with lowestDis(f,D) will be chosen to store the replica.
We use Least Recently Used (LRU) [2] as replacement strategy for its efficiency.

4 Performance Studies

In order to evaluate the performance of the replication strategy, the OptorSim
simulation tool and The EU Data Grid configuration are used. The grid job is
submitted to the RB for every 2.5 seconds. Each computing node has a processing
speed of 0.1 second/GB. The initial file distribution among the grid sites is
random. Each node has 0 or 1 Storage Element of size 15GB to 100GB.

4.1 Replica Placement Strategy Evaluation

The replica placement strategy is tested to measure its performance against
the random placement strategy. In this test, we use the calculation equation in
Section 3.1 to decide which replica to be replicated. The site to place the newly
created replica was chosen randomly (RP) or by the strategy that is described
in Section 3.2 (DP). The scheduling strategies set up for this test were the
Random scheduling (RS) and Combined-cost Scheduling (CCS) as in [2]. For
each combination of methods and parameters, the mean job execution time was
measured (Figure 1(a)). The DP is outperformed that with random placement.

4.2 Dynamic Replication Strategy Evaluation

The whole replication strategy is evaluated with the OptorSim’s LFU (Least
Frequently Used) and LRU (Least Recently Used) replication. Once again, the
OptorSim’s CCS scheduling strategy is used.

198 N.D. Nhan, S.W. Hwang, and S.B. Lim

The simulation result (Figure 1(b)) shows that by combining Dynamic Repli-
cation Strategy (DR) with LRU (as a replacement strategy), the performance is
significantly increased by 30%.

(a) Placement strategies (b) Replication strategies

Fig. 1. Job performance when using various (a) placement algorithms (b) replication
strategies

5 Conclusion

In this paper, we found a new approach to the replication problem in Data
Grid and combining it with job scheduling strategies. The simulation result
showed that our replication placement strategy overcomes the random placement
strategy. Also, the dynamic replicating algorithm made an improvement and
could be used with OptorSim’s replication optimization. In the future work,
we will improve the replication strategy. Meanwhile, the scheduling component
needs to be completed for integrating with replication mechanism to perform a
whole system simulation.

References

1. William, H.B., et al.: OptorSim - A Grid Simulator for Studying Dynamic Data
Replication Strategies. Int. J. of High Perf. Comput. Appl. 17(4), 403–416 (2003)

2. Cameron, D.G., et al.: Evaluating Scheduling and Replica Optimisation Strategies
in OptorSim. In: Proc. of 4th Int. Workshop on Grid Comput (Grid 2003), IEEE-CS
Press, Los Alamitos (2003)

3. Ranganathan, K., Foster, I.: Decoupling computation and data scheduling in dis-
tributed data-intensive applications. In: Proc. of the 11th IEEE Symposium on High
Performance Distributed Computing (HPDC) (July 2002)

4. Lamehamedi, H., et al.: Simulation of Dynamic Data Replication Strategies in Data
Grids. In: Proc. of 12th Heterogeneous Comput. Workshop (HCW2003), April 2003,
IEEE-CS Press, Los Alamitos (2003)

Improving Job Scheduling Performance 199

5. Ranganathan, K., Foster, I.: Simulation Studies of Computation and Data Schedul-
ing Algorithms for Data Grids. J. of Grid Computing 1(1), 53–62 (2003)

6. Chakrabarti, A., Dheepak, R.A., Sengupta, S.: Integration of Scheduling and Repli-
cation in Data Grids. In: Bougé, L., Prasanna, V.K. (eds.) HiPC 2004. LNCS,
vol. 3296, pp. 375–385. Springer, Heidelberg (2004)

7. Tang, M., et al.: The impact of data replication on job scheduling performance in
the Data Grid. Future Generation Computing System 22(3), 254–268 (2006)

Address-Free All-to-All Routing in Sparse Torus

Risto Honkanen1, Ville Leppänen2, and Martti Penttonen1

1 Department of Computer Science
University of Kuopio

P.O.Box 1627, 70211 Kuopio, Finland
{honkanen,penttonen}@cs.uku.fi
2 Department of Computer Science

University of Turku
Lemminkäisenkatu 14a, 20520 Turku, Finland

ville.leppanen@it.utu.fi

Abstract. In this work we present a simple network design for all-to-all
routing and study deflection routing on it. We present a time-scheduled
routing algorithm where packets are routed address-free. We show that
a total exchange relation, where every processor has a packet to route
to every other processor, can be routed with routing cost of 1/2 + o(1)
time units per packet.

The network consists of an n-sided d-dimensional torus, where the
nd−1 processor (or input/output) nodes are sparsely but regularly sit-
uated among nd − nd−1 deflection routing nodes, having d input and
d output links. The finite-state routing nodes change their states by a
fixed, preprogrammed pattern.

Keywords: network, routing, hot-potato, torus, sparse.

1 Introduction

Routing algorithms have many applications in computation and in data commu-
nication. Our work is motivated by situations, where there is need to transfer a
lot of messages between a large number of sources and destinations. Such set-
tings appear in the Internet and telecommunication network routing switches,
but also in implementing shared memory abstraction on top of distributed mem-
ory modules. In the latter case, a large number of processors can send each other
messages, on almost every step of computation.

In this paper we focus on describing a large-scale routing switch based on a
sparse (optical) torus. We claim that the sparse torus is truly scalable, efficient
and offers a high bandwidth. In the 2-dimensional case, our switch resembles
a crossbar of n vertical and n horizontal wires, but has only connections of a
constant length. An n×n crossbar can deal with n packets at a time whereas our
2-D sparse torus moves n2 packets at a time. In [1,2], the architectural approach
is very similar but the main focus is on link load instead of overall routing time.

By [10], in 3-dimensional world, the distance of processors grows at least by
the cubic root of the number of processors. 2- and 3-dimensional meshes and

V. Malyshkin (Ed.): PaCT 2007, LNCS 4671, pp. 200–205, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Address-Free All-to-All Routing in Sparse Torus 201

tori are such architectures. Note, however, that higher dimensional structures
may still be useful at the design level, because it may be possible to embed them
in a 2- or 3-dimensional structure. If the routing network has the diameter (or
average routing distance) φ, then obviously a packet needs time Ω(φ) to get
to the target. However, if the network can move Ω(pφ) packets in each step,
where p is the number of sources and destinations, it may be possible to route
ph packets in time O(h) for some h > φ. Hence, it may be possible to achieve
a constant time cost per packet. We present such a cost-optimal solution for
the d-dimensional torus. Other architectural solutions satisfying the above have
been presented; see [1,2,5,8,9], for example.

The condition that the network must be able to move at least φ packets per
processor, assuming that nodes have a constant degree, implies that at most
O(1/φ)’th of the nodes can be processors. Such an architecture is called sparse
or sparsely populated. It may seem waste to have φ routers per processor, but
it is the price for the ability to inject a packet at every step. Note, however,
that the routers can be very simple components in comparison with processors.
Of course, “dense” (or fully populated) architectures may work, if only a sparse
rate of packet injection is needed.

2 Sparse Torus ST (n, d)

A d-dimensional n-sided sparse torus ST (n, d) consists of nd nodes. Among these,
nd−1 are processors that are located “sparsely”, and the rest are routers.

Definition 1. Layer j of the sparse torus ST (n, d) is the set

Ld,n(j) = {(x1, x2, . . . , xd)|
d∑

i=1

xi = j}.

Nodes in layers 0, n, . . . , (d − 1)n are called processors and other nodes are
routers.

In ST (6, 2) of Figure 1, there are two processor layers having six processors alto-
gether. In ST (4, 3), there are three layers with one, twelve and three processors.

Router nodes Rx1,x2,...,xd
are located at positions (x1, x2, . . . xd) such that

∑d
i=1 xi �≡ 0 mod n and 0 ≤ xi ≤ n − 1. The d outputs of a node at location

(x1, x2, . . . xd) (processor or router) are connected to the routers or processors
at locations (x1 + 1 mod n, x2, . . . , xd), (x1, x2 + 1 mod n, x3, . . . , xd), . . . , and
(x1, x2, . . . , xd−1, xd + 1 mod n). All connections are unidirectional. In Figure 1,
directions are to the “right”, “up”, and “away”. We assume that each deflection
node and processor is capable of receiving (along incoming link) and sending
(along outgoing link) one message per link in one time unit.

Consider projection πi((x1, . . . , xd)) = (x1, . . . , xi−1, xi+1, . . . , xd) of
{0, 1, . . . , n − 1}d to {0, 1, . . . , n − 1}d−1 . As an immediate corollary we get

202 R. Honkanen, V. Leppänen, and M. Penttonen

0

1

1

1

1

1

1

1

1

1

1

2 2

2

1

1

Fig. 1. Left picture: A 6-processor 6×6 sparse optical torus ST (6, 2). Circles are router
nodes. Right picture: ST (4, 3) in slices.

Lemma 1. For ST (n, d),

(i) The number of processors is nd−1.
(ii) Processors, when projected to the surfaces of ST (n, d), cover the whole

surface. I.e., for all i, {πi((x1, . . . , xd))|x1 + . . . + xd ≡ 0 (mod n)} =
{0, 1, ..., n− 1}d−1.

(iii) Average distance from processors to the origin (0, 0, . . . , 0) is d(n− 1)/2

Proof is easy.

By lemma 1 we can now estimate how fast it might be possible to route packets.
Each packet sent by any of the nd−1 processors needs d(n − 1)/2 moves in the
torus, on the average. On the other hand, each of the nd routers can forward d
packets. Hence, if there are no collisions, on the average we need

nd−1 × d(n− 1)/2
dnd

=
(n− 1)

2n
≈ 1/2

routing steps per packet. Indeed, it is possible to achieve this bound, but in order
to prove it we need to know more about the structure of the ST (n, d).

Lemma 2. (i) |Ld,n(0)| = 1,
(ii) |Ld,n(k)| =

(
k+d−1

d−1

)
−
∑
k/n�

i=1

(
d−1+i
d−1

)
× |Ld,n(k − i · n)| when 0 < k ≤

d(n− 1).
(iii) |Ld,n(k)| = 0 when k < 0 or k > d(n− 1).

Proof of (i) and (iii) is obvious, and (ii) bases on a recursive argument.

In ST (n, 2), there is one processor at the origin and n − 1 processors at the
distance n from the origin and the distance from a processor to another is n−1.
In higher dimensional cases, the numbers of processors at different levels, and
also the distance from processor to processor vary. In ST (8, 4), for example, the

Address-Free All-to-All Routing in Sparse Torus 203

sizes of processor levels are 1, 161, 315, and 35, and the distance from a processor
to another can be 8, 16, or 24. Due to this irregularity it is not obvious how to
route packets efficiently.

3 Scheduled Routing of h-Relations

A routing strategy used to resolve the output port contention problem in packet-
switched interconnection networks is the hot-potato or deflection routing strategy.
In the hot-potato routing all entering packets must leave at the next step –
i.e. packets cannot be buffered as in the store-and-forward routing strategy. In
general, in each node the out-degree must be at least the in-degree, and the
output port contention must be resolved somehow. If there are multiple packets
preferring the same output port, the routing strategy must select at most one
for each out-going link. See [4] or [7] for definitions and a survey of hot-potato
routing techniques and results.

In Section 2, we reasoned that on a d-dimensional sparse torus it may be
possible to achieve the routing cost ≈ 1/2 per packet. The question is, whether
this routing cost indeed can be achieved and how.

In deflection routing, packets move so that the coordinate sum increases by 1
(mod n) at every moment. In ST (n, d), processors are located at distances mod
n. Therefore, packets sent at different moments (mod n) cannot collide. It is
enough to avoid collisions between packets sent at the same moment (mod n).

Consider a path pattern Π=! Δ1, Δ2, . . . , Δd ", where
∑d

i=1Δi ≡ 0 mod n,
0 ≤

∑d
i=1Δi < dn, and 0 ≤ Δi < n for 1 ≤ i ≤ d. From each processor node,

such a path pattern leads to another processor node. In fact, a path pattern
forms a permutation of processor nodes. Moreover, consider the rotation operator
ρ(Π) = ! Δn, Δ1, . . . , Δn−1 ". Then ρ(Π), ρ2(Π), . . . , ρd−1(Π) also are path
patterns. Note, however, that not all rotations of a path pattern are different.
E.g. if Π = ! 1, 4, 1, 4 ", then path patterns Π and ρ2(Π) form the same
permutation, similarly ρ(Π) and ρ3(Π).

An important observation is that if one packet is sent to the first dimension
by Π , another packet to the second dimension by ρ(Π) etc, these packets always
turn at the same time and do not collide.

Now, the basic idea of scheduled routing in the d-dimensional case should
be obvious. First consider all processors at layer Ld,n((d − 1)n) and the corre-
sponding path patterns ! Δ1, Δ2, . . . , Δd ", for which

∑d
i=1Δi = (d−1)n and

0 ≤ Δi < n. Divide the path patterns to groups, where patterns are rotations
of each other, and route the whole group at the same time to the (at most) d
dimensions. The same is repeated for all layers.

As in the 2-dimensional case, in n consecutive steps we can start routing
packets along n different cyclic path patterns. Each cyclic path pattern forms
a wave, and waves do not interact. Also, as explained previously, no conflicts
appear within waves.

As routing packets in layer Ld,n(kn) takes kn steps, the processors can not
use time moments n, 2n, 3n, . . . (k − 1)n time units later. A new sending can be

204 R. Honkanen, V. Leppänen, and M. Penttonen

started kn time units later. However, n successive time moments are indepent
of each other, and there can be n sending processes running in parallel. Figure 2
shows a schedule for ST(3,4).

0 1 2 3 4 5 6 7 8 9 10 11 12

1221 2211 2112 1122

0222 2220 2202 2022

1212 21210

1

2

3

4

5

6

7

8

9

0

1

2

0102 1020 0201 2010

0021 0210 2100 1002

0012 0120 1200 2001

0000

0111 1110 1101 1011

10

0

1

2

0

1

2

0

1

free slots 2 1 0 0 0 0 0 0 0 0 1 2

slicetime paths / time

Fig. 2. Schedule for ST(3,4). Altogether 33 = 27 packets are sent, 10 to distance 6, 16
to distance 3, and 1 to distance 0. In each group of rotated paths, we show the schedule
for the first one starting with dimension 1. Thus, 1221 starts with the dimension 1,
2211 with the dimension 4, 2112 with the dimension 2, and 1122 with the dimension
3. Note that the packets sent at moments 0, 1, 2 prevent sending at moments 3, 4 and
5, because the time slice is not free. At moment 12 all packets have reached the target.
Hence, the cost per packet is 12/27 < 1/2.

In the following Theorem, we consider a total exchange p-relation, where every
processor sends exactly one packet to every other processor.

Theorem 1. The scheduled routing protocol routes any total exchange relation
on ST (n, d), for d ≥ 3, in time p/2 + o(1), where p = n(d−1). Hence the cost per
packet is approximately 1/2.

Proof is nontrivial but omitted due to page limit.

In ST (n, 2) it is easy to schedule the routers so that they move simultaneously to
the crossing state and back to the direct state. It would be interesting to know,
if the same is possible for the ST (n, d), too, and at what cost.

In this work we have studied only the total exchange operation. However, by
a general result [6], a h-relation with large h can be implemented with (h/p)(1+
o(1)) total exchange operations, with high probability. Obviously, if processors
have h packets to random addresses and h grows high, the routing relation
approaches to a multiple total exchange relation, and the routing cost tends
towards 0.5 time per packet.

Address-Free All-to-All Routing in Sparse Torus 205

4 Conclusions

We presented a routing architecture, sparse d-dimensional (optical) torus, stud-
ied its routing properties, and described deflection algorithms for routing packets
efficiently on it. We believe that the simple, regular structure and efficient com-
munication are important benefits of the architecture. The architecture suits
especially for on-line routing situation where steady high bandwidth is more
important than the actual latency. We also believe that the presented routing
algorithms based on greedy principle are useful and realistic.

References

1. Azizoglu, M.C., Egecioglu, Ö.: Lower Bounds on Communication Loads and Opti-
mal Placements in Torus Networks. IEEE Trans. Comput 49(3), 259–266 (2000)

2. Blaum, M., Bruk, J., Pifarre, G.D., Santz, J.L.C.: On Optimal Placements of Pro-
cessors in Tori Networks. In: Proceedings, Eighth IEEE Symposium on Parallel and
Distributed Processing, pp. 552–555. IEEE Computer Society Press, Los Alamitos
(1996)

3. Goldberg, L.A., Matias, Y., Rao, S.: An Optical Simulation of Shared Memory. In:
SPAA’94, 6th Annual Symposium on Parallel Algorithms and Architectures, Cape
May, New Jersey, pp. 257–267 (June 1994)

4. Honkanen, R., Leppänen, V., Penttonen, M.: Hot-Potato Routing Algorithms for
Sparse Optical Torus. In: Proceedings, International Conference of Parallel Parallel
Processing, ICPP’ 2001, pp. 302–307 (2001)

5. Leppänen, V., Penttonen, M.: Work-Optimal Simulation of PRAM Models on
Meshes. Nordic Journal on Computing 2(1), 51–69 (1995)

6. Suel, S.T., Tsantilas, T.: Efficient Communication Using Total-Exchange. In: em
9th International Parallel Processing Symposium IPPS’1995 (1995)

7. Schuster, A.: Bounds and Analysis Techniques for Greedy Hot-Potato Routing, ch.
11, pp. 283–354. Kluwer Academic Publishers, Boston (1997)

8. Sibeyn, J.: Solving Fundamental Problems on Sparse-Meshes. IEEE Trans. Parallel
Distrib. Syst. 11(12), 1324–1332 (2000)

9. Valiant, L.G.: General Purpose Parallel Architectures. In: Algorithms and Com-
plexity, Handbook of Theoretical Computer Science, vol. A, pp. 943–971 (1990)

10. Vitányi, P.M.B.: Locality, Communication, and Interconnect Length in Multicom-
puters. SIAM Journal on Computing 17(4), 659–672 (1988)

On the Parallel Technologies of Conjugate and

Semi-conjugate Gradient Methods for Solving
Very Large Sparse SLAEs�

Valery P. Ilin and Dasha V. Knysh

1 Head of Laboratory, Institute of Computational
Mathematics and Mathematical Geophysics, SBRAS,

Novosibirsk, Lavrentiev ave.,6, (383) 330-60-62
ilin@sscc.ru

2 PhD student, Novosibirsk State University,
Novosibirsk, Pirogova str, 2, 8-913-754-56-15

Abstract. The parallel technologies of iterative solving the symmetric
and nonsymmetric systems of linear algebraic equations (SLAEs) with
very large sparse matrices by means of conjugate and semi-conjugate
gradient iterative methods are described. The performance computing
for various matrix formats (diagonal, compressed sparse row/column),
at the different degrees of freedom of SLAEs, are analysed. The results
of experimental measurements under OPENMP, MPI and hybrid systems
are presented and discussed.

Introduction

The goal of this paper consists in experimental investigation and performance
measurements for parallel implementation technologies of iterative solving the
systems of linear algebraic equations (SLAEs) with very large sparse matri-
ces, symmetric or non-symmetric, which arise in grid approximations of multi-
dimensional boundary value problems (BVPs) for mathematical modeling, see
[1], [2] for example. These topics have been considered by many authors, and
corresponding literature is presented in [3].

We focus our attention on two algorithms in Krylov subspaces: classical con-
jugate gradient (CG) method for symmetric positive definite (s.p.d.) SLAE and
non-conventional left semi-conjugate gradient (LSCG, see [4]) method for solv-
ing non-symmetric system. In the last case, we suppose that the original matrix
A has s.p.d. own symmetric part As = (A + At)/2, i.e. the real parts of eigen-
values of A are positive.

The estimations of computational resources, in terms of the number of arith-
metic operations and memory volume, necessary for obtaining required accuracy
of iterative solution, and efficiency of parallelezation are presented, under the
simple assumptions on computing model, as well as results of numerical exper-
iments for the representative set of test problems. We consider the systems of
� This work was supported by RFBR grant N 05-01-10487.

V. Malyshkin (Ed.): PaCT 2007, LNCS 4671, pp. 206–214, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Methods for Solving Very Large Sparse SLAEs 207

seven-diagonal equations, provided by exponential type finite volume approach
on the structured mesh, for 3-D Dirichlet BVP for convection-diffusion partial
differential equation (PDE) in unit cube computational domain, which was de-
scribed in [5].

Parallelezation of iterative processes is made by means of domain decomposi-
tion techniques, see [6] and references citied there. Realization of algorithms and
computations are fulfilled in the framework of OPEN MP and MPI systems at
the platforms with shared and distributed memory. The influence of different
matrix formats is analyzed for the set of embedded grids. For the simplicity, we
do not use any preconditioning procedure.

This paper is organized as follows. Into section 2, a short description of itera-
tive methods and their peculiarities are introduced. The third section is devoted
to discussion of program implementation and parallel technologies in the code
development. In the last section we give and analyze the results of comparative
performance measurements at the clusters, on the base of Itanium-2 processors.

1 Conjugate and Semi-conjugate Iterative Methods

Let us consider the system of linear algebraic equations (SLAEs)

Au = f, u = {ui}, f = {fi} ∈ RN , A = {ai,j} ∈ RN,N , (1)

with real, square, non-singular and symmetric or non-symmetric matrix A which
is positive definite, in the sense,

(Au, u) ≥ δ(u, u), δ > 0, ∀u ∈ RN . (2)

The last means positiveness of real parts of eigenvalues of matrix A and pos-
itive definitness of symmetric part of matrix A: As = (A + At)/2, At is the
trasposed matrix.

For solving SLAE(1), some conjugate direction method is applied, see [1]–[2]:

r0 = g −Au, p0 = r0; n = 0, 1, ... :
un+1 = un + αnp

n, rn+1 = rn − αnAp
n,

(3)

which has variational or/and orthogonal properties in Krylov subspaces

Kn+1(r0, A) = span{p0, p1, ..., pn} = span{p0, Ap0, ..., Anp0}. (4)

For symmetric A, we use the classical conjugate gradient (CG) method defined
by the formulas

pn+1 = rn+1 + βnp
n, αn = (rn, rn)/(Apn, pn), βn = (rn+1, rn+1)/(rn, rn).

(5)
This algorithm provides the residual and direction vectors with the following

orthogonal properties:

(rn, rk) = ρnδn,k, ρn = (rn, rn), (Apn, pk) = σnδn,k,
σn = (Apn, pn), (rn, pk) = 0, for k �= n, (6)

208 V.P. Ilin and D.V. Knysh

where δn,k is Kroneker symbol. Also, CG method is minimizing the functional
(A−1rn, rn) in Krylov subspace, and for error reducing: (A−1rn, rn)/(A−1r0, r0)
≤ ε the following estimation of necessary iteration number is valid –

n(ε) ≤ ln1 +
√

1− ε2
ε

/lnγ + 1, γ = (
√

æ− 1)/(1 +
√

æ), (7)

where æ = ‖A‖2 · ‖A−1‖2 being the spectral condition number of matrix A.
If matrix A is non-symmetric, two-terms recursions (5) with orthogonal prop-

erties (6) are not valid, and direction vectors pn, in general, can be found from
the “long” recursions

pn+1 = rn+1 +
n∑

k=0

βn,kp
k = pn+1,l +

n∑

k=l

βn,kp
k, l = 0, 1, ..., n,

pn+1,0 = rn+1, pn+1,l = pn+1,l−1 + βn,l−1p
l−1, pn+1 = pn+1,n.

(8)

Let us define the coefficients αn, βn,k in (3), (8) from the condition that di-
rection vectors being left semi-A-orthogonal (left semi-conjugate), see [4]:

(Apn, pk) = 0, k = 0, 1, ..., n− 1. (9)

Then the residual vectors satisfy to orthogonal properties (6), αn are defined
by (5), as in CG method, and for coefficients βn,k the following formula is ap-
plicable:

βn,k = −(pk, Apn,k)/(pk, Apk), k = 0, 1, ..., n− 1. (10)

So, the formulaes (2), (3),(6), (8), (10) define left semi-conjugate gradient
(LSCG) method as generalization of CG algorithm for non-symmetric case. In-
plementation of each LSCG iteration needs only one matrix-vector multiplica-
tion, similar to CG algorithm. However, LSCG method has not any variational
property and the estimation of type (7) for n(ε) can not be obtained. In a similar
way the right semi-conjugate gradient (RSCG) method could be derived.

It is evident from (8) that realization of long recursions in LSCG method for
solving non-symmetric SLAE requires to store at n-th iteration the direction
vectors p0, p1, ..., pn−1 and to compute n2/2 additional vector-vector operations
in total. For this reason, it increases considerably the computational complexity
of algorithm, in compare to CG. There are two approaches which provide the
decreasing of necessary memory and the number of arithmetic operations.

The first one is based on using restarts after given number mr of iterations. It
means that at each iterations n = nq =

[
n

mr

]
· q, q = 1, 2, ... ([a] is the integer

part of value a) the residuals vectors are calculated not by recurrent relations
(3), but from original equation directly:

rnq = f −Aunq . (11)

The rest iterations are implemented in convential form (3), (8).

Methods for Solving Very Large Sparse SLAEs 209

The second approach applies the truncated semi-orthogonalization of direction
vectors pk: for given integer m0 and n > m0 we save the last m0 vectors only
and use reduced recurion

pn+1 = rn+1 +
n∑

k=n−m0

βn,kp
k = pn+1,n,

pn+1,n−m0 = rn+1, pn+1,l = pn+1,l−1 + βn,l−1p
l−1, l = n−m0 + 1, ..., n.

(12)
Also, it is possible to generalize, or to combine formally these two aproaches:

for given integers mr and m0 we can define m = min{m0,mr} and compute
direction vectors by formulaes (12), under changing symbol m0 into m.

It should be remarked that restart and truncated orthogonalization approaches
decrease the iterative convergence, because of reducing the dimension of Krylov
subspaces in both case.

2 The Parallel Technologies of Algorithms
Implementation

In the Table 1 we give the values of memory P and the total number of arithmetic
operations Q which are necessary for implementation of CG and LSCG methods.
It is supposed here that the total number of nonzero matrix entries S " 1, as
well as n" 1, N " 1.

Table 1. The volumes of necessary resources for CG and LSCG methods

CG LSCG

P 4N + S 4N + S + mN

Q 2(5N + S)n 2(5N + S + mN)n

We remark here that in both method only one matrix-vector product is needed
at each iteration, and for stopping criteria we check the condition

‖rn‖ = (rn, rn)1/2 ≤ ‖f‖ε, (13)

where ε! 1 is the given tolerance.
We consider the parallelezation of algorithms for solving SLAEs which arise

in approximation of 3-D boundary value problems at the parallelepiped reqular
mesh

xi+1 = xi + hx
i , i = 0, 1, ..., I,

yj+1 = yj + hy
j , j = 0, 1, ..., J,

zk+1 = zk + hz
k, k = 0, 1, ...,K.

(14)

For simplicity, the computational domain is supposed to be cubeΩ=[x0, xI+1]
× [y0, yJ+1]× [z0, zK+1], and the matrix A is seven-diagonal one, which is defined
from the set of equations at the regular seven-point grid stencil:

210 V.P. Ilin and D.V. Knysh

(Au)i,j,k = p0i,j,kui,j,k − p1i,j,kui−1,j,k − p2i,j,kui,j−1,k−
−p3i,j,kui+1,j,k − p4i,j,kui,j+1,k − p5i,j,kui,j,k−1 − p6i,j,kui,j,k+1,

i = 1, ..., I; j = 1, ..., J ; k = 1, ...,K.

(15)

So, in convential algebraic representation vector u has dimension N = IJK:

u = {ui,j,k = us, s = s(i, j, k)}. (16)

The quality of parallelezation will be estimated by the speedup and efficiency
coefficient

R = T1/Tq, E = R/q, (17)

where Tq is the time of solving the problem at q-processor computer (in our case,
it will be implementation time of one iteration). This value is assempled from
CPU time (implementation of arithmetic operation) and communication time
(data exchanges between different processors):

T = Ta + Tc, Ta = Qτa, Tc =
M∑

t=1

(τ0 + τcVt). (18)

Here we use the simplest computational model, i.e. τa is the realization time
of an average arithmetic operation, τc is transfer time for one value, M is the
number of communications, τ0 is delay time for one exchange, and Vt is the
number of exchanged values in t-th array communication. Usually, τa ! τc ! τ0,
but in modern computers with multi-level memory and vectorization possibilities
the real times Ta, Tc and T can differ from (18) significantly.

For parallelezation of iterative alorithms, we shall use the simplest 1-D domain
decomposition technique: computational domain Ω is divided into strips Ωt =
{It ≤ i < It+1, t = 1, ..., q} which are corresponding to “own” processors.

The main operations in CG and LSCG methods are matrix-vector multipli-
cation, vector- vector inner product and linear combinations of vectors. The
performance of the first operation depends on the sparse matrix storage for-
mats, and we compare the efficiency of parallelezation for three types of storage.
In the first format, matrix A is represented by the values of it’s diagonal en-
tries p0i,j,k, p

1
i,j,k, ..., p

6
i,j,k, the zero values including (DS – diagonal storage). The

second and the third formats are general compressed row storage (CRS) and
compressed column storage (CCS), see [2]. If the matrix A is symmetric, we
only store the upper triangular portion of the matrix.

3 Results of Numerical Experiments

We demonstrate the performance of described methods and technologies in ap-
plication for solving symmetric and non-symmetric SLAEs which are obtained
by exponential type finite volume approximation of the Dirichlet boundary value
problem for diffusion-convection equation [5]

Methods for Solving Very Large Sparse SLAEs 211

∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2
+ p
∂u

∂x
+ q
∂u

∂y
+ r
∂u

∂z
= f(x, y, z), (x, y, z) ∈ Ω,

u|Γ = g(x, y, z),
(19)

in unit cube at the set of cubic grids with the meshsteps

h = 1/(N + 1), N = I = J = K = 32, 64, 128.

The functions f and g from (19) are choosed under condition that exact solution
u(x, y, z) = 1. The initial guess for iterations was u0 = 0, and tolerance value
ε = 10−4 in all experiments. The computations were done in standard double
precision, at the cluster with Itanium-2 processors. The code was realized in
FORTRAN 90.

For illustration of the numerical efficiency of considered methods we present
in each cell of Table 2 three values: number of iterations, CPU time (sec) for
one processor and resulting error of obtained solution. Here we use convection
coefficients a = p = q = r = 0, 4, 8, 16, restart parameters (for non-symmetric
cases only) m = mr = m0 = 8, 32, 200, and three different grids with total
numbers of nodes 323, 643, 1283. In the following, we use CG method for a = 0
(symmetric case) and LSCG method for a = 4, 8, 16.

Table 2. The characteristics of CG and LSCG methods

a 0 4 8 16

m ∞ 8 32 200 8 32 200 8 32 200

53 177 102 80 135 113 84 101 122 89
I = 32 0.043 0.34 0.50 0.89 0.26 0.54 0.97 0.19 0.60 1.09

1.1E-4 1.2E-4 5.2E-4 3.7E-4 1.0E-3 3.7E-4 4.8E-4 5.6E-4 2.3E-4 2.4E-4

105 549 185 152 409 188 162 270 211 173
I = 64 1.58 19.6 15.8 52.6 14.9 15.5 59.2 9.7 17.6 66.6

1.9E-4 3.9E-3 1.6E-3 7.3E-4 2.9E-3 8.4E-4 7.4E-4 1.9E-3 1.3E-3 6.7E-4

204 1797 581 369 1349 462 400 854 366 407
I = 128 20.7 527.7 420.1 126.6 396 324 148 251 256 148

4.8E-4 1.1E-2 4.6E-3 2.2E-3 8.6E-3 3.7E-3 1.8E-3 5.9E-3 2.6E-3 1.9E-3

Next two tables present the results of performance measurements for CG
method with using DS matrix format at three different grids. Table 3 includes
CPU times for separate using OMP and MPI. For OMP the integer t means the
number of threads defined at the node. The application of OpenMP is based on
using PARALLEL DO Directive for each loop in the CG code and static defini-
tion of the number of threads, with equal execution of CHUNK=N/OMP NUM
THREADS.

The cases MPIa and MPIb for the number of nodes t = 2, 4 are correspond-
ing to loading the processors from the different nodes or from the same node,
respectivaly.

In the Table 4, we give the similar experiment data for hybrid use of OpenMP
and MPI possiblilities. Here s means the number of nodes and t is the number
of defined threads for each node, so the total number of processors is s · t.

212 V.P. Ilin and D.V. Knysh

Table 3. CPU times for different OpenMP and MPI specifications (CG method, DS
format)

t 1 2 4

OMP OMP MPIa MPIb OMP MPIa MPIb

64 1.50 1.15 1.04 0.92 0.28 0.32 0.58

128 20.1 18.0 12.5 11.9 17.8 11.8 8.97

256 357 316 260.1 171.63 299 255.5 105.2

Table 4. The results of CG performance measurements: combine use of the OpenMP
and MPI, DS format

s 2 4

t 1 2 4 1 2 4

64 0.53 0.23 0.13 0.32 0.26 0.24
128 8.28 6.87 6.34 4.78 4.03 3.5
256 127 105 100 68.9 57.6 56.0

In each cell of the Table 5, 6 three CPU times are given: for t = 1, 2 and 4
OpenMP threads respectivaly (one cluster node was used only). Here, we com-
pare the results of using CSR and CSC formats for a = 0, 4, in implementation
of CG(a = 0) and LSCG(a = 4) with m = 8, 32, 200. Three values in each
cell of these Tables, frov the top to bottom, are corresponding to m = 1, 2, 4
respectivaly.

Table 5. CPU times for CG and LSCG, CSR format, OpenMP, t = 1, 2, 4

a 0 4

m ∞ 8 32 200

0.14 0.66 0.63 0.96
32 0.078 0.64 0.88 1.60

0.055 0.42 0.63 1.26

2.43 28.8 17.8 53.7
64 1.39 19.8 14.3 47.1

0.84 15.3 11.8 39.6

40.8 755.1 465.9 1285.0
128 25.3 581.6 406.6 1216.1

19.1 516.1 382.8 1175.9

Table 7 demonstrates performance of CG method (a = 0) under hybrid
OpenMP and MPI using for CSR format for numbers s = 1, 2, 4 and t = 1, 2, 4.

In the Tables 8, 9, we present the values of CPU times for solving SLAEs with
CSR format for the grids N = 64, 128 by the CG method (a = p = s = r = 0)
and LSCG algorithm (a = 4,m = 8), under MPI system at the numbers of
processors s = 1, 2, 4, 8. Here the first columns contain into the bracket the
corresponding numbers of iterations.

Methods for Solving Very Large Sparse SLAEs 213

Table 6. CPU times for CG and LSCG, CSC format, OpenMP, t = 1, 2, 4

a 0 4

m ∞ 8 32 200

0.093 0.59 0.59 0.92
32 0.125 0.59 0.97 1.78

0.117 0.59 0.75 1.36

2.04 24.6 15.6 47.1
64 1.95 22.5 15.5 48.4

1.91 19.6 13.2 40.9

35.0 701.5 449.2 1272.3
128 34.3 660.1 416.2 1169.0

32.6 637.5 415.0 1161.2

Table 7. CPU times for CG, CSR, OpenMP+MPI

s 1 2 4

t 1 1 2 4 1 2 4

64 2.43 1.70 1.36 1.14 1.66 1.56 1.49

128 40.8 31.6 25.1 21.4 29.1 25.0 23.5

256 636.0 501.4 387.4 337.4 448.6 390.1 367.4

Table 8. CPU times for CG method, MPI, CSR format

s 1 2 4 8

64(105) 2.74 2.07 0.78 0.33

128(204) 43.89 29.12 14.77 7.4

Table 9. CPU times for LSCG method (m = 8, a = 4), MPI, CSR format

s 1 2 4 8

64(549) 30.52 18.99 8.56 3.75

128(1797) 871.18 622.73 313.77 166.73

In conclusion, we can make the following derivation about the results of nu-
merical experiments.

– The number of iterations in CG and LSCG methods without precondition-
ing are several times bigger, in compare with incomplete factorization al-
gorithms, presented in [5] for similar test problems. But implementation
of considered in this paper methods is reasonable at the multi-processor
computers because parallelezation of preconditioned algorithms presents a
“bottle neck” in computational algebra.

– Using the diagonal format provides the more high performance then general
compressed sparse formats. So, the first one is more preferable for simple
computational domains. But for real life BVPs, the parallelezation of matrix

214 V.P. Ilin and D.V. Knysh

operation in solving SLAEs with universal compessed formats is an impor-
tant question for investigation.

– Performance of conjugate gradient method is approximately the same for
CSR and CSC formats, but the last one is more preferable for the fine grids
(bigger degree of freedom (d.o.f.), or dimension of SLAE). It is true for
different numbers of threads in OpenMP (t = 1, 2, 4).

– Increasing the number of processors provides reducing CPU times, although
speedup is small enough for OpenMP and hybrid OpenMP-MPI program-
ming. These “negative” results were obtained for both considered algorithms,
for different orders of SLAEs, different matrix formats, and for various
numbers of computer nodes, processes and threads. But using MPI system
demonstrates very good speedup, sometime even super linear one (efficiency
coefficient E > 1).

– The unification of cluster resources is the unique approach now for solving
very large SLAE, i.e. tens and hundred millions of d.o.f. with huge com-
putational complexity. I.e., the speedup is not the unique reason for using
multi-processor computing.

– The further research should be continued for code optimization and devel-
opment of technologies for parallelezation of iterative algorithms with differ-
ent matrix storage: multi-dimension domain decomposition techniques, loop
unrolling, using various compiler options and OpenMP directives, creating
special library of tools to solve large SLAEs, etc.

References

1. Il’in, V.P.: Iterative Incomplete Factorization Methods. World Sci. Pub. Co., Singa-
pore (1992)

2. Saad, Y.: Iterative methods for sparse linear systems. PWS Publishing, New York
(1996)

3. Dongarra, J.J., Duff, I.S., Sorensen, D.C., Van der Vorst, H.A.: Solving Linear Sys-
tems on Vector and Shared Memory Computers. SIAM, Philadelphia (1991)

4. Juan, J.Y., Golub, G.H., Plemmons, R.J., Cecilio, A.B.: Semi-conjugate direction
methods for real positive definite systems.–Techn. Rep. SCCM Pc 02-02, Stenford
Univ. (2003)

5. Andreeva, M.Y., Il’in, V.P., Itskovich, E.A.: Two solvers for nonsymmetric SLAE
Bulletin of the Novosibirs Computing Center. Num. Anal. 12(12), 1–16 (2004)

6. Il’in, V.P.: On the strategies of parallelization in mathematical modeling. Program-
ming N 1, 41–46 (1999)

TRES-CORE: Content-Based Retrieval Based

on the Balanced Tree in Peer to Peer Systems�

Hai Jin and Jie Xu

Cluster and Grid Computing Lab
School of Computer Science and Technology

Huazhong University of Science and Technology, 430074, Wuhan, China
{hjin, jiexu}@hust.edu.cn

Abstract. Most existing Peer to Peer (P2P) systems support name-
based retrieval and have provided very limited support for the full-text
search of document contents. In this paper, we present a scheme (TRES-
CORE) to support content-based retrieval. First, we propose a tree struc-
ture to organize data objects in vector-format in the P2P system, which
is height-balanced so that the time complexity of search can be decreased.
Second, we give a simple strategy for the placement of tree’s nodes, which
can guarantee both load balancing and fault tolerance. Then an efficient
policy for the query is given. Besides theoretical analysis that can prove
the correctness of our scheme, a simulation-based study is carried out to
evaluate its performance under various scenarios finally. In this study, it
shows that using this content-based retrieval scheme (TRES-CORE) is
more accurate and more efficient than some other schemes in the P2P
system.

1 Introduction

Peer to Peer (P2P) systems have wide applications in many fields in recent years,
such as file sharing, distributed computing and so on. Information retrieval is
the key technology for file sharing. However, traditional approaches have either
been centralized or used flooding to ensure the accuracy of results returned and
most of them only provide name-based retrieval, that is, the user can not search
a data object unless he knows its name. They lack support for content-based
retrieval.

Current P2P retrieval technologies can be classified into three types. First, a
centralized index is maintained at a server, and all queries are directed to this
server. However, a centralized search engine is not suitable to be scalable, which
can not perform the efficient retrieval in the P2P system and it is also a single
point of failure, such as Napster [1]. Second, a distributed index is employed. The
query will be flooded across the network to some other peers. But, network traffic

� This work is supported by National Science Foundation of China (NSFC) under
grant No.60433040 and by China CNGI Projects under grant No.CNGI-04-12-2A,
CNGI-04-12-1D.

V. Malyshkin (Ed.): PaCT 2007, LNCS 4671, pp. 215–229, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

216 H. Jin and J. Xu

generated by these flooding queries becomes un-scalable in large environments
and it will lead to the poor network utilization. An example of this approach
is the Gnutella system [2]. The third approach is the Distributed Hash Table
(DHT) based scheme where the peer and the data object are structurally orga-
nized by a hash function. A query can get the result in O(logN) hops and it can
generate fewer traffic in comparison with flooding-based mechanisms. Whereas,
it can only support exact match queries and incurs the overhead maintaining
the structure. Chord [3], Can [4], Pastry [5] and Tapestry [6] are examples of
this approach.

In this paper, we explore the content-based retrieval scheme in P2P systems.
First, traditional information retrieval techniques [7][8] are used to extract fea-
ture vectors from data objects. Using feature vectors of all data objects, a bal-
anced search tree structure is formed. Then based on this search tree, we give an
efficient retrieval scheme. And the time complexity of searching is O(logB N) be-
cause the tree is height-balanced where B is the balancing factor of the tree. Our
simulation results show using our content-based retrieval scheme(TRES-CORE)
can increase recall and reduce the network traffic, that is, it can improve the
efficiency of query routing.

The rest of this paper is organized as follows. In section 2, we present related
works to our work. Section 3 explains basic ideas of our information retrieval
scheme. Section 4 discusses some improvements to the basic design in order to
provide load balancing, fault tolerance and efficiency. Experimental results are
presented in section 5, and the last section gives conclusions and future works
of our work.

2 Related Work

There are also some of today’s works in the P2P information retrieval focusing
on the content-based search. We describe them as follows.

A Hierarchical Summary Structure is proposed in [9], which employs three
levels of summarization, naming as unit level, peer level and super level. How-
ever, in each level summary, how it is organized is not explained. And this is a
key problem, which is able to result in the liner time complexity for the search if
it is not organized well. Furthermore, it is another problem that how the feature
vector of super peers and ordinary peers is generated accurately, which can effect
the recall for the retrieval operation.

PlantP [10] presents a distributed content-based search algorithm in P2P sys-
tems. An inverted (word-to-document) index of the data objects that the peer
wishes to share is created in each peer, and this index is summarized in a compact
form. Then the summary is diffused throughout the network. Using these sum-
maries, any peer can query and retrieve matching information from the collective
information store of system. However, it is suitable for the multi-keyword-based
retrieval but not for content-based retrieval using an inverted index.

The basic idea behind EZSearch [11] is in the following. Peers are partitioned
into clusters. Each cluster contains peers having similar contents and manages a

TRES-CORE: Content-Based Retrieval 217

subspace of indices or an index zone. For a query, the simplest solution is to scan
all the clusters, which, however, would incur a linear search time. Alternatively,
similar to using search trees for the logarithmic runtime search, the Zigzag hi-
erarchy [12] originally devised for the streaming multimedia is built on top of
these clusters such that the search scope will be reduced by some factor if the
query is forwarded from a high layer of the hierarchy to a lower layer. However,
this method is suitable for the environment that each peer only shares a single
category of data, which is unrealistic in P2P systems.

In pSearch [13], documents in the network are organized around their vector
representations (based on modern document ranking algorithms) such that the
search space for a given query is organized around related document. And it is
designed for the structured overlay network.

There are also some other content-based retrieval schemes [14][15] that are
built on the hybrid P2P systems. In such a network, Ultra Peers act as directory
service providers. These directory peers that provide regional directory services
construct and use the content models of neighboring peers to determine how to
route query messages through the network. Leaf peers that provide information
use content-based retrieval to decide which data objects to retrieve for queries.
However, how best to relay the query among the Ultra Peers is an open prob-
lem. In these schemes, an Ultra Peer represents a neighboring Ultra Peer by
the terms in the queries it has satisfied in the past. This approach can improve
the efficiency of local query routing, but still makes it difficult to find relevant
information in a large network.

In most of the prior researches, peers are clustered by the similar content. The
problem of this kind of approach is that it is able to decrease the recall because
some matching data objects are not in any peer of target clusters. Therefore,
rather than clustering peers based on their contents, a height-balanced hierarchi-
cal tree(doc-tree) is employed to cluster data objects sharing in the P2P system.
Then, a content-based retrieval scheme(TRES-CORE) based on this doc-tree is
presented, which can resolve all of the flaws describing above.

3 TRES-CORE Scheme

In this section, we firstly give the data model for our scheme. Then we introduce
the definition of doc-tree and give the theoretical foundation for building it. In
the following, we describe how to construct a doc-tree. At last, we present a
retrieval algorithm based on this tree.

3.1 Model

In our model, we consider a P2P system where each peer has a set of data objects
to share with other peers in the system. These data objects are described based
on the vector space model used in the information retrieval theory [7][8]. Each
data object and each query are abstractly represented as a vector, where each
dimension is associated with a distinct term (word). The vector space would

218 H. Jin and J. Xu

have k dimensions if there were k distinct terms. The value of each component
of the vector represents the importance of that word (typically referred to as the
weight of the word) to that data object or the query. Such as, the data object x
can be represented as a k-dimensional vector

−→
dx = {dx

1 , d
x
2 , · · · , dx

k}, where each
dimension reflects the term associated with x and the weight dx

i reflects the
significance of each term representing the semantic of x. Then, given a query
vector −→q = {q1, q2, · · · , qk} to search a set of similar data objects from all of the
data objects sharing in the P2P system, we rank the relevancies of data objects
to that query by measuring the similarity between the query’s vector and each
of the candidate data objects’ vectors. The similarity between the vector x and
the vector y is generally measured as the cosine of the angle between them,
using the following equation:simdist =

−→x ·−→y
‖−→x ‖2‖−→y ‖2

, where −→x · −→y is the dot

product between x and y and ‖ • ‖2 is the Euclidean vector norm. The larger
simdist(−→x · −→y) is, the more semantically similar are x and y to each other. If
simdist(−→d · −→q) is larger than a predefined threshold θ, we say that −→d and −→q
are similar and −→d is the data object that the query −→q wants to get.

3.2 Definitions and Properties of Doc-Tree

We use the concept similar to that proposed in BIRCH [16] for merging sub-
nodes incrementally based on the node feature NF to derive a strategy to group
similar data objects. In this paper, the node is only referred to the node in the
doc-tree, but not be referred to the peer in the network.

Definition 1. NF (N) = (m,
−→
μN ,

−→
δN) is defined as the feature value of node N ,

where m is the number of data objects maintained by this node. If there are m
data points {

−→
d1,
−→
d2, · · · ,−→dm} in node N , the j-th mean and variance of node N

are defined as:

μN
j =

1
m

m∑

i=1

di
j , δNj =

1
m

m∑

i=1

(di
j − μN

j)2, j = 1 . . . k.

Definition 2. The intra-distance of a node is a triple D =< NDP, μ, σ >,
where NDP = {di|di ∈ R} is a population of nearest distances, μ and σ are
the mean and the standard deviation of NDP . Each di in NDP is the smallest
distance from each sub-node to other sub-nodes in the node.

A doc-tree is a height-balanced tree with a parameter B just like the B+ tree
[17][18] and CF tree [16]. Data objects are organized in a multi-layer hierarchy
of clusters recursively defined as follows (where H is the number of layers, B is
a balancing factor):
• Layer 0 contains all data objects;
• Data objects in layer j < H − 1 are partitioned into clusters of sizes in

[1, B], Layer H − 1 has only one cluster which has a size in [2, B].
Each node contains [1, B] entries except the root node containing [2, B] en-

tries. The form of entries is (NFi, childi),i = 1, 2, · · · , B, in which childi is a

TRES-CORE: Content-Based Retrieval 219

pointer to its i-th child node, and NFi is the feature vector of sub-node rep-
resented by this child. That is, a node represents a cluster made up of all the
sub-nodes represented by its entries. Furthermore, all entries in a node must
satisfy the following threshold condition: let DN =< NDP, μ, σ > be the intra-
distance of nodeN .Given a lower limit LL = μ−σ and an upper limit UL = μ+σ,
the node N must satisfy: LL ≤ di ≤ ULfor ∀di ∈ NDP .

And each node in the tree maintains several data structures described in the
Table1.

Table 1. Data Structure of Node N

Notation Definition

parent the pointer to the parent node (null for root)
n the number of sub-nodes
m the number of data objects

(NFi, chilidi), i = 1, 2, · · · , k childi is a pointer to its i-th child node
NFi is the NFof sub-node represented by this child

D =< NDP, μ, σ > the intra-distance of node N

Theorem 1. Assume that there are n sub-nodes in node N and NF vectors of
its sub-nodes Ni are NFi = (mi,

−→
μi,
−→
δi), i = 1, 2, · · · , n. Then the NF vector

of node N is NF = (m,−→μ ,−→δ), in which m =
∑n

i=1mi and the j-th mean and
variance of node N is defined as:

μj =

∑n
i=1miμ

i
j∑n

i=1mi
, δj =

∑n
i=1miδ

i
j +

∑n
i=1mi(μi

j − μj)2
∑n

i=1mi
.

Proof. Assume that there are m data objects {
−→
d1,
−→
d2, · · · ,−→dm} in node N . Ac-

cording to Definition1, the j-th mean and variance of node N are μj = 1
m

∑m
i=1 d

i
j ,

δj = 1
m

∑m
i=1(d

i
j − μj)2.

Assume that there are n sub-nodes in node N and NF vectors of its sub-
nodes Ni are NFi = (mi,

−→
μi,
−→
δi), i = 1, 2, · · · , n and each sub-node maintains mi

data objects. Hence,m =
∑n

i=1mi . According to Definition1, the j-th mean and
variance of node Ni is μi

j = 1
mi

∑mi

i=1 d
i
j , δ

i
j = 1

mi

∑mi

i=1(d
i
j −μi

j)
2, i = 1.2. · · · , n.

Therefore,
∑mi

i=1 d
i
j = miμ

i
j ,∑mi

i=1(d
i
j)

2 = miδ
i
j + 2μi

j

∑mi

i=1 d
i
j −mi(μi

j)
2

= miδ
i
j + 2mi(μi

j)
2 −mi(μi

j)
2

= miδ
i
j +mi(μi

j)
2,

μj = 1
m

∑m
i=1 d

i
j =

∑n
i=1

∑mi
k=1 dk

j∑
n
i=1 mi

=
∑n

i=1 miμ
i
j∑

n
i=1 mi

,

δj = 1
m

∑m
i=1(d

i
j − μj)2 =

∑n
i=1

∑mi
k=1(d

k
j −μj)

2
∑

n
i=1 mi

=
∑n

i=1
∑mi

k=1(d
k
j)2−2μj

∑n
i=1

∑mi
k=1 dk

j +
∑n

i=1 mi(μj)
2

∑
n
i=1 mi

=
∑n

i=1[miδ
i
j+mi(μ

i
j)2]−2μj

∑n
i=1 miμ

i
j+

∑n
i=1 mi(μj)

2
∑n

i=1 mi

220 H. Jin and J. Xu

=
∑n

i=1 miδ
i
j+

∑n
i=1 mi(μ

i
j)2−2μj

∑n
i=1 miμ

i
j+

∑n
i=1 mi(μj)

2
∑n

i=1 mi

=
∑n

i=1 miδ
i
j+

∑n
i=1 mi(μ

i
j−μj)

2
∑

n
i=1 mi

.
So, from the above description, the theorem holds. #$

Theorem 2. Assume that there are n sub-nodes in node N and its NF vector is
NF = (m,−→μ ,−→δ) and NF vectors of its sub-nodes Ni are NFi = (mi,

−→
μi,
−→
δi),

i = 1, 2, · · · , n.A new node NFn+1 = (mn+1,
−−−→
μn+1,

−−→
δn+1) wants to join node N .

Then the newNF vector of nodeN isNF ′ = (m′,
−→
μ′ ,
−→
δ′), in whichm′ = m+mn+1

and the j-th mean and variance of node N is modified: μ′j =
mμj+mn+1μn+1

j

m+mn+1
, δ′j =

mδj+m(μj)
2+mn+1δn+1

j +mn+1(μ
n+1
j)2−(m+mn+1)(μ

′
j)

2

m+mn+1
.

Proof. According to the definition of NF vector, we can get m′ = m +mn+1.
Assume that there are m data objects {

−→
d1,
−→
d2, · · · ,−→dm} in node N . According

to Definition1, the j-th mean and variance of node N is μj = 1
m

∑m
i=1 d

i
j , δj =

1
m

∑m
i=1(d

i
j − μj)2.

Therefore,
∑m

i=1 d
i
j = mμj ,

∑m
i=1(d

i
j)

2 == mδj +m(μj)2.

After inserting a new node NFn+1 = (mn+1,
−−−→
μn+1,

−−→
δn+1) which maintains

mn+1 data objects into nodeN and
∑m+mn+1

i=m+1 di
j = mn+1μ

n+1
j ,

∑m+mn+1
i=m+1 (di

j)
2 =

mn+1δ
n+1
j +mn+1(μn+1

j)2, the j-th mean and variance of node N is

μj
′ =

∑m
i=1 di

j+
∑m+mn+1

i=m+1 di
j

m+mn+1
=

mμj+mn+1μn+1
j

m+mn+1
,

δj
′ =

∑m+mn+1
i=1 (di

j−μj
′)2

m+mn+1
=

∑m+mn+1
i=1 (di

j)
2−

∑m+mn+1
i=1 di

jμj
′+(m+mn+1)(μj

′)2

m+mn+1

=
mδj+m(μj)

2+mn+1δn+1
j +mn+1(μ

n+1
j)2−(m+mn+1)(μ

′
j)

2

m+mn+1
.

So, from the above description, the theorem holds. #$

Theorem 3. Assume that there are n sub-nodes in node N and its NF vector
is NF = (m,−→μ ,−→δ) and NF vectors of its sub-nodes Ni are NFi = (mi,

−→
μi,
−→
δi),

i = 1, 2, · · · , n. A sub-node NFn+1 = (mn+1,
−−−→
μn+1,

−−→
δn+1) wants to leave from

node N . Then the new NF vector of node N is NF ′ = (m′,
−→
μ′ ,
−→
δ′), in which

m′ = m −mn+1 and the j-th mean and variance of node N is modified: μ′j =
mμj−mn+1μn+1

j

m−mn+1
, δ′j =

mδj+m(μj)2−mn+1δn+1
j −mn+1(μ

n+1
j)2−(m−mn+1)(μ

′
j)

2

m−mn+1
.

The theorem’s proof is similar to that for Theroem 2 so that we omit it here.

Corollary 1. Assume that a data object
−→
di = (d1, d2, · · · , dd) will join node N

whose NF vector is NF = (m,−→μ ,−→δ). Then the new NF vector of node N is
NF ′ = (m′,

−→
μ′ ,
−→
δ′), in which m′ = m + 1 and the j-th mean and variance of

node N is defined as μ′j = mμj+dj

m+1 , δ′j = mδj+m(μj)
2+dj

2−(m+1)(μ′
j)

2

m+1 .

According to Theorem 2, we can get Corollary 1.

TRES-CORE: Content-Based Retrieval 221

Corollary 2. Assume that a data object
−→
di = (d1, d2, · · · , dd) leaves from node

N whose NF vector is NF = (m,−→μ ,−→δ). Then the new NF vector of node N
is NF ′ = (m′,

−→
μ′ ,
−→
δ′), in which m′ = m− 1 and the j-th mean and variance of

node N is defined as μ′j = mμj−dj

m−1 , δ′j = mδj+m(μj)
2−dj

2−(m−1)(μ′
j)

2

m−1 .

According to Theorem 3, we can get Corollary 2.
Corollary 1 and Corollary 2 are the basis for constructing the doc-tree. Corol-

lary 1 are applied to join a node for the doc-tree and Corollary 2 is applied to
delete a node for the doc-tree.

Definition 3. Dis(N,M) is defined as the distance measure between nodeN and
nodeM . The following formula is used: Dis(N,M) = ‖

−→
μN −−→μm‖ . Dis(N,M) is

small when
−→
μN and

−→
μM are close. That is, the similar two nodes are, the smaller

the value Dis(N,M) is. It is applied to join a node for the doc-tree.

3.3 Construction of a Hierarchical Tree

We now present the algorithm for constructing a hierarchical tree, which include
two operations: adding a data object to the hierarchical tree and deleting a data
object from the hierarchical tree. The sensitivity of input ordering is one of the
major issues in incremental hierarchical clustering [19]. In order to overcome
it, the algorithm must enjoy two properties: homogeneity and monotonicity. A
homogeneous node is a set of sub-nodes satisfying the threshold condition. A
hierarchy of nodes satisfies the monotonicity property if the intra-distance of a
node is always smaller than the intra-distance of its parent[20].

A data object joins
Our approach to incorporating a new data object S into a cluster hierarchy
incrementally proceeds as below:

Step 1. Identify the appropriate location: Starting from the root, it recursively
descends the hierarchical tree by choosing a sub-node according to the smallest
value of the distance measure(Definition 3) until the new data object can reach
a leaf node. At the same time, it is to modify the information on the path from
the root to the leaf, that is, after inserting a data object into the hierarchical
tree, we must update the NF information for each node on the path from the
root to the new leaf node according to Corollary 1.

Step 2. Assuming the leaf node that the new object S wants to insert is N
and d is the smallest distance from the data object to the other data object in
node N(see Fig.1):

a) if m < B and for each di s.t. LL ≤ di ≤ UL, then INSERT (S,N)
b)if m == B and LL ≤ di ≤ UL or% di s.t. di < LL, then SPLIT (N + S)
c)otherwise, NEWNODE(S).

Node splitting is done by choosing the farthest pair of entries as seeds, and
redistributing the remaining entries based on the closest criteria.

Step 3. After inserting a new data object into a leaf node, we must update the
information for each non-leaf node on the path to the leaf node. In the absence

222 H. Jin and J. Xu

of a split, nothing is modified for non-leaf nodes. A leaf node split requires us to
insert a new non-leaf entry into the parent node. If the parent has space for this
entry, we only add an entry to reflect the addition in the parent node. Otherwise,
we have to split the parent as well, and so on up to the root.

However, one of the problems is that a node is stranded at an upper level
cluster. Hence,

Step 4. Employ the standard in Step 2 and Theorem 1 to eliminate the in-
homogeneous clusters at the upper level if the information of non-leaf node is
changed.

Fig. 1. Node operations

A data object leaves
If a data object is found not to exist in the P2P system during a searching pro-
cess, the entry in the leaf node maintaining the data object will be omitted and
NF vectors of the nodes on the path from root to the leaf node will be changed
according to Corollary 2 and employ the standard in Step 2 and Theorem 1 to
maintain the homogeneity for each modified node.

The placement of tree nodes
Which server is each node in the tree placed on when a doc-tree is constructing?
A root node can be created by and placed on the server who joins the P2P
system firstly. The existence and address of the root node are assumed to be
either well-known, or disseminated in an application-specific manner in the P2P
system. Assume when a server P publishes a new data object to the system, a
node Na is created in the hierarchical tree. Then, the owner of Na is P or the
owner of Na’s parent and all the nodes in the tree are placed on their owner.
Each node has a single owner, and may be replicated at servers other than the
owner. The information about a node may also be cached by other servers. We
also describe the placement scheme in section 4.

3.4 Query Processing

Let q = {−→Q, θ, idq} be the query feature vector. idq is a pseudorandom number,
uniquely identifying each query. simdist(−→μ ,−→Q) is the distance measure between
the query and a node whose mean is −→μ . The search algorithm needs to return
data objects such that simdist(−→d ,−→Q) ≥ θ.

Assume a peer P initiates a search to find similar data objects to its query.
First, the features of this query are extracted and used to calculate the distance
between the query and the tree node. The query will forward the root node and

TRES-CORE: Content-Based Retrieval 223

the query also forward tree nodes maintained in the peer if simdist(−→μ ,−→Q) ≥ θ.If
the query reaches a tree node, all the nodes maintained by the peer maintaining
this node are checked whether they satisfy the matching criteria. Hence, the
peer is labeled by idq such that the query is not propagated if it reaches this
peer again. If there is no existing the node such that simdist(−→μ ,−→Q) ≥ θ or
θ == 0, the node which simdist(−→μ ,−→Q) is largest is selected to transmit the
query. Until a leaf node reaches, the address of data object will send back to the
query peer if simdist(−→d ,−→Q) ≥ θ, −→d is the feature vector representing the data
object maintained by the leaf node. During each searching processing, the query
only passes through the server at most one time. The doc-tree is a balanced
tree and the number of data objects M is in direct proportion to the number of
servers N in the system so the time complexity for the searching is O(logBN) .

Example: Assume server 1 in Fig.2. initiates a search to find similar data objects
to its query q = {−→Q, θ, idq} . First, this query is routed to server 5 maintaining
the root node n1. And at the same time, it is also routed to server 4 because
the distance between −→Q and the node n5 maintained by server 4 is larger than
θ. Furthermore, the data object d4 in server 4 satisfies the matching criteria.
Therefore, server 4 will reply the requester server 1 about the address of d4.
And, node n8 maintained by server 4 is also larger than θ. So the server 4 will
reply the server 1 about the address of d8, which is a matching result. Then
server 4 is labeled to have been visited so that this query passes through it next
time will be ignored. Also, the query reaching the root is routed to server 3
because the node n3 in server 3 also satisfies the matching criteria and then
server 3 is labeled to have been visited. The query continues to route to server
2 and server 4 because both n7 and n8 in them satisfy the matching criteria.
Because server 4 has been labeled, the query routed to it will be ignored. Server
2 will reply the requester server 1 about the address of d6 because it satisfies the
matching criteria.

Fig. 2. The query processing

224 H. Jin and J. Xu

4 Extension to the TRES-CORE Scheme

TRES-CORE described above is only a basic scheme. Many other problems must
be considered, such as fault tolerance, load balancing and the efficiency. We will
discuss them in this section.

4.1 Load Balancing

All of the tree nodes in the doc-tree must be placed on different servers in order
to achieve load balancing among the servers in the system.

From [21], we can know there are a kind of servers in the network who pro-
vide very high quality connections, stay consistently connected and allocate large
amounts of disk space. We call these peers as strong peers and the others are
called as weak peers. Generally, in order to maintain load balancing in the sys-
tem, the overhead for the computing, the communication and the key data are
taken on by strong peers. And the overhead of storage is taken on by weak peers.

Nodes in the doc-tree can also be classified into two categories: non-leaf nodes
and leaf nodes. The visiting frequency of non-leaf nodes is high so that they
need strong consistency and the frequency of node splitting is low. However, the
visiting frequency of leaf nodes is low and the frequency of node splitting is high.
Therefore, non-leaf nodes are placed on strong peers and leaf nodes are placed
on weak peers.

So, the placement of tree nodes can be modified as following. Assume when
a server P publishes a new data object to the system, a node Na is created in
the hierarchical tree. Then, the owner of Na is P if P is a strong peer or Na is
a leaf node. Otherwise, the owner of Na is the owner of Na’s parent and all the
nodes in the tree are placed on their owner.

4.2 Fault Tolerance

At the same time, in order to guarantee fault tolerance of the doc-tree, each tree
nodes must replicate in several servers. Assume that a server P publishes a new
data object to the system.

(1) If the new data object is placed on a node N , node N will be replicated
on the server P ;

(2) If a leaf node N is on the server, all the nodes from the root to the node
N are replicated on the server.

Each node is replicated several copies so that all the copies must be modified
when a node is changed in order to maintain the consistency.

4.3 Improvement of the Efficiency

The change of doc-tree is very frequent if there are too many data objects.
Therefore, in order to improve the efficiency for building the doc-tree, we can
employ some classic clustering algorithms [22] to cluster all the data objects
sharing in every server in advance. After that, the centroid of each cluster can

TRES-CORE: Content-Based Retrieval 225

be regarded as a data object to join the doc-tree. During the searching process,
a cluster’s centroid which is most similar to the query can be found and then
the query will route to this cluster for the result. That is, clustering locally in
advance can reduce the burden of building the doc-tree in a large-scale data
environment and improve the speed of searching.

5 Simulation

In this section, we provide a brief description of each experiment and the re-
sults obtained. We conduct simulation experiments to prove our algorithms are
effective and efficient.

5.1 Experiment Setup

For content-based retrieval in P2P systems, both the retrieval accuracy and the
efficiency of query routing are important. So we measure the performance using
three accepted metrics: recall, msg and efficiency, which are defined as follows:

recall = |{∀
−→
d ,simdist(

−→
d ,−→q)>θ,

−→
d ∈results}|

|{∀
−→
d ,simdist(

−→
d ,−→q)>θ,

−→
d ∈dataset}|

,

msg =
∑|P |

i=1message(pi), effiency = recall
msg .

The metric recall captures the fraction of relevant documents a search and
retrieval algorithm is able to identify and present to the user, which measures
the retrieval accuracy. The metric msg shows the number of query messages
generated for a query. The metric efficiency measures the efficiency of query
routing.

We simulate our system with a certain number N of peers. The method that
each peer joins the system is the same as that for Gnutella. Then Data objects are
assigned to peers in the following manner. First, L sets of the mean vector and
the variance vector are generated randomly. The dimension of these vectors is D
and the range of each dimension is shown in Table 2. Each set represents a kind
of data objects. In the following, we randomly assign S different classes to each
peer. Then one data point is generated according to the normal distribution for
each chosen class in every peer. After building the system and the doc-tree, each
peer initiates 20 queries. We take the average for the number of query messages
generated and recall accordingly. Table 2 gives some simulation parameters and
their values.

5.2 Experiment Results

In this section, we compare TRES-CORE with the random BFS [23], one of the
methods in the Gnutella network. We explore how the performances are affected
by:

(1) different number of peers in the P2P systems;
(2) different balancing factor B of the doc-tree.

226 H. Jin and J. Xu

Table 2. Parameters and Settings

Algorithm Average routing latency Latency stretch

N 1000-10000 Number of peers in the system
θ 0.9 Query range threshold
L 100 Number of classes in the system
S 50 Number of classes in each peer
Mean [0,1] Range of mean
V ar [0.05,0.5] Range of variance
D 200 Number of dimension
TTL 7 Time to live for each query for BFS
M 4 The maximal number of neighbor
B 2-10 Balancing factor of the doc-tree

Fig.3. depicts the recall against the number of peers for BFS and TRES-CORE
with B = 2, B = 5 and B = 10 respectively. When the size of network increases,
the recall of our scheme continues to remain at a higher range, while the recall
for BFS drops when the size of network grows. And in our scheme, the smaller B
is, the bigger the metric recall is. We conclude that our algorithm is insensitive
to the change of network size, that is, our mechanism is more scalable.

Fig. 3. Recall against the number of peers

Fig.4(a). shows the number of query messages against the number of peers for
BFS and TRES-CORE with B = 2. We vary the number of peers from 1000 to
10000 in the network to observe changes in the number of query messages gen-
erated when a peer initiates a search. From Fig.4(a), the TRES-CORE method
shows a much slower increase in the number of query messages than the BFS
method. Fig.4(b). shows the number of query messages against the number of
peers for TRES-CORE with different balancing factors. From it, we can know
that the bigger B is, the smaller the number of query messages is. Therefore,
we can conclude that the TRES-CORE method can generate much less network
traffic.

TRES-CORE: Content-Based Retrieval 227

0

2000

4000

6000

8000

10000

12000

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

number of peers

m
s
g

BFS TRES-CORE(B=2)

(a) different methods

(b) different balancing factors

Fig. 4. Number of query messages against the number of peers

Fig.5. depicts the query efficiency against the number of peers for BFS and
TRES-CORE with B = 2, B = 5 and B = 10, respectively. The TRES-CORE
always outperforms BFS although query efficiencies of all of them decrease when
the size of network increases. From it, we can also know that the query efficiency
will increase with the increase of the balancing factor B. However, if B is too
large (B = 10), the query efficiency will decrease.

Fig. 5. Query efficiency against the number of peers

6 Conclusion and Future Work

In this paper, we propose a new scheme TRES-CORE for P2P content-based
information retrieval, along with various optimization techniques to improve
system efficiency and the quality of search results. We made the following con-
tributions: (1) we propose a height-balanced tree structure doc-tree to organize
data objects in vector-format in the P2P system which can reduce the time
complexity of searching; (2) we give a simple strategy for the placement of tree’s
nodes, which can guarantee both load balancing and fault tolerance; (3) TRES-
CORE can be used to support content-based retrieval. Simulation results show
TRES-CORE is an accurate and efficient scheme. In the future, we will study
how to maintain the consistency of several copies in a large scale environment

228 H. Jin and J. Xu

and the cache scheme in the P2P system. We also plan to construct a P2P
system that gets physically neighboring peers into a cluster. Then, TRES-CORE
is employed in each cluster, which is the more suitable environment.

References

1. Napstry. http://www.napstry.com/
2. Gnutella. http://www.gnutellaforums.com/
3. Stoica, I., Morris, R., Karger, D., et al.: Chord: A Scalable Peer-to-Peer Lookup Ser-

vice for Internet Applications. In: Govindan. (ed.) Proc. of the ACM SIGCOMM,
pp. 149–160. ACM Press, San Diego (2001)

4. Ratnasamy, S., Francis, P., Handley, M., et al.: A Scalable Content-Addressable
Network. In: Govindan. (ed.) Proc. of the ACM SIGCOMM, pp. 161–172. ACM
Press, San Diego (2001)

5. Rowstron, A., Druschel, P.: Pastry: Scalable, Distributed Object Location and
Routing for Large-scale Peer-to-Peer Systems. In: Guerraoui, R. (ed.) Middleware
2001. LNCS, vol. 2218, pp. 329–350. Springer, Heidelberg (2001)

6. Zhao, B.Y., Huang, L., Stribling, J., Rhea, S.C., Joseph, A.D., Kubiatowicz, J.:
Tapestry: A Resilient Global-Scale Overlay for Service Deployment. IEEE Journal
on Selected Areas in Communications 22, 41–53 (2004)

7. Michael, W.B., Zlatko, D., Elizabeth, R.J.: Matrices, Vector Spaces, and Informa-
tion Retrieval. SIAM Review 2, 335–362 (1999)

8. Deerwester, S.C., Dumais, S.T., Landauer, T.K., Furnas, G.W., Harshman, R.A.:
Indexing by Latent Semantic Analysis. Journal of the American Society for Infor-
mation Science 6, 391–407 (1990)

9. Shen, H.T., Shu, Y.F., Yu, B.: Efficient Content-Based Text Search in P2P Net-
work. IEEE Transaction on Knowledge and Data Engineering (TKDE) (Special
Issue on P2P Data Management) 7, 813–826 (2004)

10. Cuenca-Acuna, F.M., Nguyen, T.D.: Text-Based Content Search and Retrieval in
Ad Hoc P2P Communities. Technical Report DCS-TR-483, Department of Com-
puter Science, Rutgers University (2002)

11. Tran, D.A.: A Hierarchical Semantic Overlay Approach to P2P Similarity Search.
In: Proceedings of USENIX Annual Technical Conference, pp. 355–358 (2005)

12. Tran, D.A., Hua, K.A., Do, T.T.: Zigzag: An Efficient Peer-to-Peer Scheme for
Media Streaming. In: Proc. of the IEEE INFOCOM 2003. IEEE Computer and
Communications Societies, New York, pp. 1283–1293 (2003)

13. Tang, C., Xu, Z., Mahalingam, M.: pSearch: Information Retrieval in Structured
Overlays. ACM SIGCOMM Computer Communication Review 1, 89–94 (2003)

14. Renda, M.E., Callan, J.: The Robustness of Content-Based Search in Hierarchi-
cal Peer to Peer Network. In: Proceedings of the thirteenth ACM international
conference on Informa-tion and knowledge managemen (2004)

15. Liu, J., Callan, J.: Content-Based Retrieval in Hybrid Peer-to-Peer Networks. In:
Proceedings of the twelfth international conference on Information and knowledge
management, pp. 562–570 (2003)

16. Zhang, T., Ramakrishnan, R., Livny, M.: BIRCH: A New Data Clustering Algo-
rithm and Its Applications. Data Mining and Knowledge Discovery 2, 141–182
(1997)

17. Forouzan, B.A., Gilberg, R.F.: Data Structures: A Pseudocode Approach with
C++. Brooks/Cole Pub. Co. (2000)

http://www.napstry.com/
http://www.gnutellaforums.com/

TRES-CORE: Content-Based Retrieval 229

18. Fisher, D.H., Xu, L., Zard, N.: Ordering Effects in Clustering. In: Proceedings of
the 9th International Conferenceon Machine Learning (1992)

19. Widyantoro, D., Yen, J.: An Incremental Approach to Building a Cluster Hierarchy.
In: Proceedings of the 2002 IEEE International Conference on Data Mining, pp.
705–708 (2002)

20. Wilcox-O’Hearn, B.: Experiences Deploying a Large-Scale Emergent Network. In:
Proceedings of the First International Workshop on Peer-to-Peer Systems, pp. 104–
110 (2002)

21. Comer, D.: The Ubiquitous Btree. ACM Computing Surveys 2, 121–137 (1979)
22. Jain, A.K., Murty, M.N., Flynn, P.J.: Data Clustering: A Review. ACM Computing

Sur-veys 31, 265–322 (1999)
23. Kalogeraki, V., Gunopulos, D., Zeinalipour-Yazti, D.: A Local Search Mechanism

for Peer-to-Peer Networks. In: Proc. of the 11th Int’l Conf. on Information and
Knowledge Management, pp. 300–307. ACM Press, New York (2002)

Efficient Race Verification for Debugging

Programs with OpenMP Directives

Young-Joo Kim, Mun-Hye Kang, Ok-Kyoon Ha, and Yong-Kee Jun

Information Science, Gyeongsang National University
Jinju, 660-701 South Korea

{akates,munhye,okkyoon,jun}@gnu.ac.kr
http://is.gsnu.ac.kr

Abstract. Races must be detected for debugging parallel programs with
OpenMP directives because they may cause unintended nondeterministic
results of programs. The previous tool that detects races does not verify
the existence of races in programs with no internal nondeterminism be-
cause the tool regards nested sibling threads as ordered threads and has
the possibility of ignoring accesses involved in races in program models
with synchronization such as critical section. This paper suggests an ef-
ficient tool that verifies the existence of races with optimal performance
by applying race detection engines for labeling and detection protocol.
The labeling scheme generates a unique identifier for each parallel thread
created during a program execution, and the protocol scheme detects at
least one race if any. This tool verifies the existence of races over 250
times faster in average than the previous tool even in the case that the
maximum parallelism increases with the fixed number of total accesses
using a set of synthetic programs without synchronization such as criti-
cal section.

Keywords: OpenMP directive, races, verification, labeling scheme,
protocol scheme.

1 Introduction

Races [11] of a serious error in OpenMP programs with directives occur when
two more parallel threads access to at least a write access of each shared variable
without proper inter-thread coordination. Races must be detected for debugging
parallel programs because they may cause unintended nondeterministic results.
On-the-fly detection technique [4,10] which detects races by monitoring accesses
of each shared variable during a program execution is efficient in the aspect
of space complexity because it may remove the unnecessary information while
monitoring an execution.

Intel Thread Checker [6,7,13], the previous tool for detecting on-the-fly races
in programs with OpenMP directives, sequentially executes parallel threads and
detect races by checking data dependency during an execution of program with
no internal nondeterminism [4]. The tool however regards nested sibling threads

V. Malyshkin (Ed.): PaCT 2007, LNCS 4671, pp. 230–239, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

http://is.gsnu.ac.kr

Efficient Race Verification for Debugging Programs with OpenMP Directives 231

as ordered threads and has the possibility of ignoring accesses involved in races
in program models with synchronization such as critical section. So this tool does
not verify the existence of races in programs with no internal nondeterminism

This paper suggests an efficient tool that verifies the existence of races with
optimal performance by applying race detection engines for labeling and detec-
tion protocol. The labeling scheme generates a unique identifier in each parallel
thread created during a program execution, and the protocol scheme detects at
least one race if any. Target program model is C programs with OpenMP direc-
tives, which may include the parallel directives “#pragma omp parallel for” and
the synchronization directives “#pragma omp critical.” To verify the existence
of races with optimal performance, we classify program models into two types
based on the existence of synchronization.

We use a computer based on linux on a dual 64bit Intel Xeon processor for ex-
perimentation of the suggested tool, and use Intel C/C++ compiler [5] installed
for compiling the target programs. We use a set of synthetic programs with activ-
ity management models that execute jobs in each thread independently usually
with different kinds of data structures. This tool verifies the existence of races
over 250 times faster in average than the previous tool even in the case that the
maximum parallelism increases with the fixed number of total accesses.

Section 2 illustrates data races that occur in programs with OpenMP direc-
tives, and indicates the problems of the previous tool. Section 3 designs and
implements the efficient race-verification. Section 4 shows the experimentation
results on the efficiencies of the previous tool and the suggested tool. The last
section includes conclusions and future work.

2 Background

This section illustrates OpenMP programs with directives and races to occur in
the programs and explains about the operation principle and problems of the
previous tool for detecting races.

2.1 The Data Race in OpenMP Program

OpenMP programs [2,12] are an industry-standard program model for shared
memory parallel programs written in C/C++ and Fortran 77/90 and These
consist of compiler directives,library routines, and environment variables. The
directives extend the Fortran or C sequential programs and provide support for
the sharing and privatization of data. The library routines and environment vari-
ables provide the functionality to control the run-time execution environment.
The sequential programs can be transformed easily into parallel programs be-
cause of providing compiler directives of OpenMP. These directives [12] consist
of parallel directives, work-sharing directives, data-environment directives, and
synchronization directives.

An execution of parallel programs with no internal nondeterminism [4] is
represented by a directed acyclie graph called POEG (Partial Order Execution

232 Y.-J. Kim et al.

T1 T2

T3 T4

T1 T2

R1

R2

W3R1

R2

W3

W4

(a) (b)

Fig. 1. POEG for program model with nested parallelism and critical section

Graph) [3]. In this Fig. 1, a vertex of POEG means a fork or join operation for
parallel threads, and an arc started from a vertex represents a thread started
from the vertex. The access r and w drawn with small disks upon the arcs
represent a read and a write access which access a shared variable. A number
attached to each access indicates an observed order, and an arc segment delimited
by symbol # and $ means a critical section protected by lock variable. With
POEG, we can easily understand a partial order of happens-before relationship
of accesses that occurred in an execution instance of parallel programs. Two
accesses is ordered relationship if a path exists in two accesses and two accesses
are concurrent relationship if not. Fig. 1(a) is to represent programs with nested
parallelism as POEG. In this Figure, r1 has the ordered relationship with r2
because the path exists in the accesses. r1 has the concurrent relationship with
w3 because the path does not exist in the accesses.

We call it races when it includes at least one write access of two concurrent
accesses without proper inter-thread coordination and represent races as ei-ej .
Fig. 1(a) has four races: {r1-w3, r1-w4, r2-w3, r2-w4}. Fig. 1(b) is to represent
programs with synchronization as POEG. This figure has only one race: {r1-
w3}. r2 in thread T 1 is concurrent with w3 thread T 2 but r2 and w3 are not
involved in a race because r2 and w3 are protected by the same lock. Races
must be detected for debugging the programs because of causing unintended
nondeterministic results.

2.2 The Previous Tool

On-the-fly detection technique [4,10] which detects races monitoring accesses of
each shared variable during a program execution is efficient in the aspect of
space for detecting races because it removes the unnecessary information while
the technique collects information for accesses. The previous tool that detects
races on-the-fly in OpenMP programs with directives are Thread Checker of

Efficient Race Verification for Debugging Programs with OpenMP Directives 233

Intel corporation is a unique tool. The errors detected by Thread Checker are
deadlock, race, logical error, and so on. This paper applies only to races.

The projection technique [13] of Thread Checker [6,7,13] for OpenMP pro-
grams uses sequential execution information obtained during the compilation
of program and checks data dependency [1,13] on-the-fly to detect races. This
technique is applied only to relaxed sequential OpenMP programs [13] which
consist of only OpenMP directives for parallelism. Thread Checker detects races
as follows. First, when the programs written in OpenMP directives are compiled,
a part of this tool integrated in the compiler traces the information related to
OpenMP directives and shared variables into an exclusive database. Second,
OpenMP directives are ignored when the compiled program is executed sequen-
tially. Third, the tool uses the traced information in any storage to check data
dependency of accesses to shared variables whenever OpenMP directives is ex-
ecuted. Last, the tool reports the accesses as races if it satisfies a anti, a flow,
and an output data dependency [1] except an input data dependency.

Thread Checker does not detect races in the program model with nested par-
allelism of Fig. 1(a) but four races exist in this program: {r1-w3, r1-w4, r2-w3,
r2-w4}. four accesses that exist in nested threads have an ordered relationship
because Thread Checker regards nested sibling threads as ordered threads. Also,
Thread Checker does not detect races in the program model with synchroniza-
tion of Fig. 1(b) but one race exists in this program: {r1-w3}. Because Thread
Checker has the possibility of ignoring accesses involved in races, r1 is removed
by r2. Therefore, Thread Checker does not verify the existence of races in pro-
grams with nested parallelism or synchronization.

3 Efficient Race Verification

This section explains the race detection technique which uses the efficient race
verification tool. This tool uses the labeling scheme and the protocol scheme
for race verification and analyzes race detection engines according to OpenMP
programs models.

3.1 The Verification Schemes

This tool uses labeling schemes [8,14] and protocol schemes [4,10]. The labeling
schemes create a logical concurrency of created threads during a program ex-
ecution and the logical concurrency is a unique identifier of each thread. The
protocol schemes detect races by comparing current access with previous accesses
that are saved in access history of shared data structure every time accesses oc-
cur in a thread. Access history consists of concurrent accesses in set of accesses
to occur in a program execution. It is possible to verify the existence of races if
the labeling and protocol schemes are applied. This tool provides the configura-
tion for efficient verification of the existence of races with optimal performance
by applying race detection engines which classify the labeling and the protocol
schemes according to program models. These program models are distinguished
with no synchronization and synchronization.

234 Y.-J. Kim et al.

First, we explain the labeling scheme. In the program models for no synchro-
nization, Nest-Region (NR) labeling [8,14] scheme is used. This scheme does not
have the bottleneck problem proportionate to the number of maximum paral-
lelism because of using a private structure and creating the concurrency infor-
mation. So this scheme has the most superior performance in the aspect of time
and space. And in the program models for synchronization, Nest-Region (NR)
Labeling which applies Lock Cover [4] scheme are used. Next, we explain the pro-
tocol scheme. In the program models for no-synchronization, Mellor-Crummey
protocol [10] scheme is used. This scheme has high efficiency in the aspect of
space because of keeping the access history to save only three accesses: the most
late-write access, the most left-read access, and right-read access. And in the
program models for synchronization, Dinning protocol [4] scheme is used. This
scheme has the most superior performance in the aspect of time and space in the
program model with synchronization such as critical section because of removing
all accesses within access history after checking races when a write access in a
thread without critical section occurs.

3.2 The Efficient Tool

A source program written in directives of OpenMP program is transformed into
a instrumented program which libraries for monitoring are inserted where the
libraries consist of labeling and protocol engines. The labeling engines create
“Label log” including fork/join information of threads and lock/unlock informa-
tion of critical section during a program execution. The detection engine which
takes the information created by labeling engine creates “Detect log” including
the detected races for each shared variable.

The labeling engine consists of Foker, Joiner, and Locker of a library type.
Forker module creates the label information for threads created by the directive
like “#pragma omp parallel for,” Joiner module creates new label information
according to joins of parallel threads by the join directives and implicit join oper-
ation, and Locker module creates to remove lock information by the directive like
“#pragma omp critical.” In the program with synchronization, lock information
is created in the beginning of the critical section and is removed in termina-
tion of the critical section. The detection engine consists of MellDetector for
the programs without synchronization and DiScDetector for the programs with
synchronization. MellDetector applies the protocol scheme of Mellor-Crummey
which creates access history for each shared variable and reports races by ana-
lyzing label information of accesses. DiScDetector applies the protocol scheme
of Dinning which initializes the structure for saving lock variables and creates
access history for each shared variable and reports races by analyzing label and
lock information of accesses.

Fig. 2 is to show that labeling and protocol engines are applied to target
program. InitLabel of line 2 creates label information for the most top parent
and initializes the structure for label. InitDetection of line 3 allocates the mem-
ory for access history of each shared variable. “#pragma omp parallel for” of line

Efficient Race Verification for Debugging Programs with OpenMP Directives 235

1: main () { · · ·
2: InitLabel(· · ·);
3: InitDetection(· · ·);
4: · · ·
5: #pragma omp parallel for shared(x)private(y,z,i)
6: for (i=0 ; i < 100 ; i++) {
7: Forker(· · ·); · · ·
8: y = x + i;
9: ReadChecker(· · ·); · · ·
10: #pragma omp critical(L1) {
11: LockAdder(· · ·);
12: x = z + i;
13: WriteChecker(· · ·); · · · }
14: LockRemover(· · ·); · · · }
15: Joiner(· · ·); · · · }

Fig. 2. Labeling Engine and Detection Engine in OpenMP

5 parallelize threads and variable x is shared variable by shared(x) and vari-
able y, z, and i are private variable by private(y,z,i). Forker of line 7 uses label
information of parent thread and creates label information of current thread.
ReadChecker of line 9, construction factor of detection engine, compares current
read access with previous write accesses and reports races after checking con-
currency relationship and then determines whether current access is updated in
access history.

Line 10 of source code is set to critical section by lock variable L1 using
the directive of “#pragma omp critical.” LockAdder of line 16 adds the infor-
mation for lock variable defined by line 11 into current thread’s label informa-
tion. WriteChecker of line 13, construction factor of detection engine, compares
current write access with previous read and write accesses and reports races
after checking concurrency relationship. If races is reported, WriterChecker re-
moves the label and lock information of accesses which is saved in access his-
tory and the information for current write access is added in access history.
The critical section defined by line 10 is terminated in line 13, and LockRe-
mover of line 14 removes the lock information created by LockAdder in thread’s
label information. Joiner of line 15 creates the label information of the joined
thread using the parent thread’s label information and the current thread’s label
information.

4 Experimentation

The section measures the required time for verifying the existence of races using
synthetic programs written for proving the efficient race verification, and we
analyze the previous tool and the suggested tool using the measured result.

236 Y.-J. Kim et al.

Table 1. The Detected Races

A-113 Race Verification Previous Tool

1 r1 [w3] r1-w3 -
[r2]

2 [r1] r2 [w4] r2-w4 -
[r3]

w2-r4, r1-w5,
3 [r1 [r3] [w5] r3-w5, r4-w5, w2-r4

w2] r4 w2-w5

4.1 Synthetic Programs

We use synthetic programs for experimenting the efficiency and the possibility of
race verification in the previous tool and the suggested tool. OpenMP programs
with directives based on C language have a parallel computing program model
[15] and an activity management program model [15] based on parallel threads.
Parallel Computing Program divides single computation job into several parallel
jobs and these jobs have data structure and variables of the same kind. Activity
Management Program creates parent and child threads that have the allocated
jobs in a program and these jobs have the different kind of data structure.

In race detection, dependency for tool’s efficiency is graphed considering the
number of accesses and maximum parallelism, and Accesses occurred in vari-
ous locations of source code and threads is executed independently so that the
synthetic programs based on activity management program models than parallel
computing program models are effective and general program in the experiment.
Also, For race verification analysis, synthetic programs is written considering
synchronization and nested parallelism, and for the efficient analysis, synthetic
programs is written considering critical section, maximum parallelism, and the
number of total accesses in the programs without synchronization and nested
parallelism where maximum parallelism is increased as two exponents and the
number of accesses per thread creates one hundred, two hundred, and three hun-
dred and odd threads create read accesses and even threads create write accesses
in the programs.

4.2 Race Verification and Its Efficiency

We measure the required time in race verification using synthetic programs. The
system based on linux which is used for the experimentation is the computer
with 64bit Intel Xeon Dual CPU and has Intel C/C++ compiler [5] for OpenMP

Efficient Race Verification for Debugging Programs with OpenMP Directives 237

0.001

0.01

0.1

1

10

100

E-200-100 E-200-200 E-200-300 E-400-100 E-400-200 E-400-300 E-800-100 E-800-200 E-800-300 E-1600-100 E-1600-200 E-1600-300

Synthetic Programs

S
ec

o
n

d

M.Checker Thread Checker

The Required Time - I

Fig. 3. The Required Time according to Total Accesses

programs with directives. For the previous tool, Thread Checker 3.0 is installed
and for the suggested tool, the libraries for verifying the existence of races are
installed in this system. These libraries are implemented by C language. Two
tool experiment in the same system environment.

Table 1 is the result which verifies the existence of races using the suggested
tool and the previous tool in the synthetic programs with synchronization and
nested parallelism. Symbol “[]” means lock. In Table 1, the previous tool does
not verify the existence of races in the first and second programs but the sug-
gested tool does. For the efficiency of these tools, we measure the required time
for race detection using synthetic programs. We knew empirically this fact that
the race detection technique of Intel Thread Checker has practical performance
in the aspect of required time and space in the programs based on parallel
computing program models, because this tool does not monitor the accesses if
accesses having the same date structure occur repetitively. For example, Intel
Thread Checker recognizes as one access and detects races. So parallel computing
program models excludes in this experimentation. Fig. 3 shows the result which
measures the required time for race detection in synthetic programs. These syn-
thetic programs are increased to two exponents for maximum parallelism and the
number of accesses per thread: {E-200-100, E-200-200, E-200-300, E-400-100, E-
400,200, E-400-300, E-800-100, E-800-200, E-800-300, E-1600-100, E-1600-200,
E-1600-300}. The top line is to show time variation for the previous tool, Intel
Thread Checker. The bottom line is to show time variation for the suggested tool
according to these synthetic programs. As the result of Fig. 3, the time variation
of two tools increased progressively according to the number of total accesses
but the suggested tool is averagely over 250 times faster than the previous tool.

Fig. 4 is to measure the required time in detecting races with synthetic pro-
grams. These synthetic programs fixed the number of total accesses to 4000 and

238 Y.-J. Kim et al.

0.001

0.01

0.1

1

10

E-200-2000 E-400-1000 E-800-500 E-1600-250 E-3200-125

Synthetic Programs

S
ec

M.Checker KPPJ05

The Required Time - II

Fig. 4. The Required Time according to Maximum Parallelism

increased to two exponents for maximum parallelism: {E-200-2000, E-400-1000,
E-800-500, E-1600-250, E-3200-125}. The top line is to show time variation for
the previous tool [9] which has been developed in our laboratory, the bottom
line is to show time variation for the suggested tool according to these synthetic
programs. As the result of Fig. 4, there is scarcely the time variation of the
previous tool [9] although maximum parallelism is increased but the detection
time of the suggested tool is reduced as the increase of maximum parallelism
occurs. Therefore, the suggested tool is more efficient than the previous tools in
detecting races

5 Conclusions

Races must be detected for debugging parallel programs with OpenMP direc-
tives because they may cause unintended nondeterministic results of programs.
The previous tool that detects races does not verify the existence of races in pro-
grams with no internal nondeterminism because the tool regards nested sibling
threads as ordered threads and has the possibility of ignoring accesses involved
in races in program models with synchronization such as critical section. This
paper suggests an efficient tool that verifies the existence of races with optimal
performance by applying race detection engines for labeling and detection pro-
tocol. The labeling scheme generates a unique identifier for each parallel thread
created during a program execution, and the protocol scheme detects at least
one race if any. This tool verifies the existence of races over 250 times faster in
average than the previous tool even in the case that the maximum parallelism
increases with the fixed number of total accesses using a set of synthetic pro-
grams without synchronization such as critical section. We are going to make
the integrated environment for detecting races in the future.

Efficient Race Verification for Debugging Programs with OpenMP Directives 239

References

1. Banerjee, U., Bliss, B., Ma, Z., Petersen, P.: A Theory of Data Race Detection. In:
Proc. of Workshop on Parallel and Distributed Systems: Testing and Debugging
(PADTAD), pp. 69–78, ACM, Portland, USA (July 2006)

2. Dagum, L., Menon, R.: OpenMP: An Industry-Standard API for Shared Memory
Programming. Computational Science and Engineering 5(1), 46–55 (1998)

3. Dinning, A., Schonberg, E.: An Empirical Comparison of Monitoring Algorithms
for Access Anomaly Detection. In: 2nd Symp. on Principles and Practice of Parallel
Programming, ACM, pp. 1–10 (March 1990)

4. Dinning, A., Schonberg, E.: Detecting Access Anomalies in Programs with Critical
Sections. In: 2nd Wrokshop on Parallel and Distributed Debugging, pp. 85–96,
ACM (May 1991)

5. Intel Co.: Intel C++ Compiler 8.1 for Windows: Getting Started Guide (2004)
6. Intel Corp.: Getting Started with the Intel Thread Checker, 2200 Mission College

Blvd., Santa Clara, CA 95052-8119, USA (2004)
7. Intel Corp.: Intel Thread Checker for Windows 3.0 Release Notes, 2200 Mission

College Blvd., Santa Clara, CA 95052-8119, USA (2005)
8. Jun, Y., Koh, K.: On-the-fly Detection of Access Anomalies in Nested Parallel

Loops. In: 3rd ACM/ONR Workshop on Parallel and Distributed Debugging, pp.
107–117, ACM (May 1993)

9. Kim, Y., Park, M., Park, S., Jun, Y.: A Practical Tool for Detecting Races in
OpenMP Programs. In: Malyshkin, V. (ed.) PaCT 2005. LNCS, vol. 3606, pp.
321–330. Springer, Heidelberg (2005)

10. Mellor-Crummey, J.M.: ’On-the-fly Detection of Data Races for Programs with
Nested Fork-Join Parallelism. Supercomputing, pp. 24–33, ACM/IEEE (November
1991)

11. Netzer, R.H.B., Miller, B.P.: What Are Race Conditions? Some Issues and Formal-
izations. Letters on Prog. Lang. and Systems 1(1), 74–88 (1992)

12. OpenMP Architecture Review Board: OpenMP Fortran Application Program In-
terface, Ver. 2.0 (November 2000)

13. Petersen, P., Shah, S.: OpenMP Support in the Intel Thread Checker. In: Voss,
M.J. (ed.) WOMPAT 2003. LNCS, vol. 2716, pp. 1–12. Springer, Heidelberg (2003)

14. Park, S., Park, M., Jun, Y.: A Comparision of Scalable Labeling Schemes for De-
tecting Races in OpenMP Programs. In: Eigenmann, R., Voss, M.J. (eds.) WOM-
PAT 2001. LNCS, vol. 2104, pp. 66–80. Springer, Heidelberg (2001)

15. Rinard, M.: Analysis of Multithreaded Programs. In: Cousot, P. (ed.) SAS 2001.
LNCS, vol. 2126, pp. 1–19. Springer, Heidelberg (2001)

V. Malyshkin (Ed.): PaCT 2007, LNCS 4671, pp. 240–244, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Adaptive Scheduling and Resource Assessment in GRID

V. Krasnotcshekov and A. Vakhitov

Chair of Software Engineering,
Department of Mathematics and Mechanics,

Saint Petersburg State University,
198504 Russia Saint Petersburg Universitetsky pr., 28

av38@yandex.ru, venia_k@mail.ru

Abstract. The problems of scheduling computations in GRID and optimal
usage of GRID resources from client side are considered. The general cost
functional for GRID scheduling is defined. The cost function is then used to
define some scheduling policy based on Simutaneous Perturbation Stochastic
Optimization Algorithm, which is used because of it’s fast convergence in
multidimensional noisy systems. The technique proposed is being implemented
for brokering in GPE4GTK environment to compare it with other techniques.

1 Introduction

Last years GRID technologies grow rapidly. People start to use GRID on commercial
basis for not only scientific, but also industrial purpose. To succeed in this, high
quality (and high efficiency) control of computational process is needed. This means
new resource allocation and management facilities. Standards for resource
management in GRID do exist; however, there are not many products which match
the standards perfectly.

Here we consider two problems of control and optimization of the GRID:
scheduling of GRID Single Program Multiple Data computation. Second: how to
solve some problem having GRID as a black-box computational device.

SPMD computing is used in variety of fields [1]. Good discussion about SPMD
tasks is provided in [2]. The results about SPMD computing and adaptive techniques
now start to appear. Earlier, the comparatively simple strategies were used [3]. Later,
several different problems of adaptive learning class in scheduling field appeared.
Firstly, the distributed computing runtime can adopt the number of client computers
used by any task [4, 2]. Research proposed here can be generalized with techniques
from [4]. Here we address only problem of optimal execution of the one SPMD task;
in [4, 2] it is assumed that there are several concurrent.

Some authors propose to adapt to the imbalance by changing the "`relative power"'
on each step when imbalance is more than some threshold. In our opinion, this is not
often needed. If the system performs in average well, then there is no need to change
the work given to target systems on each step.

 Adaptive Scheduling and Resource Assessment in GRID 241

2 Scheduling of Computations

2.1 Cost Function Definition

In usual GRID system there exist resources of sequential use, which serve as atomic
containment of GRID, and some resource broker, which is given the right to manage
them (to make scheduling). Typical scheduling of some long-running computation has
two main steps:

• Distribution of computations to resources of sequential use contained in the
GRID system;

• Synchronization of the results.

We suppose that the cost function of a scheduler looks like:

()

1

() (() ()) (,)
N

i i
i

F Z L G C T
α

α α α
=

= + +∑

(1)

 α – is a vector of problem being solved, with all parameters and
requirements;

()iZ α – time for loading some sub-task and unloading the results from itch

computational device (resource);

()iL α – idle time of i-th resource, or time between the i-th finishes its

computations and the whole computation is finished;

()N α – determines number of resources, which can be used in these

computations on current step;
C – cost;
T – time for computations;

(,)G C T – If the task is not finished in time T , then monetary losses are

equal to cost C and it is included to the cost function as G(C,T).

2.2 Cost Function Motivation

The best scheduler is supposed to give minimal value for ()F α among all the

possible balancers. However, the best scheduler for every computation α obviously
cannot be found. Different strategies succeed in different cases, so the problem of
minimization in mean should be taken into account.

The cost function proposed is very general. It serves to determine how efficiently
the task is computed. It includes the main resource wastement components: waiting,
communication, and also penalty. Next, we will explain some derivation based on this
cost function with specific scheduling approach.

The problem of brokering computations between resources which are given to the
process can be easily adapted to cost functional (1). Brokering usually is defined by

242 V. Krasnotcshekov and A. Vakhitov

some policy. In systems like Grid Programming Environment [5] brokering is done
without any feedback after the atomic task is completed. So, the problem of search for
of reliable task distribution between resources of sequential use without feedback is of
interest. We propose to formalize a problem by considering a policy based on ratios
for every device. Let us denote |α | as number of atomic sub-tasks. Then ratio for
each resource i from 1 to N(α) is p(i)=|α i|/|α |. The scheduling policy then is
defined by a vector of ratios.

We propose to use algorithms of SPSA class for the optimization of the scheduling
[6,7].

Consider problem described in [8]. Let the task be consisting of a large set of
primitive calculations {o1,...,oN}. It will be grouped into sequential portions, which
will correspond to distribution-synchronization steps of the balancing, and each
portion will be divided into blocks given to each computational resource.

Then, we can approximately say that time of calculations of some task on one
system S can be seen as an integral of some function Op(k) (time to complete k-th
computation) over some segment.

()()

()(, ,) () () ,

jj
ij iij i

ij ij

s p bs p b
j

ij i
k s s

t i s p Op k Op x dx
++

=

= ≈∑ ∫

(2)

where b is the size of task. Parameter i denotes the step of iterative ratios adjustment,
pi

(j) are as before.
We will not go deeper into the design of the controller for GRID in this extended

abstract. We should say only, that SPSA deals with approximation of the function t
(tracking in close model of [2], Pic. 1 (b)). Controller uses this approximation to build
next estimator division of a portion into blocks.

3 Resources Assessment Problem

3.1 Problem Description

When customer of GRID system prepares a task for processing the main question is
the cost of distributed resources and the time witch is necessary for calculation.
Obviously, resources have to be allocated according to priority. Such priority can
depend on requested time and suggested price. Thus appraise task is estimation of
optimal cost of required resources.

It is possible request to calculate several small tasks and consider reaction of
system, thus, determine optimal cost and time for solving the whole task. The author’s
approach to resources assessment is based on that idea.

Suppose that the task consists of a lot of small independent

subtasks 1 2{ , ,... }Lγ γ γ γ= . The question: is it optimal to send the whole task for

processing in GRID or it is better to send one by one small tasks. Evidently, that long
task can be marked with low priority and process long time, however, sending small

 Adaptive Scheduling and Resource Assessment in GRID 243

task, which marked with high priority, it is possible to get the solution faster. Thus,
optimization - means to determining optimal block of subtasks, witch is sending to
distributed system. Moreover, it is necessary to adapt to changes of system capacity.
Methods of stochastic optimizations (SPSA)[1,2] are good in such problem area,
because of sufficient uncertainty of the system and fast convergence needed.

3.2 Problem Statement

Suppose that we need to solve the task 1 2{ , ,... }Lγ γ γ γ= , where L - is

comparatively big, and () () , [1,]i jS S i j Lγ γ ∀ ∈� . One step of algorithm sends

some collection of { }iγ with range r elements of task γ (block) to the GRID. Here

()iS γ - “capacity” of calculations for element iγ from taskγ . Let choose N L< .

N -number of blocks, composed with elements iγ from taskγ , witch are sending

before algorithm changes the range of block r.

1

(, , ,) (,) (, , ())
N

i

L
F r k N W r T r kN i

Nr
γ γ γ

=

⎛ ⎞= + +⎜ ⎟
⎝ ⎠

∑

where r is a range of block (number of iγ which are being sent simultaneously to

computation system), ()W ⋅ - expenses for load of block with r subtasks (r is constant

and not dependent on the range of block value); (, ,)T r iγ - time for processing of

block witch consists of r subtasks from γ starting with iγ .

3.3 SPSA Algorithm

Algorithm performs following steps:

• Step 1. Choose start value of estimation of block range 0̂r ;

• Step 2. Generate nΔ ;

• Step 3. Before each step calculate 1ˆn n nr r β−= + Δ ;

• Step 4. After each step calculate new value n n-1 n nˆ ˆr =r -(/) F(,r ,n,N)α β γΔ ;

• Step 5. Increase n;
• Step 6. Go to step 2 or stop algorithm, in case when during several sequential

iteration estimation changes very low.

∆n - Bernoulli sequences of independent random value equal to 1± . ,α β - fitted

value.
Algorithm is very simple, and, at the same time, allows quick adaptation even with

noise in system. Moreover, on each step it is required only one noise calculation of
cost function.

244 V. Krasnotcshekov and A. Vakhitov

4 Conclusion

Two different tasks for optimization of the calculation in GRID were considered
above. The aim of both tasks is to increase controllability and efficiency of GRID.

Implementation of suggested algorithms is in process, and modeling can’t give the
exact results, because building of GRID system is very complex.

Authors are members of research project on GRID in SPRINT Lab of SPbSU with
Intel collaboration. Our main software is GPE4GTK tool [4]. In this project the goals
are to investigate dispatching and resources optimization problems together with
development of tools to make GRID software adoption easier on arbitrary system.
The model of programming for GPE is very high-level, based on standard BPEL
workflow definition. The whole GRID runs on Java platform, so it works in similar
way on the platforms supported by JRE.

In the project group we have several SPMD tasks implemented. We start to
investigate better scheduling using the cost function discussed and its derivations. Our
main future work is to propose better algorithm for the broker of GPE.

References

1. Nakano, A.: High performance computing and simulations (Spring ’07) online:
http://cacs.usc.edu/education/cs653.html

2. Weissman, J.: Prophet: automated scheduling of SPMD programs in worksation networks.
Concurrency: Practice and Experience 11(6), 301–321 (1999)

3. Cermele, M., Colajanni, M., Necci, G.: Dynamic load balancing of distributed SPMD
computations with explicit message-passing. In: Proceedings of the IEEE Workshop on
Heterogeneous Computing, pp. 2–16 (1997)

4. He, Y., Hsu, W., Leiserson, C.: Provably efficient adaptive scheduling for parallel jobs. In:
Proceedings of the 12th Workshop on Job Scheduling Strategies for Parallel Processing
(2006)

5. Lukichev, A., Odintsov, I., Petrov, D., et al.: Grid Programming Environment Reference
Documentation. http://gpe4gtk.sourceforge.net

6. Granichin, O.: Linear regression and filtering under nonstandard assumptions (Arbitrary
noise). IEEE Transactions on Automatic Control 49, 1830–1835 (2001)

7. Spall, J.C., Cristion, J.A.: Model-Free Control of Nonlinear Stochastic Systems with
Discrete-Time Measurements. IEEE Transactions on Automatic Control 43, 1198–1210
(1998)

8. Vakhitov, A.T.: Methods of Load Balancing for Multiprocessor Systems. In: Granichin, O.
(ed.) Stochastic Optimization in Informatics, Vol. 2. Saint Petersburg (in russian) (2006)
http://www.math.spbu.ru/user/gran/sb2/vakhitov.pdf

V. Malyshkin (Ed.): PaCT 2007, LNCS 4671, pp. 245–260, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Dynamic Load Balancing of Black-Box Applications
with a Resource Selection Mechanism on Heterogeneous

Resources of the Grid

Valeria V. Krzhizhanovskaya1,2 and Vladimir V. Korkhov1,2

1 University of Amsterdam, Faculty of Science, Section Computational Science
2 St. Petersburg State Polytechnic University, Russia
{valeria,vkorkhov}@science.uva.nl

Abstract. In this paper we address the critical issues of efficient resource man-
agement and high-performance parallel distributed computing on the Grid by
introducing a new hierarchical approach that combines a user-level job schedul-
ing with a dynamic load balancing technique that automatically adapts a black-
box distributed or parallel application to the heterogeneous resources. The algo-
rithm developed dynamically selects the resources best suited for a particular
task or parallel process of the executed application, and optimizes the load bal-
ance based on the dynamically measured resource parameters and estimated re-
quirements of the application. We describe the proposed algorithm for auto-
mated load balancing, paying attention to the influence of resource heterogene-
ity metrics, demonstrate the speedup achieved with this technique for different
types of applications and resources, and propose a way to extend the approach
to a wider class of applications.

Keywords: dynamic load balancing, resource management, high-performance
computing, Grid, heterogeneous resources, parallel distributed application.

1 Introduction and Motivation

Grid-based problem-solving environments (PSEs) play an increasingly more impor-
tant role in a broad range of applications stemming from fundamental and applied
sciences, engineering, industry, medicine and economy. In [1,2] we provide an exten-
sive overview of the Grid-aware problem-solving environments and virtual laborato-
ries for complex applications. A great number of noticeable advances were achieved
as a result of joint efforts of the multidisciplinary research society, such as the devel-
opment of widely acknowledged standards in methodologies, formats and protocols
used within the environments [11]. Another manifesting development concerns the
move from specific one-application PSEs to the high-level generic environments that
provide services, tools and resources to formulate and solve a problem using standard-
ized methods, modules, workflows and resource managers [1]. Our research in this
field has started from porting a Virtual Reactor problem-solving environment to the
Grid [1-5], pioneering the move of fully integrated simulators from a single PC via
computer clusters with a remote user interface [5] to fully distributed heterogeneous

246 V.V. Krzhizhanovskaya and V.V. Korkhov

Grid systems [2,3]. A detailed description of the Virtual Reactor application and our
"gridification" activities can be found in [1-5].

We have implemented and tested several approaches, and adapted an existing in-
teractive distributed application to the peculiarities of the Grid, thanks to the comple-
mentary projects developing Grid middleware, tools and portals [3,9,10]. However a
few things shadow the overall optimistic picture of the major advances in Grid usabil-
ity as observed in our extensive experiments with different Grid implementations.
Among the most prominent and as yet unsolved problems we experienced are effi-
cient resource management at the application and system levels, and optimization of
the workload allocation for parallel and distributed applications on highly diverse and
dynamically changing Grid resources. These two intertwined fundamental issues
hindering the progress of Grid computing have pulled the forces of a vast computer
society that strive to extrapolate an efficient high-performance computing on the Grid
from a single demo test-case to a ubiquitous reality. A huge number of algorithms,
approaches and tools have been developed to bring Grid resource management and
job scheduling issues to a more advanced level of efficiency and, even more impor-
tantly, usability (see for instance [12-21]). In addition to that, an excessive number of
load balancing techniques have been implemented and tested since the times when
heterogeneous cluster computing emerged. We could not find a recent book providing
a good overview of the state-of-the-art in load balancing, and a list of relevant papers
would take at least several pages, so we will give references only to those intimately
related to the technique we propose hereunder.

In a seemingly successful research field teeming with various solutions at hand,
when things came to practice it turned out to be impossible to find a tool/library for
automatic load balancing of a parallel distributed application on heterogeneous re-
sources of the Grid. The first-priority consideration we had in mind was instrumenting
our Virtual Reactor application with a library that would require minimal intrusion
into the code and that would adapt the parallel codes previously developed for homo-
geneous computer clusters to the heterogeneous and dynamically changing Grid re-
sources. Another goal was finding the means to enable "smart" resource selection and
efficient utilization for the whole problem-solving environment, i.e. distributing the
PSE disparate modules wisely, according to their individual requirements. The stum-
bling-block is that these application requirements are not known beforehand in most
real-life complex applications, where only the key developers can embrace the com-
plexity and dependencies of the PSE components. And even the code designers aware
of the numerical methods' particularities can not predict the exact application re-
quirements, which differ in each new computational experiment, depending on initial
conditions, combination of real-life processes to be simulated, numerical schemes
chosen, computational parameters, etc. This uncertainty prompted us to use the term
black-box applications in the title of this article; we certainly do not mean that the
user does not know what application he is running and of what avail. Our extensive
benchmarking and performance assessment of the Virtual Reactor application clearly
showed that even within one solver different trends can exist in the application re-
quirements and parallel efficiency, depending on the problem type and computational
parameters, therefore distinct resource management and optimization strategies shall
be applied, and automated procedures for load balancing are needed to successfully
solve complex simulation problems on the Grid [6-8].

 Dynamic Load Balancing of Black-Box Applications 247

A countless number of parallel and distributed applications have been developed
for traditional (i.e. static homogeneous) parallel computers or cluster systems. Porting
such applications from homogeneous computing environments to dynamic heteroge-
neous computing and networking resources poses a challenge to keep up a high level
of application efficiency. To assure efficient utilization of Grid resources, special
methods for workload distribution control should be applied. An adequate workload
optimization method should take into account two aspects:

− (1) The application characteristics, such as the amount of data transferred be-
tween the processes, logical network topology, amount of floating point operations,
memory requirements, hard disk or other I/O activity, etc.

− (2) The resource characteristics, like computational power and memory of the
worker nodes, network links bandwidth, disk I/O speed, and the level of heteroge-
neity of the resources randomly assigned to the application by the Grid resource
broker.

The method should be (a) self-adapting and flexible with respect to the type of appli-
cation, (b) computationally inexpensive not to induce a large overhead on the applica-
tion performance, and (c) should not require significant modifications in the code. On
top of that, the load balancing shall be (d) dynamic and fully automated since we want
to hide the "ugly" features of the Grid from innocent users.

2 Background: Automated Load Balancing on the Grid

The issue of load balancing in Grid environments is addressed by a number of re-
search groups. Generally studies on load balancing consider distribution of processes
to computational resources on the system/library level with no modifications in the
application code [22,23]. Less often, load balancing code is included into the applica-
tion source-code to improve performance in specific cases [24,25]. Some research
projects concern load balancing techniques that use source code transformations to
speedup the execution of the application [26]. We employ an application-centric ap-
proach where the balancing decisions are taken by the application itself. This is dic-
tated by two arguments: first, the immaturity (or the lack of "intelligence") of the
middleware or system-level resource managers; and second, the complexity of the
problem-solving environments such as our Virtual Reactor, which has a number of
communicating modules, some of which are parallel programs. An important feature
of our approach is that although it is application-centric, the algorithm that estimates
available resources and suggests the optimal load balancing of a parallel job is generic
and can be employed in any parallel application to be executed on heterogeneous
resources by instrumenting it with the load-balancing library.

A detailed description of global load optimization approaches for heterogeneous
resources and adaptive mesh refinement applications can be found for instance in
[29,30,31]. We shall note however, that in [29] and [31] no network links heterogene-
ity was considered and only static resource estimation (initialization) was performed
in [29] and [30]. These two issues are the major challenges of Grid high-performance
computing: 1) the heterogeneity of the network links can be two orders of magnitude
higher that that of the processing power; and 2) Grid resources are inherently

248 V.V. Krzhizhanovskaya and V.V. Korkhov

dynamic. Developing our algorithm, we tried to address specifically these two issues.
The approaches discussed in [29] and [31] are only valid for batch sequential applica-
tions (specifically for the queuing systems and computer cluster schedulers), whereas
our effort is directed towards parallel programs utilizing heterogeneous resources.
A number of semi-automatic load balancing methods have been developed (e.g. diffu-
sion self-balancing mechanism, genetic networks load regulation, simulated annealing
technique, bidding approaches, multiparameter optimization, numerous heuristics,
etc.), but all of them suffer one or another serious limitation, most noticeably the lack
of flexibility, high overheads, or inability to take into consideration the specific fea-
tures of the application. Moreover, all of them lack the higher-level functionality,
such as the resource selection mechanism and job scheduling. In our view, this is an
essential step to be made in order to make Grid computing efficient and user-friendly.
Although some tools are already available for "smart" system-level process-resource
matching and job scheduling on the Grid, none of them is automatic yet, and none is
coupled with a mechanism evaluating the application requirements. We aim to bridge
this gap by building a hierarchical approach that combines a user-level job scheduling
[32,33] with a dynamic load balancing technique that automatically adapts a black-
box distributed or parallel application to the heterogeneous Grid resources.

To summarize, the existing algorithms and tools provide only a partial solution.
Our target is to combine the best achievements and to design a flexible tool for auto-
mated load balancing on the Grid. In this paper we present the results of the ongoing
work in this direction. In Section 3 we introduce the basic ideas and steps of a gener-
alized automated load balancing technique for a black-box application on the Grid.
Section 4 presents the results of implementation of the load balancing algorithm,
describes a synthetic test application developed for experiments, and shows the trends
of the load balancing speedup and the influence of the resource heterogeneity level.
Section 5 concludes the paper with discussion and future plans.

3 Generalized Automated Load Balancing with Resource
Selection

Based on our previous experience [6-8], we developed a load balancing technique that
takes into account the heterogeneity and the dynamics of the Grid resources, estimates
the initially unknown application requirements, and provides the resource selection
and most optimal mapping of the parallel processes to the available resources. In the
most general case we consider that the resources have been randomly assigned to the
application by a Grid resource broker via the User-Level Scheduler [32,33], or that
the application can request the desirable resources with a set of parameters. An impor-
tant feature of the proposed mechanism is that all the functionality described below is
implemented as an external library, and the application is instrumented by linking to
this library. As we mentioned in the introduction, this is a work in progress: The tech-
nique described below has not been fully implemented yet. A part of coupling the
parallel load balancer with the user-level job scheduler is under development now. It
will be published with additional details after deployment and testing.

 Dynamic Load Balancing of Black-Box Applications 249

3.1 The Basic Algorithm of the Automated Load Balancing

The load balancing meta-algorithm includes 8 basic Steps. Below we provide a de-
scriptive explanation of each Step, mentioning special cases to be considered at each
stage. We shall note that this is a conceptual description, rather than a mathematically
strict algorithm. An exact formulation of the core load balancing heuristic is provided
in the next subsection.

Step 1. Benchmarking resources: Measuring the computational power and mem-
ory available on the worker nodes, network links bandwidth, hard disk capacity
and I/O speed. In a more generic sense of "resources", some other metrics can be
added characterizing the equipment and tools associated with a particular Grid
node. These can be various parameters of databases, storages, sensors, scanners,
and other attached devices.

Step 2. Ranking resources: The priority of ranking parameters shall be dependent
on the type of application. For traditional parallel computing solvers, which we
consider as test-case applications in present work, the first ranking parameter shall
be computational power (CPU) of the processor, the second parameter being the
network bandwidth to this processor. For memory-critical applications, memory
shall be the top-priority metric. For a large emerging class of multimedia streaming
applications, the network bandwidth and the disk I/O speed would be the key pa-
rameters. In most cases memory ranking is an essential complimentary operation,
since available memory can be a constraining factor defining if the resource can be
used by the application or not. The same goes for the free disk space parameter that
can constrain the streaming applications that damp data on hard disks.

Step 3. Checking the level of heterogeneity: This parameter is often not consid-
ered in the load balancing heuristics; however it plays a crucial role in the choice
of load balancing approach to be taken. The first and most obvious argument is that
if the resources happen to be almost homogeneous, for traditional parallel applica-
tions no additional load rebalancing is required (and parallel tasks are distributed in
equal chunks). In subsection 3.2, we discuss how the levels of heterogeneity affect
the weighting factors used for calculating the workload per processor. We intro-
duce the heterogeneity metrics and pay special attention to the way it influences
the load balancing performance for our parallel computing test-case application.

Step 4. Testing application components and their interconnections: For that, run
a small subset of the routine operations on the resources given. For a majority of
traditional computational applications, the best is to perform one or a few time
steps, iterations or events (depending on the type of simulation) in order to ensure
that no time is wasted just for the testing, and the simulation is already running,
though not in the most optimal way yet. This Step will measure the application per-
formance on a given set of resources and collect the data needed to calculate the
application requirements.

Step 5. Estimating the application requirements: The idea is to quantitatively
estimate the requirements of the application based on the results of resource
benchmarking (Step 1) and measurements of the application response (Step 4). For
our parallel computing test-case application, the requirements to be calculated are

250 V.V. Krzhizhanovskaya and V.V. Korkhov

the communication to computation ratio and the minimally required memory per
node. An extensive description of the theoretical background and details of the cor-
responding heuristic can be found in [6-8]. In the next subsection we give an ex-
cerpt completing this meta-algorithm.

Step 6. Matching resources I. Constraining factors: This is the first stage of
checking the suitability of the available resources to the given application. It is
based on the analysis of the results of Steps 2 and 5. In our computational applica-
tion example, memory can be the constraining factor: In case of sufficient memory
on allocated processors, the load balancing can be performed further, taking into
account all the other factors. In the unfavourable case of insufficient memory on
some of the processors, they must be disregarded from the parallel computation or
replaced by other, better suited processors. This shall be done on the level of job
scheduling and resource allocation, within the framework of a combined approach
coupling the application-centered load balancing with a system-level resource
management. For this, we consider the User-Level Scheduler [32,33] as a feasible
application-level intermediate resource managing approach.

Step 7. Matching resources II. Selecting resources: This is the second stage re-
quiring a hierarchical approach we are developing. It provides the means to select
the best-suited resources for each of the PSE components. This Step consists of 3
basic functionalities: finding an optimal number of processors for each application
component, the actual resource matching, and rejecting some of the resources and
requesting some others -depending on the approach taken and resource availability.
The resource matching procedure (to be distinguished from process mapping) shall
take into account the application requirements derived in Step 5 and can be imple-
mented using some standard multi-parameter optimization method. In our parallel
computing test-case, selecting resources might look fairly simple: we always want
the fastest processors with the fastest links between them. But with the severe het-
erogeneity of Grid resources, this is not so trivial anymore. What is better, fast
worker nodes connected by the slow links or slower processors with the fast links?
The answer is strongly dependent on the application characteristics: the communi-
cation-bound applications will achieve a better performance on faster links even
with slower processors, and the computation-intensive application will not care
about the network bandwidth. Another open question to be answered is how many
worker nodes shall be assigned to a parallel solver. Again, the answer will be dif-
ferent depending on the solver characteristics: For a majority of "pleasingly" paral-
lel applications (employing the resource farming concept), the more processors the
better, so the actual number of processors to be allocated is an issue of availability
and competition with the other PSE components. On the other hand, for a wide
class of "normal" parallel applications (characterized by a speedup saturation with
a growing number of parallel processors), an optimal number of processors can be
estimated based on the measured resource parameters and the application fractional
communication overhead.

Step 8. Load balancing: After selecting the best suited set of resources, we need to
perform the actual optimization of the workload distribution within the parallel
modules, in order words mapping the processes onto the allocated resources. This
Step is based on the heuristic developed earlier [6-8], which includes a technique to

 Dynamic Load Balancing of Black-Box Applications 251

calculate the weighting factors for each processor depending on the resource char-
acteristics and application requirements established in Step 5. In Section 3.2 we
summarize the methodology, introduce some corrections in the theoretical formula-
tion and discuss the role of the heterogeneity function.

In case of dynamic resources where performance is influenced by other factors (which
is generally the case on the Grid), a periodic re-estimation of resource parameters and
load re-distribution shall be performed. This leads to repeating all the meta-algorithm
Steps except of Step 4 and Step 5. In most cases this can be done by running the ap-
plication with a few consecutive time steps or iterations (see comments to Step 4).
NB: if the selected resources did not change much, Steps 6 and 7 can be omitted not
to incur unnecessary overhead.

If the application is dynamically changing (for instance due to adaptive meshes,
moving interfaces or different combinations of physical processes modeled at differ-
ent simulation stages) then the application requirements must be periodically re-
estimated even on a static set of resources. In this case, the periodic re-estimation loop
stars from Step 4, with the same remark on skipping Steps 6 and 7 if the application
change is not dramatic.

Periodic re-estimations shall be performed frequently during the runtime of the ap-
plication to correct the load imbalance with a reasonably short delay. The minimally
required frequency of rebalancing can be estimated and dynamically tuned by calcu-
lating the relative imbalance introduced during the controlled period of time.

In the next subsection we provide a strict formulation of the most important aspects
essential for understanding the experimental results shown in Section 4. A scrupulous
mathematical description of all the conditions, metrics and algorithms in a complete
meta-algorithm we save for another paper.

3.2 Adaptive Load Balancing on Heterogeneous Resources: Theoretical
Approach

In [6,7] we proposed a methodology for adaptive load balancing of parallel applica-
tions on heterogeneous resources, extending it to dynamic load balancing and intro-
ducing the heterogeneity metrics in [8]. In this section we give a theoretical descrip-
tion of the basic concepts and parameters mentioned in the meta-algorithm, and con-
centrate on the two most important issues: (1) estimating the application requirements
(Step 4 and Step 5) and (2) the actual load balancing of parallel or distributed black-
box applications on heterogeneous Grid resources (Step 8). The load balancing Step
aims at optimizing the load distribution among the resources already selected in pre-
vious Steps (after performing the check against the restricting factors such as the
memory deficiency). Therefore the theory is given under the assumption that the re-
sources are "fixed" for a single load-balancing loop, and that using all these resources
provides a reasonably good performance result (e.g. parallel speedup for traditional
parallel computing applications). Another prerequisite is that the application is al-
ready implemented as a parallel (or distributed) program, and is able to distribute the
workload by chunks of controllable size. Saying this we kept in mind the Master-
Worker model, but the technique is applicable to other communication logical topolo-
gies, given that the measurements are carried out along the links used within the ap-
plication. The load balancing procedure we describe is implemented as an external

252 V.V. Krzhizhanovskaya and V.V. Korkhov

library, and after linking with the application provides a recommendation on how
much work shall be done by each of the assigned processors to ensure the fastest
possible execution time –taking into account the specific parameters of the resources
and the estimated application requirements [6-8]. We designed the algorithm in such a
way that the knowledge of these resource and application characteristics would give
an instant solution to the workload distribution, thus making the procedure very
lightweight and suitable for dynamic load balancing at runtime.

The main generic parameters that define a parallel application performance are:

• An application parameter calccommc NNf = , where Ncomm is the total amount of

application communications, i.e. data to be exchanged (measured in bit) and Ncalc is
the total amount of computations to be performed (measured in Flop);

• The resource parameters iii np=μ , where pi is the available performance of the

ith processor (measured in Flop/s) and ni is the network bandwidth to this node
(measured in bit/s).

The resource characteristics pi and ni we obtain in Step 1 after benchmarking the re-
sources, but the application parameters Ncomm and Ncalc are not known beforehand in
real-life applications. The target is to experimentally determine the value of the appli-
cation parameter fc that provides the best workload distribution, i.e. minimal runtime
of the application mapped to the resources characterized by a parameter set { }iμ=μ .

A natural way to do that is to run through the range of possible values of fc with a
discrete step, calculating a corresponding load distribution and performing one time
step/iteration with a new load distribution. Measuring the execution time of this itera-
tion and comparing it for different values of fc, we find an optimal value fc

*, which
provides the minimal execution time. This idea is implemented in Step 5 and will be
illustrated in the Results section (4.2). A detailed algorithm is described in [8]. There
we suggested estimating the range of possible values of the application parameter fc as
following: The minimal value is fc

min = 0, which corresponds to the case when no
communications occur between the parallel processes of the application. The maximal

possible value was calculated as)min(/)max(max
iic pnf = . Experimenting with this

rough upper bound evaluation, we found that in many cases it gives a too high value
of fc

max , unnecessarily extending the search range and thus reducing the efficiency of
the load balancing procedure. Another approach to search for the optimal value fc

* can
be borrowed from the optimization theory, for instance using an adaptive 1-
dimensional non-linear constrained optimization method with a correction for small
stochastic perturbations in resource performance [34]. This approach can reduce the
number of the load balancing loops needed to find the best load distribution.

To calculate the amount of the work per processor in the load balancing Step 8, we
assign a weight-factor to each processor according to its processing power and net-
work connection. A similar approach was applied in [25] and in [27] for heterogene-
ous computer clusters, but the mechanism for adaptive calculation of the weights -
taking into account the application requirements- was not developed there. Moreover,
the tools developed for cluster systems can not be used in Grid environments without
modifications since static resource benchmarking is not suitable for dynamic Grid
resources.

 Dynamic Load Balancing of Black-Box Applications 253

The weighting factor wi determines the final workload to be assigned to each of N
processors: Wi = wi W, where W is the total workload. The weighting factor wi shall
reflect both the capacity of resources according to the estimated infrastructure pa-
rameters iμ and the application parameter fc. In [8] we derived an expression for

processor weights analogous to that used by other authors [25,27]. Extensive experi-
mentation and analysis of this expression revealed that the optimal balance for com-
putation-intensive applications running on fast network links is not computed cor-
rectly. To correct this, we modified the equation for weights calculation, deriving it
from the first principles of equalizing the time spent by each processor. In the simpli-
fied model of communication that can suite as the first approximation of real commu-
nication topologies, the weights can be calculated as follows:

)1(;
1

icii

N

i
iii fpqqqw μϕ+== ∑

=
 (1)

Here qi is the dimensional weight calculated from the resource parameters pi and iμ ,

and from the guessed application parameter fc. ϕ is the heterogeneity metrics of the

network links that can be expressed as a standard deviation of the set of normalized
dimensionless resource parameters:

∑∑
==

=−
−

=
N

i
iavg

N

i
avgi n

N
nnn

N 11

2 1
,)/1(

1

1ϕ (2)

The purpose of this heterogeneity metrics is to ensure that if the network links are
homogeneous, i.e. ni = navg, then the weighting is done only according to the proces-
sors capacity. In this case 0=ϕ , and the last term in the denominator of Eq.(1) is

nullified, thus providing that the weights wi are linearly proportional to the processing
power pi. Then we can see that in the infrastructure of heterogeneous processors con-
nected by homogeneous network links the value of application parameter fc does not
affect the load distribution, which is exactly the case in the Master-Worker lock-step
synchronous communication model. Generally speaking, in other communication
models this can be different, so a bit more sophistication is needed in order to design a
generic algorithm that would suit well the majority of logical topology models.

To evaluate the efficiency of the workload distribution we introduce the load bal-
ancing speedup %100⋅=Θ − balancedbalancednon TT , where Tnon-balanced is the execution

time of the parallel application without the load balancing (even distribution of the
prosesses), and Tbalanced is the execution time after load balancing on the same set of
resources. This metric is used to estimate the application parameter fc

* that provides
the best performance on given resources, that is the largest value of speedup Θ in a
given range of fc. In a non-trivial case we expect to find a maximum of Θ and thus an
optimal fc

* for some workload distribution, which means that the application require-
ments fit best the resources in this particular workload distribution. The case of fc

* = 0
while 0≠ϕ means that the application is totally computation dominated, i.e. there is

no communication between different processes, and the optimal workload distribution
will be proportional only to the computational power of the processors.

254 V.V. Krzhizhanovskaya and V.V. Korkhov

While deriving Eq. (1), we considered a simple case when memory requirements
only put a Boolean constraint to the allocation of processes on the resources: either
there is enough memory to run the application or not. But memory can be one of the
determining factors of the application performance and play a role in the load balanc-
ing process. This is the case for applications that are able to control memory require-
ments according to the available resources. In this case there will be additional pa-
rameters analogous to fc and iμ , but the idea and the load balancing mechanism re-

main the same. Similar considerations shall be applied for the other types of applica-
tions. For instance, in a widely used class of applications performing sequential
computing with hard disk intensive operations, the network link bandwidth parameter
ni shall be replaced with the disk I/O speed for finding an optimal load distribution in
"farming" computations on the Grid.

4 Performance Results

In this section we provide some details on implementing the load balancing algorithm
and show the results illustrating the load balancing technique for our computational
application case-study and demonstrating the speedup achieved with this technique
for different types of applications and resources. The adaptive load balancing tech-
nique we propose was first applied while deploying the Virtual Reactor parallel com-
ponents on heterogeneous Grid resources [3]. Several simulation types have been
extensively tested on various sets of resources, demonstrating how the algorithm
works. However one application can obviously provide only a limited freedom for
experiments. To be able to examine the behavior of an arbitrary parallel application
(characterized by various values of the application parameter fc and various interproc-
ess communication topologies) on arbitrary sets of heterogeneous resources, we de-
veloped a synthetic parallel application that allowed us to model different combina-
tions and to compare the best theoretically achievable performance results with those
given by our workload-balancing approach.

4.1 Synthetic Application and Experimental Setup

To evaluate the performance of the proposed load balancing technique for generic
cases, we developed a "synthetic" application modeling different types of parallel
applications mapped to the resources of various capacity and levels of heterogeneity.
From a technical point of view, this synthetic application is an MPI program running
on a homogeneous computer cluster system. Flexible configuration capabilities allow
tuning the communication-computation ratio fc within the application, and designing
the communication logical topology (i.e. the patterns of interconnections between the
processes). The latter gives the possibility to model different connectivity schemes,
e.g. Master-Worker, Mesh, Ring, Hypercube etc. The value of the application parame-
ter fc is controlled by changing the total amount of calculations to be performed and
the total amount of data to be sent between the nodes. The underlying heterogeneous
resources are modeled by imposing extra load on the selected processors or links, thus
reducing their capacity available for the application.

 Dynamic Load Balancing of Black-Box Applications 255

The load balancing algorithm was implemented as an external library using the
MPI message passing interface, and the synthetic application (also an MPI program)
has been instrumented with this library as any other application would be. We use this
experimental setup to examine how a specific parallel application defined by a com-
bination of communication/computation ratio fc and communication logical topology
will behave on different types of heterogeneous resources, and what types of applica-
tions can show the best performance on a given set of resources. To validate the syn-
thetic simulator, we modeled and analyzed the performance of the Virtual Reactor
solvers on sets of resources similar to those used in our previous experiments on the
RIDgrid [7,8]. The experiments were carried out on the DAS-2 computer cluster [35],
using MPICH-P4 implementation of MPI.

4.2 Load Balancing Speedup for Different Applications

In this section we illustrate the idea of searching through the space of possible values
of the application parameter fc in order to find the actual application requirement Fc
(see Step 5 of the meta-algorithm and the detailed description of the procedure in
Section 3.2). Figure 1 presents the results of load balancing of our synthetic applica-
tion with the Master-Worker non-lockstep asynchronous communication logical to-
pology (when a Worker node can immediately start calculation while the Master con-
tinues sending data to the other Workers). We show a load balancing speedup for 5
applications with different pre-defined values of Fc (0.1 – 0.5) on the same set of
heterogeneous resources. The value of fc

* corresponding to the maximal speedup
assures the best application performance. We can see that the best speedup in all cases
is achieved with fc

* close to the real application Fc, thus proving the validity of our
approach. Another observation is that the applications characterized by a higher
communication to computation ratio Fc, achieve a higher balancing speedup, which
means that the communication-intensive applications benefit more from the proposed
load balancing technique. It is also worth noticing that the distribution of the work-
load proportional only to the processor performance (fc=0) also gives a significant
increase of the performance (180 % in case of Fc =0.5), but introduction of the

Fig. 1. Dependency of the load balancing speedup Θ on the "guessed" application parameter fc
for 5 synthetic applications with different values of Fc

256 V.V. Krzhizhanovskaya and V.V. Korkhov

dependency on application and resource parameters adds another 35 % percent to the
balancing speedup in this case (up to 217 %). In experiments with a higher level of
resource heterogeneity, this additional speedup contributed up to 150 %.

4.3 Load Balancing for Master-Worker Model: Heuristic Versus Analytically
Derived Load Distribution

To test our load balancing algorithm, we analytically derived the best workload distri-
bution parameters for some specific communication logical topologies of parallel
applications, and compared the speedup achieved with our heuristic algorithm with
that provided by the theoretical method. Here we present the analytically derived
weights and the performance comparison for a widely used Master-Worker non-
lockstep asynchronous communication model. The values of the weighting factors
defining the best (most optimal) load distribution have been derived from the princi-
ple of equalizing the time spent by each processor working on the application, follow-
ing the same idea used for derivation of eq. (1). Omitting the mathematical details,
we present the final recurrence relation for calculating the weights:

∑∑∏
=−

−

−

= = −
==

+
=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ +
+=

N

i
iii

i

ii
ii

N

i

N

ik k

kk
N qqwNi

T

T
qq

T

T
q

11
1

1

2 1

;2...for,1
ττ

(3)

where icommi nN=τ is the time for sending the total amount of application commu-

nications Ncomm from the Master to the ith Worker node over the network link with the
measured bandwidth ni; and icalci pNT = is the time for performing the total amount

of application's calculations Ncalc by the ith processor with the processing power of pi.
We have tested our synthetic applications with different communication to computa-

tion ratios Fc on different sets of resources, with the two different load distributions:
theoretical and heuristic. In Fig. 2 we present an example of comparison of the execu-
tion times achieved with these load balancing strategies on a set of highly heterogeneous

Fig. 2. Comparison of the execution times for different weighting: the best theoretical distribu-
tion versus the generic heuristic load balancing

 Dynamic Load Balancing of Black-Box Applications 257

resources. We can see that the heuristic time is only about 5-15 percent higher than the
best possible for these applications (the larger difference attributed to the very commu-
nication-intensive test). Considering that our approach is generic and suits any type of
communication topology, this overhead is a relatively small impediment.

4.4 Influence of the Resource Heterogeneity on the Load Balancing Efficiency

Thorough testing of the different applications on different sets of resources showed a
strong influence of the level of resource heterogeneity on the results achieved. We
performed a series of targeted experiments varying the resource heterogeneity both in
the processor power and the network links bandwidth. As a sample of these tests, in
Fig. 3 we show the dependency of the load balancing speedup on the processing
power heterogeneity metrics, analogous to that of the networks links heterogeneity
introduced by Eq. (2). As we see, the speedup grows superlinearly with the heteroge-
neity level, thus indicating that our approach is especially beneficial on strongly het-
erogeneous resources, such as the Grid resources.

Fig. 3. Dependency of the load balancing speedup Θ on the resource heterogeneity metrics ϕ

5 Conclusions and Future Work

We introduced a new hierarchical approach that combines user-level job scheduling
with dynamic load balancing technique that automatically adapts a black-box distrib-
uted or parallel application to the heterogeneous resources. The proposed algorithm
dynamically selects the resources best suited for a particular task or parallel process of
the application, and optimizes the load balance based on the dynamically measured
resource parameters and estimated requirements of the application. We studied the
performance of this load balancing approach by developing a synthetic application
with flexible user-defined application parameters and logical network topologies, on
artificially designed heterogeneous resources with a controlled level of heterogeneity.
Some of the conclusions from our methodological experiments are as follows:

258 V.V. Krzhizhanovskaya and V.V. Korkhov

• The proposed algorithm adequately finds the application requirements;
• Based on that, our approach adapts the application to the set of heterogeneous

resources with a very high load balancing speedup (up to 450 %);
• The novelty of our load balancing approach –dependency of the load distribution

on the application and resource parameters– adds up to 150 % to the balancing
speedup compared to the balancing that takes into account only the processors' per-
formance;

• Analysis of the speedup achieved for different types of applications and resources
indicates that the communication-intensive applications benefit most from the pro-
posed load balancing technique.

• The speedup from applying our approach grows superlinearly with the increase of
the resources' heterogeneity level, thus showing that it is especially useful for the
severely heterogeneous Grid resources.

• Comparison of the performance of our heuristic load balancing with the perform-
ance achieved with the analytically derived weights, showed a relatively small dis-
crepancy of 5-15 %, with a larger difference attributed to the very communication-
intensive applications. This overhead is a relatively small impediment, considering
that our approach is generic and suits any type of communication topology.

The results presented here were obtained for traditional parallel computing applications
with the most widespread communication model: a Master-Worker scheme in a non-
lockstep asynchronous mode. At present, we test other connectivity schemes, such as
the different Master-Worker modes, as well as Mesh, Ring and Hypercube topologies.
Another direction of our work is implementation and testing of hierarchical coupling of
user-level job scheduling with the load balancing algorithm presented. The User-Level
Scheduler [32,33] will provide a combined resource management strategy connecting
the application-level resource selection mechanism to the system-level job manage-
ment. In addition to that, it can support resource usage optimization and fault tolerance
[23], as a desirable functionality increasing the usability of the Grid. We also plan to
extend our approach to a wider class of applications, including memory-critical appli-
cations, multimedia streaming applications, and a widely used class of applications
performing sequential computing with hard disk intensive operations.

Acknowledgments. The authors would like to thank Peter Sloot for fruitful discus-
sions of this paper. The research was conducted with financial support from the Dutch
National Science Foundation NWO and the Russian Foundation for Basic Research
under projects # 047.016.007 and 047.016.018, and with partial support from the
Virtual Laboratory for e-Science Bsik project.

References

1. Krzhizhanovskaya, V.V., Korkhov, V.V.: Problem-Solving Environments for Simulation
and Optimization on Heterogeneous Distributed Computational Resources of the Grid. In:
Proceedings of the Third International Conference on Parallel Computations and Control
Problems PACO‘2006, Moscow, Russia, pp. 917–932. Trapeznikov Institute of Control
Sciences RAS, Moscow (2006)

 Dynamic Load Balancing of Black-Box Applications 259

2. Krzhizhanovskaya, V.V., Sloot, P.M.A., Gorbachev, Y.E.: Grid-based Simulation of In-
dustrial Thin-Film Production. Simulation: Transactions of the Society for Modeling and
Simulation International 81(1), 77–85 (2005)

3. Krzhizhanovskaya, V.V., Korkhov, V.V., Tirado-Ramos, A., Groen, D.J., Shoshmina, I.V.,
Valuev, I.A., Morozov, I.V., Malyshkin, N.V., Gorbachev, Y.E., Sloot, P.M.A.: Computa-
tional Engineering on the Grid: Crafting a Distributed Virtual Reactor. In: Second IEEE
International Conference on e-Science and Grid Computing (e-Science’06), p. 101 (2006)

4. Krzhizhanovskaya, V.V., et al.: A 3D Virtual Reactor for Simulation of Silicon-Based
Film Production. In: Proceedings of the ASME/JSME PVP Conference. ASME PVP-vol.
491(2), pp. 59–68, PVP2004-3120 (2004)

5. Krzhizhanovskaya, V.V., Zatevakhin, M.A., Ignatiev, A.A., Gorbachev, Y.E., Sloot,
P.M.A.: Distributed Simulation of Silicon-Based Film Growth. In: Wyrzykowski, R.,
Dongarra, J.J., Paprzycki, M., Waśniewski, J. (eds.) PPAM 2001. LNCS, vol. 2328, pp.
879–888. Springer, Heidelberg (2002)

6. Korkhov, V.V., Krzhizhanovskaya, V.V.: Workload Balancing in Heterogeneous Grid En-
vironment: A Virtual Reactor Case Study. In: Proceedings of the Second International
Conference Distributed Computing and Grid Technologies in Science and Education, pp.
103–113. Publ: JINR, Dubna, D11-2006-167 (2006)

7. Korkhov, V.V., Krzhizhanovskaya, V.V.: Benchmarking and Adaptive Load Balancing of
the Virtual Reactor Application on the Russian-Dutch Grid. In: Alexandrov, V.N., van Al-
bada, G.D., Sloot, P.M.A., Dongarra, J.J. (eds.) ICCS 2006. LNCS, vol. 3991, pp. 530–
538. Springer, Heidelberg (2006)

8. Korkhov, V.V., Krzhizhanovskaya, V.V., Sloot, P.M.A.: A Grid Based Virtual Reactor:
Parallel performance and adaptive load balancing. Revised version submitted to the Jour-
nal of Parallel and Distributed Computing (2007)

9. CrossGrid EU Science project: http://www.eu-CrossGrid.org
10. Nimrod-G: http://www.csse.monash.edu.au/~davida/nimrod/
11. Fox, G.: Grid Computing environments. IEEE Computers in Science and Engineering 10,

68–72 (2003)
12. Nabrzyski, J., Schopf, J.M., Weglarz, J. (eds.): Grid Resource Management: State of the

Art and Future Trends. Kluwer Academic Publishers, Boston (2004)
13. Foster, I., Kesselman, C. (eds.): The Grid 2: Blueprint for a New Computing Infrastruc-

ture. Morgan Kaufmann, Seattle (2003)
14. Buyya, R., Cortes, T., Jin, H.: Single System Image. The International Journal of High Per-

formance Computing Applications 15(2), 124–135 (2001)
15. Maghraoui, K.E., Desell, T.J., Szymanski, B.K., Varela, C.A.: The Internet Operating Sys-

tem: Middleware for Adaptive Distributed Computting. The International Journal of High
Performance Computing Applications 20(4), 467–480 (2006)

16. Sonmez, O.O., Gursoy, A.: A Novel Economic-Based Scheduling Heuristic for Computa-
tional Grids. The International Journal of High Performance Computing Applica-
tions 21(1), 21–29 (2007)

17. Boyera, W.F., Hura, G.S.: Non-evolutionary algorithm for scheduling dependent tasks in
distributed heterogeneous computing environments. J. Parallel Distrib. Comput. 65, 1035–
1046 (2005)

18. Collins, D.E., George, A.D.: Parallel and Sequential Job Scheduling in Heterogeneous
Clusters: A Simulation Study Using Software in the Loop. SIMULATION 77, 169–184
(2001)

19. Schoneveld, A., de Ronde, J.F., Sloot, P.M.A.: On the Complexity of Task Allocation.
Complexity 3, 52–60 (1997)

260 V.V. Krzhizhanovskaya and V.V. Korkhov

20. de Ronde, J.F., Schoneveld, A., Sloot, P.M.A.: Load Balancing by Redundant Decomposi-
tion and Mapping. Future Generation Computer Systems 12(5), 391–407 (1997)

21. Karatza, H.D., Hilzer, R.C.: Parallel Job Scheduling in Homogeneous Distributed Systems.
SIMULATION 79(5-6), 287–298 (2003)

22. Barak, A., Wheeler, R.G., Guday, S.: The MOSIX Distributed Operating System. LNCS,
vol. 672. Springer, Heidelberg (1993)

23. Overeinder, B.J., Sloot, P.M.A., Heederik, R.N., Hertzberger, L.O.: A Dynamic Load Bal-
ancing System for Parallel Cluster Computing. Future Generation Computer Sys-
tems 12(1), 101–115 (1996)

24. Shao, G., et al.: Master/Slave Computing on the Grid. In: Proceedings of Heterogeneous
Computing Workshop, pp. 3–16. IEEE Computer Society Press, Los Alamitos (2000)

25. Sinha, S., Parashar, M.: Adaptive Runtime Partitioning of AMR Applications on Hetero-
geneous Clusters. In: Proceedings of 3rd IEEE Intl. Conference on Cluster Computing, pp.
435–442 (2001)

26. David, R., et al.: Source Code Transformations Strategies to Load-Balance Grid Applica-
tions. In: Parashar, M. (ed.) GRID 2002. LNCS, vol. 2536, pp. 82–87. Springer, Heidel-
berg (2002)

27. Teresco, J.D., et al.: Resource-Aware Scientific Computation on a Heterogeneous Cluster.
Computing in Science & Engineering 7(2), 40–50 (2005)

28. Kufrin, R.: PerfSuite: An Accessible, Open Source Performance Analysis Environment for
Linux. In: 6th International Conference on Linux Clusters, Chapel Hill, NC (2005)

29. Lu, C., Lau, S.-M.: An Adaptive Load Balancing Algorithm forHeterogeneous Distributed
Systems with Multiple Task Classes. In: International Conference on Distributed Comput-
ing Systems (1996)

30. Lan, Z., Taylor, V.E., Bryan, G.: Dynamic Load Balancing of SAMR Applications on Dis-
tributed Systems. In: Proceedings of the 2001 ACM/IEEE conference on Supercomputing
(2001)

31. Zhang, Y., Hakozaki, K., Kameda, H., Shimizu, K.: A performance comparison of adap-
tive and static load balancing in heterogeneous distributed systems. In: The 28th Annual
Simulation Symposium, p. 332 (1995)

32. Germain-Renaud, C., Loomis, C., Moscicki, J.T., Texier, R.: Scheduling for Responsive
Grids. Grid Computing Journal (Special Issue on EGEE User Forum) (2006)

33. Moscicki, J.T., Bubak, M., Lee, H.-C., Muraru, A., Sloot, P.: Quality of Service on the
Grid with User Level Scheduling. In: Cracow Grid Workshop Proceedings (2006)

34. Calvin, J.M.: A One-Dimensional Optimization Algorithm and Its Convergence Rate un-
der the Wiener Measure. Journal of Complexity N 17, 306–344 (2001)

35. http://www.cs.vu.nl/das2/

V. Malyshkin (Ed.): PaCT 2007, LNCS 4671, pp. 261–275, 2007.
© Springer-Verlag Berlin Heidelberg 2007

A Novel Algorithm of Optimal Matrix Partitioning for
Parallel Dense Factorization on Heterogeneous

Processors

Alexey Lastovetsky and Ravi Reddy

School of Computer Science and Informatics, University College Dublin, Belfield,
Dublin 4, Ireland

{alexey.lastovetsky,manumachu.reddy}@ucd.ie

Abstract. In this paper, we present a novel algorithm of optimal matrix
partitioning for parallel dense matrix factorization on heterogeneous processors
based on their constant performance model. We prove the correctness of the
algorithm and estimate its complexity. We demonstrate that this algorithm
better suits extensions to more complicated, non-constant, performance models
of heterogeneous processors than traditional algorithms.

1 Introduction

The paper presents a novel algorithm of optimal matrix partitioning for parallel dense
matrix factorization on heterogeneous processors based on their constant performance
model. We prove the correctness of the algorithm and estimate its complexity. We
demonstrate that this algorithm better suits extensions to more complicated, non-
constant, performance models of heterogeneous processors, such as a model presented
in [1,2], than traditional algorithms.

A number of matrix distribution strategies for parallel dense matrix factorization in
heterogeneous environments have been designed and implemented. Arapov et al., [3]
propose a distribution strategy for 1D parallel Cholesky factorization. They consider
the Cholesky factorization to be an irregular problem and distribute data amongst the
processors of the executing parallel machine in accordance with their relative speeds.
The distribution strategy divides the matrix into a number of column panels such that
the width of each column panel is proportional to the speed of the processor. This
strategy is developed into a more general 2D distribution strategy in [4]. Beaumont et
al., [5-6] employ a dynamic programming algorithm (DP) to partition the matrix in
parallel 1D LU decomposition. When processor speeds are accurately known and
guaranteed not to change during program execution, the dynamic programming
algorithm provides the best possible load balancing of the processors. A static group
block distribution strategy [7-8] is used in parallel 1D LU decomposition to partition
the matrix into groups (or generalized blocks in terms of [4]), all of which have the
same number of blocks. The number of blocks per group (size of the group) and the
distribution of the blocks in the group over the processors are fixed and are determined
based on speeds of the processors, which are represented by a single constant number.
All these aforementioned distribution strategies are based on a performance model,

262 A. Lastovetsky and R. Reddy

which represents the speed of each processor by a constant positive number and
computations are distributed amongst the processors such that their volume is
proportional to this speed of the processor. The number characterizing the performance
of the processor is typically its relative speed demonstrated during the execution of the
code solving locally the core computational task of some given size.

We present in this paper a novel matrix partitioning algorithm for 1D LU
decomposition called the Reverse algorithm. Like the DP algorithm, the Reverse
algorithm always returns an optimal solution. The complexity of the Reverse
algorithm is a bit worse than that of the DP algorithm, but the algorithm has one
important advantage. It better suits extensions to more complicated, non-constant,
performance models of heterogeneous processors, such as the functional performance
model [1,2], than traditional algorithms.

The rest of the paper is organized as follows. In Section 2, we present the
homogeneous LU factorization algorithm that is used for our heterogeneous
modification. In section 3, we outline two existing heterogeneous modifications of
this algorithm using the constant model of heterogeneous processors before
presenting our original modification, the Reverse algorithm. This section also presents
the correctness of the algorithm and its complexity. Finally we present experimental
results on a local network of heterogeneous processors to demonstrate why the
proposed algorithm better suits extensions to the functional performance model of
heterogeneous processors than the traditional algorithms.

2 LU Factorization on Homogeneous Multiprocessors

Before we present our matrix partitioning algorithm, we describe the LU
Factorization algorithm of a dense (n×b)×(n×b) matrix A, one step of which is shown
in Figure 1, where n is the number of blocks of size b×b, optimal values of b
depending on the memory hierarchy and on the communication-to-computation ratio
of the target computer [9,10].

The LU factorization applies a sequence of Gaussian eliminations to form
A=P×L×U, where A, L, and U are dense (n×b)×(n×b) matrices. P is a permutation
matrix which is stored in a vector of size n×b, L is unit lower triangular (lower
triangular with 1’s on the main diagonal), and U is upper triangular.

At the k-th step of the computation (k=1,2,…), it is assumed that the m×m
submatrix of A(k) (m = ((n – (k – 1))×b) is to be partitioned as follows:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

222212211121

12111111

22

1211

2221

11

2221

1211

ULUL UL

UL UL

 U0

 UU

L L

0 L

A A

A A

P

P

where the block A11 is b×b, A12 is b×(m-b), A21 is (m-b)×b, and A22 is (m-b)×(m-b). L11

is unit lower triangular matrix, and U11is an upper triangular matrix.

 A Novel Algorithm of Optimal Matrix Partitioning for Parallel Dense Factorization 263

 U0

L0

 A22

 A12

 A21

 A11

 U0

L0

~

22A

 U12

 L21

U11

 L11

A A

(n-(k-1))×b (n-(k-1))×b

b
 b

Fig. 1. One step of the LU factorization algorithm of a dense matrix A of size (n×b)×(n×b)

 P1 P2 P3 P1 P2 P3

A

Fig. 2. Column-oriented CYCLIC distribution of six column blocks on a one-dimensional array
of three homogeneous processors

At first, a sequence of Gaussian eliminations is performed on the first m×b panel of
A(k) (i.e., A11 and A21). Once this is completed, the matrices L11, L21, and U11 are known
and we can rearrange the block equations

()
.

,

222212212222

~

12
1

1112

ULULA A

AL U

=−←

← −

The LU factorization can be done by recursively applying the steps outlined above to

the (m-b)×(m-b) matrix 22

~

A . Figure 1 shows how the column panel, L11 and L21, and
the row panel, U11 and U12, are computed and how the trailing submatrix A22 is
updated. In the figure, the regions L0, U0, L11, U11, L21, and U12 represent data for

264 A. Lastovetsky and R. Reddy

which the corresponding computations are completed. Later row interchanges will be
applied to L0 and L21.

Now we present a parallel algorithm that computes the above steps on a one-
dimensional arrangement of p homogeneous processors. The algorithm can be
summarized as follows:

1. A CYCLIC(b) distribution of columns is used to distribute the matrix A over a one-
dimensional arrangement of p homogeneous processors as shown in Figure 2. The
cyclic distribution assigns columns of blocks with numbers 1,2,…,n to processors
1,2,…,p,1,2,…,p,1,2,…, respectively, for a p-processor linear array (n»p), until all
n columns of blocks are assigned.

2. The algorithm consists of n steps. At each step (k=1,2,...),

− The processor owning the pivot column block of the size ((n–(k–1))×b)×b (i.e., A11
and A21) factors it;

− All processors apply row interchanges to the left and the right of the current
column block k;

− The processor owning L11 broadcasts it to the rest of the processors, which convert
the row panel A12 to U12;

− The processor owning the column panel L21 broadcasts it to the rest of the
processors;

− All the processors update their local portions of the matrix, A22, in parallel.

The implementation of the algorithm, which is used in the paper, is based on the
ScaLAPACK [10] routine, PDGETRF, and consists of the following steps:

1. PDGETF2: Apply the LU factorization to the pivot column panel of size ((n–(k–
1))×b)×b (i.e., A11 and A21). It should be noted here that only the routine PDSWAP
employs all the processes involved in the parallel execution. The rest of the
routines are performed locally at the process owning the pivot column panel.

− [Repeat b times (i = 1,…,b)]

• PDAMAX: find the (absolute) maximum element of the i-th column and its
location

• PDSWAP: interchange the i-th row with the row that holds the maximum
• PDSCAL: scale the i-th column of the matrix
• PDGER: update the trailing submatrix

− The process owning the pivot column panel broadcasts the same pivot information
to all the other processes.

2. PDLASWP: All processes apply row interchanges to the left and the right of the
current panel.

3. PDTRSM: L11 is broadcast to the other processes, which convert the row panel A12
to U12;

4. PDGEMM: The column panel L21 is broadcast to all the other processes. Then, all
processes update their local portions of the matrix, A22.

Because the largest fraction of the work takes place in the update of A22, therefore,
to obtain maximum parallelism all processors should participate in its update. Since
A22 reduces in size as the computation progresses, a cyclic distribution is used to

 A Novel Algorithm of Optimal Matrix Partitioning for Parallel Dense Factorization 265

ensure that at any stage A22 is evenly distributed over all processors, thus obtaining
their balanced load.

3 LU Factorization on Heterogeneous Platforms with a Constant
Performance Model of Processors

Heterogeneous parallel algorithms of LU factorization on heterogeneous platforms are
obtained by modification of the homogeneous algorithm presented in Section 2. The
modification is in the distribution of column panels of matrix A over the linear array
of processors. As the processors are heterogeneous having different speeds, the
optimal distribution that aims at balancing the updates at all steps of the parallel LU
factorization will not be fully cyclic. So, the problem of LU factorization of a matrix
on a heterogeneous platform is reduced to the problem of distribution of column
panels of the matrix over heterogeneous processors of the platform.

Traditionally the distribution problem is formulated as follows: Given a dense
(n×b)×(n×b) matrix A, how can we assign n columns of size n×b of the matrix A to p
(n»p) heterogeneous processors P1, P2, ..., Pp of relative speeds S={s1, s2, ..., sp},

1
1

=∑ =

p

i is , so that the workload at each step of the parallel LU factorization is best

balanced? The relative speed si of processor Pi is obtained by normalization of its
(absolute) speed ai , understood as the number of column panels updated by the

processor per one time unit,

∑ =

=
p

i i

i
i

a

a
s

1

. While ai will increase with each next

step of the LU factorization (because the height of updated column panels will
decrease as the LU factorization progresses, resulting in a larger number of column
panels updated by the processor per time unit), the relative speeds si are assumed to be

constant. The optimal solution sought is the one that minimizes
i

k
i

i s

n)(

max for each

step of the LU factorization ()(

1

)(kp

i

k
i nn =∑ =

), where)(kn is the total number of

column panels updated at the step k and)(k
in denotes the number of column panels

allocated to processor Pi.
The motivation behind that formulation is the following. Strictly speaking, the

optimal solution should minimize the total execution time of the LU factorization,

which is given by ∑
=

=

n

k
k

i

k
ip

i a

n

1
)(

)(

1max , where)(k
ia is the speed of processor Pi

at step k of the LU factorization and)(k
in is the number of column panels

updated by processor Pi at this step. However, if a solution minimizes

)(

)(

1max
k

i

k
ip

i
a

n
= for each k, it will also minimize ∑

=
=

n

k
k

i

k
ip

i a

n

1
)(

)(

1max . Because

266 A. Lastovetsky and R. Reddy

i

k
ip

ip

i

k
i

p

i

k
ii

k
ip

ik
i

k
ip

i s

n

aas

n

a

n)(

1

1

)(

1

)(

)(

1)(

)(

1 max
1

maxmax =

==

== ×=
×

=
∑∑

, then for

any given k the problem of minimization of ∑
=

=

n

k
k

i

k
ip

i
a

n

1
)(

)(

1max will be equivalent

to the problem of minimization of
i

k
ip

i s

n)(

1max = . Therefore, if we are lucky and

there exists an allocation that minimizes
i

k
ip

i s

n)(

1max = for each step k of the LU

factorization, then the allocation will be globally optimal, minimizing

∑
=

=

n

k
k

i

k
ip

i
a

n

1
)(

)(

1max . Fortunately, such an allocation does exist [5,6].

Now we briefly outline two existing approaches to solve the above distribution
problem, which are the Group Block (GB) distribution algorithm [7] and the Dynamic
Programming (DP) distribution algorithm [5,6].

The GB algorithm. This algorithm partitions the matrix into groups (or generalized
blocks in terms of [4]), all of which have the same number of column panels. The
number of column panels per group (the size of the group) and the distribution of the
column panels within the group over the processors are fixed and determined based
on relative speeds of the processors. The relative speeds are obtained by running the
DGEMM routine that locally updates some particular dense rectangular matrix. The
inputs to the algorithm are p, the number of heterogeneous processors in the
one-dimensional arrangement, b, the block size, n, the size of the matrix in number of

blocks of size b×b or the number of column panels, and S={s1, s2, ...,

sp}(1
1

=∑ =

p

i is), the relative speeds of the processors. The outputs are g, the size of

the group, and d, an integer array of size p, the i-th element of which contains the
number of column panels in the group assigned to processor i. The algorithm can be
summarized as follows:

1. The size of the group g is calculated as ⎣ ⎦)min(/1 is (1≤i≤p). If g/p<2,

then ⎣ ⎦)min(/2 isg = . This condition is imposed to ensure there is sufficient

number of blocks in the group.
2. The group is partitioned so that the number of column panels di assigned to

processor i in the group will minimize
i

i
i s

d
max (see [5] for a simple algorithm

performing this partitioning).

 A Novel Algorithm of Optimal Matrix Partitioning for Parallel Dense Factorization 267

3. In the group, processors are reordered to start from the slowest processors to the
fastest processors for load balance purposes.

The complexity of this algorithm is)log(2 ppO × . At the same time, the

algorithm does not guarantee that the returned solution will be optimal.

The DP algorithm. Dynamic programming is used to distribute column panels of the
matrix over the processors. The relative speeds of the processors are obtained by
running the DGEMM routine that locally updates some particular dense rectangular
matrix. The inputs to the algorithm are p, the number of heterogeneous processors in
the one-dimensional arrangement, b, the block size, n, the size of the matrix in
number of blocks of size b×b or the number of column panels, and S={s1, s2, ...,

sp}(1
1

=∑ =

p

i is), the relative speeds of the processors. The outputs are c, an integer

array of size p, the i-th element of which contains the number of column panels
assigned to processor i, and d, an integer array of size n, the i-th element of which
contains the processor to which the column panel i is assigned. The algorithm can be
summarized as follows:

(c1,…,cp)=(0,…,0);
(d1,…,dn)=(0,…,0);
for(k=1; k≤n; k=k+1) {

 Costmin=∞;
 for(i=1; i<=p; i=i+1) {
 Cost=(ci+1)/si;
 if (Cost < Costmin) {Costmin=Cost; j=i;}
 }
 dn-k+1=j;
 cj=cj+1;

}

The complexity of the DP algorithm is O(p×n). The algorithm returns the optimal
allocation of the column panels to the heterogeneous processors [6]. The fact that the
DP algorithm always returns the optimal solution is not trivial. Indeed, at each
iteration of the algorithm the column panel k is allocated to one of the processors,
namely, to a processor, minimizing the cost of the allocation. At the same time, there
may be several processors with the same, minimal, cost of allocation. The algorithm
randomly selects one of them. It is not obvious that allocation of the column panel to
any of these processors will result in a globally optimal allocation. But, fortunately,
for this particular distribution problem this is proved to be true.

In this paper, we propose another algorithm solving this distribution problem, a
Reverse distribution algorithm. Like the DP algorithm, the Reverse algorithm always
returns the optimal allocation. The complexity of the Reverse

algorithm,)log(2 pnpO ×× , is a bit worse than that of the DP algorithm, but the

algorithm has one important advantage. It better suits extensions to more complicated,

268 A. Lastovetsky and R. Reddy

non-constant, performance models of heterogeneous processors (such as the
functional model [1, 2]) than both the DP and GB algorithms.

The Reverse algorithm. This algorithm generates the optimal distribution

),,()()(
1

k
p

k nn … of n×b column panels of the dense (n×b)×(n×b) matrix over p

heterogeneous processors for each step k of the parallel LU factorization

(1
1

)(+−=∑ =
knn

p

i

k
i , k=1,…,n) and then allocates the column panels to the

processors by comparing these distributions. In other words, the algorithm extracts the
optimal allocation of the column panels from a sequence of optimal distributions of
the panels for successive steps of the parallel LU factorization. The inputs to the
algorithm are p, the number of heterogeneous processors in the one-dimensional
arrangement, b, the block size, n, the size of the matrix in number of blocks of size

b×b or the number of column panels, and S={s1, s2, ..., sp}(1
1

=∑ =

p

i is), the relative

speeds of the processors. The output is d, an integer array of size n, the i-th element of
which contains the processor to which the column panel i is assigned. The algorithm
can be summarized as follows:

(d1,…,dn)=(0,…,0);
w=0;
(n1,…,np)=HSP(p, n, S);
for (k=1; k<n; k=k+1) {

),,(''
1 pnn … = HSP(p, n-k, S);

 if (w==0)

 then if ())(()1])(,1[!(''
iijj nnjinnpj ==≠∀∧+==∈∃)

 then {dk=j;),,(),,(''
11 pp nnnn …… = ;}

 else w=1;

 else if ()])(,1[('
ii nnpi <∈∃)

 then w=w+1;
 else {
 for (i=1; i≤p; i=i+1)

 for ('
ii nn −=Δ ; Δ≠0; Δ=Δ-1, w=w-1)

 dk-w=i;

),,(),,(''
11 pp nnnn …… = ;

 w=0;
 }
}

If ()1])(,1[(==∈∃ inpi)

then dn=i;

 A Novel Algorithm of Optimal Matrix Partitioning for Parallel Dense Factorization 269

Here, HSP(p, n, S) returns the optimal distribution of n column panels over p
heterogeneous processors of the relative speeds S={s1, s2, ..., sp} by applying the
algorithm for optimal distribution of independent chunks of computations from [5]

Table 1. Reverse Algorithm with three processors P1, P2, P3

Distributions at step
k

Step of
the

algorithm
(k) P1 P2 P3

Allocation
made

 6 2 2
1 5 2 2 P1
2 4 2 2 P1
3 3 2 2 P1
4 1 3 2 No allocation
5 1 3 1 No allocation
6 1 2 1 P1, P1, P3
7 1 1 1 P2
8 0 1 1 P1
9 0 0 1 P2
10 P3

(HSP stands for Heterogeneous Set Partitioning). Thus, first we find the optimal
distributions of column panels for the first and second steps of the parallel LU
factorization. If the distributions differ only for one processor, then we assign the first
column panel to this processor. The reason is that this assignment guarantees a
transfer from the best workload balance at the first step of the LU factorization to the
best workload balance at its second step. If the distributions differ for more than one
processor, we postpone allocation of the first column panel and find the optimal
distribution for the third step of the LU factorization and compare it with the
distribution for the first step. If the number of panel columns distributed to each
processor for the third step does not exceed that for the first step, we allocate the first
and second column panels so that the distribution for each next step is obtained from
the distribution for the immediate previous step by addition of one more column panel
to one of the processors. If not, we delay allocation of the first two column panels and
find the optimal distribution for the fourth step and so on.

In Table 1, we demonstrate the algorithm for n=10. The first column represents the
step k of the algorithm. The second column shows the distributions obtained during
each step by HSP. The entry “Allocation made” denotes the rank of the processor to
which the column panel k is assigned. At steps k=4 and k=5, the algorithm does not
make any assignments. At k=6, processor P1 is allocated column panels (4, 5) and

270 A. Lastovetsky and R. Reddy

Table 2. Distribution algorithms and their complexities

Distribution Algorithm Complexity
GB O(p×log

2
p)

DP O(p×n)
Reverse O(p×n×log

2
p)

processor P2 is allocated column panel 6. The output d in this case would be
(P1P1P1P1P1P3P2P1P2P3).

Proposition 1. The Reverse algorithm returns the optimal allocation.

Proof of Proposition 1. If the algorithm assigns the column panel k at each iteration
of the algorithm, then the resulting allocation will be optimal by design. Indeed, in
this case the distribution of column panels over the processors will be produced by the
HSP and hence optimal for each step of the LU factorization.

Consider the situation when the algorithm assigns a group of w (w>1) column
panels beginning from the column panel k. In that case, the algorithm first produces a

sequence of (w+1) distributions),,()()(
1

k
p

k nn … ,),,()1()1(
1

++ k
p

k nn … , …,

),,()()(
1

wk
p

wk nn ++ … such that

− the distributions are optimal for steps k, k+1,…, k+w of the LU factorization
respectively, and

−),,(),,()()(
1

)()(
1

ik
p

ikk
p

k nnnn ++> …… is only true for i=w (by definition,

(a1,…,ap)>(b1,…,bp) if and only if))(())((iiii baibai >∃∧≥∀).

Lemma 1. Let),,(1 pnn … and),,(''
1 pnn … be optimal distributions such that

'

1

'

1
nnnn

p

i i

p

i i ∑∑ ==
=>= ,))(('

ii nni <∃ and)
1

)(max(1
j

j

i

ip
i s

n

s

n
j

+
≤∀ = .

Then,
i

ip
i

i

ip
i s

n

s

n '

11 maxmax == = .

Proof of Lemma 1. As 'nn > and),,(1 pnn … and),,(''
1 pnn … are both optimal

distributions, then
i

ip
i

i

ip
i s

n

s

n '

11 maxmax == ≥ . On the other hand, there exists

],1[pj ∈ such that '
jj nn < , which implies '1 jj nn ≤+ . Therefore,

j

j

j

j

i

ip
i s

n

s

n

s

n 1
max

''

1

+
≥≥= . As we assumed that)

1
)(max(1

j

j

i

ip
i s

n

s

n
j

+
≤∀ = , then

 A Novel Algorithm of Optimal Matrix Partitioning for Parallel Dense Factorization 271

i

ip
i

j

j

j

j

i

ip
i s

n

s

n

s

n

s

n '

1

'

1 max
1

max == ≤≤
+

≤ . Thus, from
i

ip
i

i

ip
i s

n

s

n '

11 maxmax == ≥

and
i

ip
i

i

ip
i s

n

s

n '

11 maxmax == ≤ we conclude that
i

ip
i

i

ip
i s

n

s

n '

11 maxmax == = . □

We can apply Lemma 1 to the pair),,()()(
1

k
p

k nn … and),,()()(
1

lk
p

lk nn ++ … for any

]1,1[−∈ wl .Indeed, ∑∑ =
+

=
> p

i

lk
i

p

i

k
i nn

1

)(

1

)(and))(()()(lk
i

k
i nni +<∃ . Finally,

the HSP guarantees that)
1

)(max(
)()(

1
j

k
j

i

k
ip

i s

n

s

n
j

+
≤∀ = (see [5,6]). Therefore,

i

wk
ip

i
i

k
ip

i
i

k
ip

i s

n

s

n

s

n)1(

1

)1(

1

)(

1 maxmaxmax
−+

=

+

== === … . In particular, this means

that for any),,(1 pmm … such that)(1)(1 maxmin j
i

wk
kji

j
i

wk
kj nmn −+

=
−+

= ≤≤

(pi ,,1…=), we will have
i

k
ip

i
i

ip
i s

n

s

m)(

11 maxmax == = . The allocations made in

the end by the Reverse algorithm for the column panels k, k+1,…,k+w-1 result in a
new sequence of distributions for steps k, k+1,…,k+w-1 of the LU factorization such
that each next distribution differs from the previous one for exactly one processor.

Each distribution),,(1 pmm … in this new sequence satisfies the inequality

)(1)(1 maxmin j
i

wk
kji

j
i

wk
kj nmn −+

=
−+

= ≤≤ (pi ,,1…=). Therefore, all they will have

the same cost
i

k
ip

i s

n)(

1max = , which is the cost of the optimal distribution for these

steps of the LU factorization found by the HSP. Hence, each distribution in this
sequence will be optimal for the corresponding step of the LU factorization. □

Proposition 2. The complexity of the Reverse algorithm is)log(2 pnpO ×× .

Proof. At each iteration of this algorithm, we apply the HSP, which is of complexity

)log(2 ppO × [5]. Testing the condition

))(()1])(,1[!(''
iijj nnjinnpj ==≠∀∧+==∈∃ is of complexity O(p).

Testing the condition)])(,1[('
ii nnpi <∈∃ is also of complexity O(p). Finally, the

total number of iterations of the inner loop of the nest of loops

 for (i=1; i≤p; i=i+1)

 for ('
ii nn −=Δ ; Δ≠0; Δ=Δ-1, w=w-1)

 dk-w=i;

272 A. Lastovetsky and R. Reddy

Table 3. Specifications of sixteen Linux computers of a heterogeneous network

Processor GHz CPU RAM
(mBytes)

Cache
(kBytes)

Absolute speed
(MFlops)

hcl01 3.6 Xeon 256 2048 246

hcl02 3.6 Xeon 256 2048 226

hcl03 3.4 Xeon 1024 1024 258

hcl04 3.4 Xeon 1024 1024 258

hcl05 3.4 Xeon 1024 1024 260

hcl06 3.4 Xeon 1024 1024 258

hcl07 3.4 Xeon 256 1024 257

hcl08 3.4 Xeon 256 1024 257

hcl09 1.8 AMD Opteron 1024 1024 386

hcl10 1.8 AMD Opteron 1024 1024 347

hcl11 3.2 P4 512 1024 518

hcl12 3.4 P4 512 1024 258

hcl13 2.9 Celeron 1024 256 397

hcl14 3.4 Xeon 1024 1024 558

hcl15 2.8 Xeon 1024 1024 472

hcl16 3.6 Xeon 1024 2048 609

during the execution of the algorithm cannot exceed the total number of allocations of
column panels, n. Thus, the overall complexity of the algorithm is upper-bounded by

).log()1()()()log(22 pnpOOnppOnpOnppOn ××=××+×+×+×× Table 2

presents the complexities of the algorithms employing the constant performance model
of heterogeneous processors.

4 Experimental Results

A small heterogeneous local network of sixteen different Linux workstations shown
in Table 3 is used in the experiments. The network is based on 2 Gbit Ethernet with a
switch enabling parallel communications between the computers.

The absolute speed of a processor is obtained by running the DGEMM routine that
is used in our application to locally update a dense non-square matrix of size n1×n2.
DGEMM is a level-3 BLAS routine [11] supplied by Automatically Tuned Linear
Algebra Software (ATLAS) [12]. ATLAS is a package that generates efficient code
for basic linear algebra operations. The total number of computations involved in
updating A22=A22-L21×U12 of the rectangular n1×n2 matrix A22, where L21 is a matrix
of the size n1×b and U12 is a matrix of the size b×n2, is 2×b×n1×n2. The block size b
used in the experiments is 32, which is typical for cache-based workstations [9,10].

Figure 3 shows the first set of experiments. For the range of problem sizes used in
these experiments, the speed of the processor is a constant function of the problem
size. These experiments demonstrate the optimality of the Reverse and the DP

 A Novel Algorithm of Optimal Matrix Partitioning for Parallel Dense Factorization 273

LU factorization (constant performance model)

0
100
200
300
400
500
600
700
800
900

1000

1024 3024 5024 7024 9024 11024

Size of the matrix

E
xe

cu
ti

o
n

 t
im

e
(s

ec
) GB

DP
Reverse

Fig. 3. Execution times of the Reverse, DP, and GB distribution strategies for LU
decomposition of a dense square matrix

algorithms over the GB algorithm when the speed of the processor is a constant
function of the problem size. The figure shows the execution times of the LU
factorization application using these algorithms. The single number speeds of the
processors used for these experiments are obtained by running the DGEMM routine
to update a dense non-square matrix of size 5120×320. These speeds are shown in the
last column of Table 3. The ratio of speeds of the most powerful computer hcl16 and
the least powerful computer hcl01 is 609/226 ≈ 2.7.

Tables 4 and 5 show the second set of experiments showing the execution times of
the different strategies presented in this paper along with their extensions using the
functional model of heterogeneous processors [1, 2]. The strategies FDP, FGB, and
FR are extensions of the DP, GB, and the Reverse algorithms respectively using the
functional model of heterogeneous processors.

We consider two cases for comparison in the range (1024, 25600) of matrix sizes.
The GB and DP algorithms uses single number speeds. For the first case the single
number speeds are obtained by running the DGEMM routine to update a dense non-
square matrix of size 16384×1024. This case covers the range of small sized matrices.
The results for this case are shown in Table 4. For the second case the single number
speeds are obtained by running the DGEMM routine to update a dense non-square
matrix of size 20480×1440. This case covers the range of large sized matrices. The
results for this case are shown in Table 5. The ratios of speeds of the most powerful
computer hcl16 and the least powerful computer hcl01 in these cases are (531/131 =
4.4) and (579/64 = 9) respectively.

It can be seen that the FR algorithm, which is an extension of the Reverse
algorithm and employing the functional model of heterogeneous processors performs
well for all sizes of matrices. The Reverse and the DP algorithms perform better than
the GB algorithm when the speed of the processor is represented by a constant

274 A. Lastovetsky and R. Reddy

Table 4. Execution times (in seconds) of the LU factorization using different data distribution
algorithms

Size
of the
matrix

FR FDP FGB Reverse/DP GB

1024 15 17 18 16 20
5120 86 155 119 103 138

10240 564 1228 690 668 919
15360 2244 3584 2918 2665 2829
20480 7014 10801 8908 9014 9188
25360 14279 22418 19505 27204 27508

Table 5. Execution times (in seconds) of the LU factorization using different data distribution
algorithms

Size
of the
matrix

FR FDP FGB Reverse/DP GB

1024 15 17 18 18 18
5120 86 155 119 109 155

10240 564 1228 690 711 926
15360 2244 3584 2918 2863 3018
20480 7014 10801 8908 9054 9213
25360 14279 22418 19505 26784 26983

function of the problem size. The main reason is that the GB algorithm imposes
additional restrictions on the mapping of the columns to the processors. These
restrictions are that the matrix is partitioned into groups, all of which have the same
number of blocks. The number of columns per group (size of the group) and the
distribution of the columns in the group over the processors are fixed. The Reverse
and the DP algorithms impose no such limitations on the mapping.

5 Conclusions and Future Work

In this paper, we presented a novel algorithm of optimal matrix partitioning for
parallel dense matrix factorization on heterogeneous processors based on their
constant performance model. We prove the correctness of the algorithm and estimate
its complexity. We demonstrate that this algorithm better suits extensions to more
complicated, non-constant, performance models of heterogeneous processors than
traditional algorithms.

Acknowledgement

This work was supported by the Science Foundation Ireland (SFI).

 A Novel Algorithm of Optimal Matrix Partitioning for Parallel Dense Factorization 275

References

[1] Lastovetsky, A., Reddy, R.: Data Partitioning with a Realistic Performance Model of
Networks of Heterogeneous Computers. In: Proceedings of 18th International Parallel
and Distributed Processing Symposium (IPDPS’04), IEEE Computer Society Press, Los
Alamitos (2004)

[2] Lastovetsky, A., Reddy, R.: Data Partitioning with a Functional Performance Model of
Heterogeneous Processors. International Journal of High Performance Computing
Applications 21, 76–90 (2007)

[3] Arapov, D., Kalinov, A., Lastovetsky, A., Ledovskih, I.: Experiments with mpC:
Efficient Solving Regular Problems on Heterogeneous Networks of Computers via
Irregularization. In: Ferreira, A., Rolim, J.D.P., Teng, S.-H. (eds.) IRREGULAR 1998.
LNCS, vol. 1457, pp. 332–343. Springer, Heidelberg (1998)

[4] Kalinov, A., Lastovetsky, A.: Heterogeneous Distribution of Computations Solving
Linear Algebra Problems on Networks of Heterogeneous Computers. Journal of Parallel
and Distributed Computing 61, 520–535 (2001)

[5] Beaumont, O., Boudet, V., Petitet, A., Rastello, F., Robert, Y.: A Proposal for a
Heterogeneous Cluster ScaLAPACK (Dense Linear Solvers). IEEE Transactions on
Computers 50, 1052–1070 (2001)

[6] Boulet, P., Dongarra, J., Rastello, F., Robert, Y., Vivien, F.: Algorithmic issues on
heterogeneous computing platforms. Parallel Processing Letters 9, 197–213 (1999)

[7] Barbosa, J., Tavares, J., Padilha, A.J.: Linear Algebra Algorithms in a Heterogeneous
Cluster of Personal Computers. In: 9th Heterogeneous Computing Workshop (HCW
2000), pp. 147–159 (2000)

[8] Barbosa, J., Morais, C.N., Padilha, A.J.: Simulation of Data Distribution Strategies for
LU Factorization on Heterogeneous Machines. In: Proceedings of 17th International
Parallel and Distributed Processing Symposium (IPDPS 2003), IEEE Computer Society
Press, Los Alamitos (2003)

[9] Choi, J., Dongarra, J., Ostrouchov, L.S., Petitet, A.P., Walker, D.W., Whaley, R.C.: The
Design and Implementation of the ScaLAPACK LU, QR, and Cholesky Factorization
Routines. Scientific Programming 5, 173–184 (1996)

[10] Blackford, L., Choi, J., Cleary, A., D’Azevedo, E., Demmel, J., Dhillon, I., Dongarra, J.,
Hammarling, S., Henry, G., Petitet, A., Stanley, K., Walker, D., Whaley, R.:
ScaLAPACK User’s Guide. SIAM (1997)

[11] Dongarra, J., Croz, J.D., Duff, I.S., Hammarling, S.: A set of level-3 basic linear algebra
subprograms. ACM Transactions on Mathematical Software 16, 1–17 (1990)

[12] Whaley, R.C., Petitet, A., Dongarra, J.: Automated empirical optimizations of software
and the atlas project. Technical report, Department of Computer Sciences, University of
Tennessee, Knoxville (2000)

Parallel Pseudorandom Number Generator for

Large-Scale Monte Carlo Simulations�

Mikhail Marchenko

Institute of Computational Mathematics and Mathematical Geophysics SB RAS,
Prospekt Lavrentieva 6, 630090, Novosibirsk, Russia

Tel.: (383)330-77-21; Fax: (383) 330-87-83
mam@osmf.sscc.ru

Abstract. A parallel random number generator is given to perform
large-scale distributed Monte Carlo simulations. The generator’s qual-
ity was verified using statistically rigorous tests. Also special problems
with known solutions were used for the testing. The description of pro-
gram system MONC for large-scale distributed Monte Carlo simulations
is also given.

1 Introduction

Assume that while solving equations of mathematical physics one wants to esti-
mate some functional ϕ. To implement a Monte Carlo technique one writes the
following stochastic representation

ϕ ≈ Eζ = Eζ(ω).

Here ω is a sample trajectory of stochastic process, ζ is called a stochastic esti-
mator. Note that the above mentioned relationship gives the fair approximation.
It means that the stochastic estimator has nonzero deterministic error. Then one
evaluates the value of Eζ using the sample average

ϕ ≈ ζ̄ =
1
N

N∑

n=1

ζn.

Here N is quite large number of independent samples ζn.
When M independent processors are used and independent trials are

distributed over the processors, the time complexity of statistical modeling is
obviously reduced by M times, because the combined complexity of the final
summation and averaging is negligible. Naturally, there should exist a possibil-
ity for handling samples of different volumes on different processors with the use
of statistically optimal averaging of the results based on the formula
� The work was supported by RFBR grants No. 06-01-00586 and No. 06-01-00046,

President grant No. 4774.2006.1 of ”Leading scientific schools” program, INTAS
grant No. 05-109-5267 and SB RAS Lavrientiev’s grant.

V. Malyshkin (Ed.): PaCT 2007, LNCS 4671, pp. 276–282, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Parallel Pseudorandom Number Generator 277

ζ̄ =
M∑

m=1

nmζ̄m

/ M∑

m=1

nm,

where nm is the sample volume on the m-th processor and ζ̄m is the correspond-
ing average.

When M is large, the corresponding sample of the underlying pseudorandom
numbers is also large. Therefore, the use of long period sequences of pseudoran-
dom numbers is expedient if a simple method for splitting the sequences into M
subsequences of required length is available (see description of the bf-generator
in Sect. 3). Such modified algorithms for generating pseudorandom numbers re-
quire approximately modified statistical testing (see Sect. 5). To obtain a global
estimate of the solution in the C metric, the groups of trajectories originating
from different points of the phase space can be simulated on different processors.
In so doing, it is expedient to use the same pseudorandom numbers at different
points (possibly, on different processors). These numbers should be distributed
between individual trajectories by means of a special deterministic procedure
(see description of the lf-generator in Sect. 3).

Note that there does not exist any ideal algorithm for parallel realization of a
stochastic ensemble of N0 interacting particles. However, for such an ensemble,
the asymptotic determinate error of estimators for the functionals under study
is C1N

−1
0 and the probabilistic error is C2N

−0.5
0 . Therefore, to reduce the prob-

abilistic error, such an ensemble should be simulated independently on different
processors (C2/C1)2N0 times, the resulting estimates for the functionals should
be averaged.

2 Generating Pseudorandom Numbers on Single
Computer

Typically, a pseudorandom variable ξ with a given distribution is modeled by
transforming one or several values of a pseudorandom numbers distributed uni-
formly over the interval (0, 1). That is, the following formula is used

ξ = f(α1, α2, . . .).

A sequence of ”sampled” values of α is generally obtained by applying number-
theoretic algorithms. Among them, the most frequently used is the residue
method (also called the congruential generator) formulated as follows:

u0 = 1, un ≡ un−1A (mod 2r), αn = un2−r, n = 1, 2, . . . ,

Here, r typically denotes the number of bits used in the computer to represent
a number and A is a sufficiently large number relatively prime with respect to
2r. We call A the generator factor. The quantities αn are called pseudorandom
numbers. They are verified by statistical testing, by analytical studies, and by
using them in solving typical problems (see, for example, [1], [2], [6]). For the
above mentioned generator the period of the sequence {αn} equals to 2r−2.

278 M. Marchenko

3 Generating Pseudorandom Numbers in Parallel

The solutions to various problems may be correlated by using pseudorandom
numbers as follows. The sequence {un} is splitted into subsequences of length
m that start with the numbers ukm, k = 0, 1, . . . called the initial values of the
subsequences. Each subsequence is used to construct the corresponding sample
trajectories of the process to be modeled (i.e., its separate trials). The value ofm
should be such that m pseudorandom numbers would be sufficient to construct
a trajectory. In the residue method, the initial values ukm, k = 0, 1, 2, . . . of the
subsequences are obviously calculated as follows

u(k+1)m = ukmAm (mod 2r), k = 0, 1, 2, . . . ,
Here the factor Am in the auxiliary generator of leaps of lengthm is calculated as

Am ≡ Am(mod 2r)
Thus, the k-th trajectory is simulated using the subsequence in the residue
method that starts from

αkm = ukm 2−r

We call this method the lf-generator (’lf’ means ’little frog’). Clearly, the value
of m for the lf-generator should be chosen in such way that its divisors include
each n corresponding to successful n-dimensional uniformity tests (see Sect. 5).

In contrast to the straightforward distribution of pseudorandom numbers in
the order of their generation, the lf-generator ensures a small change in simulated
results under small variation of the parameters of the problem. Accordingly,
the lf-generator is more amenable to the testing based on solution of typical
problems than the conventional generator. Moreover, the lf-generator is better
suited to the important multidimensional uniformity tests in estimation problems
for multidimensional integrals (see Sect. 5).

The modified generator considered above can obviously be used to distribute
pseudorandom numbers over individual processors, but the leaps should be con-
siderably longer to do this. More precisely, m should be replaced by μ = mN ,
where N is the number of trajectories that are actually simulated on an indi-
vidual processor. This ”large-scale” generator is called the bf-generator (’bf’
means ’big frog’).

It is recommended to use both the lf- and bf-generators while performing
distributed Monte Carlo simulations. Modifying the expression for lf-generator
we find that the initial values of the subsequences can be calculated as

uj+lm = uj+(l−1)mAm (mod 2r), j = 1, 2, . . . ,M, l = 1, 2, . . . ,

where uj are the initial values of the subsequences for the bf-generator.

4 Choice of Parameters for the Parallel Generator

As a source generator, we used one of the congruential generators tested in [1].
Its parameters are

r = 128, A ≡ 5100109 (mod 2128).
i.e., the corresponding period is

Parallel Pseudorandom Number Generator 279

L = 2126 ≈ 1038.

Different values of the factor A are given in [1]. For the first billion numbers
(starting with u0 = 1), standard statistical tests were successfully performed
in [1]. Analytical studies of the n-dimensional distributions were additionally
performed in [1] for the method of residues. It was shown in [5] that these distri-
butions are concentrated on sets of planes, i.e., on manifolds of lower dimension.
On the other hand, it was shown in [1] for the generator considered here that
these manifolds densely fill the corresponding n-dimensional hypercubes, but
this shortcoming can be disregarded. A FORTRAN code for the congruential
generator with above mentioned parameters is presented in [3].

We used the following value of the leap length in the bf-generator:

μ = 1026 ≈ 286.

This value is more than sufficient to have enough pseudorandom numbers for
computations on each processor. The suggested bf-generator makes it possible to
distribute the original sequence evenly between processors: 1026 pseudorandom
numbers for about 1012 ≈ 240 processors. Both the factor for the bf-generator and
a FORTRAN code for its computation are presented in [3]. The corresponding
initial values u0 = 1, uμ = Aμ, u2μ = A2μ, . . . of the subsequences for the
bf-generator are also given in [3].

5 Statistical Test of Parallel Generator

We examined the constructed bf-generator by performing n-dimensional unifor-
mity tests (see [2] for a sample of 1010 numbers, which was obtained by joining
the first 109 numbers from the first ten subsequences. Each of them used no
more than 109 pseudorandom numbers. The resulting statistical estimates were
averaged as indicated in the Introduction. The multidimensional distributions
were checked for uniformity for n = 1, 2, . . . , 7 by using the criterion χ2, with
partition along each axis into one hundred parts for n = 2 and 3 and into ten
parts for n = 4, ..., 7. We denote by k(n) the number of degrees of freedom of
the distribution χ2 corresponding to n. In this way, the number of classes (i.e.,
the number of elementary cubes), which equals k(n) + 1, was 102n at n = 2 and
3 and 10n for n = 4, ..., 7. The number of classes used for n = 1 was chosen to
maximize the efficiency of the criterion according to the formula (see [2])

k(1) + 1 ∼ 4 5
√

2(R/dα)2/5,

where R is the sample size, and the constant dα = O(1) can be set equal to two
for practical purposes. In this case, R = 1010 and k(l) + 1 ≈ 34800 according to
above mentioned formula. We denote by χ̃2

k(n) the sampled value of the criterion:

χ̃2
k(n) =

1
rn

k(n)+1∑

i=1

(r(n)
i − rn)2,

280 M. Marchenko

where rn = R(n)/(k(n) + 1) is the theoretical frequency of finding a number
in a class, R(n) is the sample volume corresponding to n, and {r(n)

i } are the
sampled frequencies obtained. In analyzing the results of the statistical test of
the constructed bf-generator, we used the fact that the quantity

η̃n = (χ̃2
k(n) − k(n))/

√
2k(n)

corresponding to genuine random numbers is a standard normal random variable
to a high accuracy for the values of k(n) involved; i.e., it satisfies the relations

P(|η̃n| > 1) ≈ 0, 32, P(|η̃n| > 2) ≈ 0, 05, P(|η̃n| > 3) ≈ 0, 003.

The numerical results obtained are shown in table. Thus, the values of k(n)
are irrelevant, and the test is passed.

Table 1. Results of statistical test of multidimensional uniformity for bf-generator

Parameters n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7

R(n) 1010 5 · 109 ≈ 3, 3 · 109 2, 5 · 109 2 · 109 ≈ 1, 67 · 109 ≈ 1, 43 · 109

k(n) 34799 9999 999999 9999 99999 999999 9999999

η̃n 0, 215 0, 622 1, 472 −0, 76 0, 913 −0, 448 1, 104

The least common multiple of the numbers n in the table is 420. Therefore,
it is expedient to set m = 420 · s for the lf-generator, where s is such a number
that m pseudorandom numbers are practically sufficient to construct a trial.

Let us point out that a comparison between numerical results obtained by
solving specific diffusion problems with the use of the generator suggested here
and those obtained with the use of the well known congruential generator with
r = 40 and r = 128 was presented in [6]. It was shown that these generators
are statistically equivalent for the problems considered. In addition, the com-
putations performed in that study for a problem with a known exact solution
have shown that the modified generator provides a statistical estimate that is
in satisfactory agreement with the exact solution. Essentially, this is one more
successful test of the modified generator suggested in this paper.

6 Review of System MONC

In conclusion, let us briefly describe the program system named MONC (MONC
corresponds to ’Monte Carlo’) for the large-scale distributed Monte Carlo simu-
lations [4]. This system is based on the use of above mentioned 128-bit generator
and bf-generator. It uses ordinary networked PCs to create powerful computa-
tional cluster.

MONC is more convenient to use than the existing competitors: it allows user
to perform distributed Monte Carlo simulations in easy way. For example, it
doesn’t require user to insert MPI calls into the computational program. This

Parallel Pseudorandom Number Generator 281

Fig. 1. Principle of MONC operation

make programming for MONC an easy operation. It means that the user have
the possibility to concentrate on his Monte Carlo algorithm, not thinking about
its parallel implementation.

MONC copies user’s program and all other necessary data (all this data is
called User’s project) to remote servers, starts the execution of the program,
follow the execution on servers, stops execution, copies results and averages
them. It is very easy to start the execution of the project once again after the
occasional fault such as electrical power fault, etc.

The idea of MONC corresponds to the philosophy of the use of GRID infras-
tructure. It makes MONC the desirable instrument for the specialists in Monte
carlo simulations.

The principle of MONC is given on the Fig. 1. Here files with results represent
the calculated values of ζn (see Introduction).

References

1. Dyadkin, I.G., Hamilton, K.G.: A study of 128-bit multipliers for congruential pseu-
dorandom number generators. Comput. Phys. Comm. 125, 239–258 (2000)

2. Kendall, M.G., Stuart, A.: The Advanced Theory of Statistics, Griffin, London, vol.
2, 1961, Translated under the title Statisticheskie vyvody i svyazi, Moscow, Nauka
(1973)

3. Marchenko, M.A.: Parallel 128-bit congruential pseudorandom genera-
tor: a manuscript is given on the web site, http://osmf.sscc.ru/ mam/
generator eng.htm

http://osmf.sscc.ru/~mam/generator_eng.htm
http://osmf.sscc.ru/~mam/generator_eng.htm

282 M. Marchenko

4. Marchenko, M.A., Mikhailov, G.A.: Distributed computations in Monte Carlo
method. Automation and Remote Control 5 (to be published 2007)

5. Marsaglia, G.: Random numbers fall mainly in the planes. Proc. Nat. Acad. Sci. 61,
23–25 (1968)

6. Mikhailov, G.A., Marchenko, M.A.: Parallel Realization of Statistical Simulation
and Random Number Generators. Russ. J. Numer. Analys. Math. Modelling. 17(1),
113–124 (2002)

V. Malyshkin (Ed.): PaCT 2007, LNCS 4671, pp. 283–292, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Dynamic Job Scheduling on the Grid Environment
Using the Great Deluge Algorithm

Paul McMullan and Barry McCollum

School of Electronics, Electrical Engineering and Computer Science,
Queen’s University of Belfast, Northern Ireland

Tel.: +44(0)28 90974653
p.p.mcmullan@qub.ac.uk

Abstract. The utilization of the computational Grid processor network has
become a common method for researchers and scientists without access to local
processor clusters to avail of the benefits of parallel processing for compute-
intensive applications. As a result, this demand requires effective and efficient
dynamic allocation of available resources. Although static scheduling and
allocation techniques have proved effective, the dynamic nature of the Grid
requires innovative techniques for reacting to change and maintaining stability
for users. The dynamic scheduling process requires quite powerful optimization
techniques, which can themselves lack the performance required in reaction
time for achieving an effective schedule solution. Often there is a trade-off
between solution quality and speed in achieving a solution. This paper presents
an extension of a technique used in optimization and scheduling which can
provide the means of achieving this balance and improves on similar
approaches currently published.

Keywords: Grid, Job Scheduling, Great Deluge, Simulated Annealing,
Network, Parallel Processing.

1 Introduction

A compute-intensive application can benefit in terms of completion time through
distribution to many processors, each of which completes an allocated task in a
parallel or pipelined fashion with respect to the overall goal of the computation.
Unfortunately distributed processor systems are not available to the majority of those
in need of greater computation power. Computational Grids are a relatively new
development in addressing this problem. They allow the sharing of geographically
distributed networked resources to create a dynamic and scalable cluster-based multi-
processor system. This requires the integration of a task scheduling system, to allocate
a set of tasks or applications for different users to available remote computing
resources and minimise the completion time [1,2,3]. Current scheduling systems are
limited by the time constraints required for remapping resources in a dynamic
environment such as the Grid. The most effective scheduling algorithms generally
require an impractical amount of time in which to produce a solution [4]. This paper

284 P. McMullan and B. McCollum

introduces a new directed search algorithm based on the Great Deluge [5] which uses
a relatively simple set of neighbourhood search heuristics to produce good quality
schedules quickly.

2 The Scheduling Problem

As demand for the Grid increases over the next few years, effective scheduling
algorithms are required to address new concerns within the grid environment. The
computational resources available using the Grid are provided for researchers on a
“first come first served” basis. As such, resources can be limited, requiring very
efficient protocols for maximising the usage of available resources, in terms of load
balancing and maintaining a fair allocation of resources for all users. Additionally, the
network can be quite dynamic, with “nodes” added and removed continually,
increasing the unpredictability of the network. Any scheduling system controlling task
allocation must take this into account and be able to maintain efficiency as much as
possible.

2.1 Scheduling Algorithms

The scheduling of computational processes and sub-tasks to available resources in an
efficient manner is recognised as a hard problem that has been tackled for many years
by researchers in the areas of distributed processor parallelisation and Artificial
Intelligence [1]. Multi-processor systems and local “Cluster” networks have been the
target of this research for several decades. However, with the emergent demand being
placed on the resources of the Computation Grid, further considerations and
complications not previously faced by traditional load balancing and task allocation
methodologies must be addressed.

As the Grid expands and its use increases, the rather simple scheduling algorithms
currently used for scheduling work on compute resources become more and more
inadequate. A number of heuristic scheduling algorithms have been proposed in the
last number of years to address the increasing complexity of resource allocation for
computational networks [2]. List Scheduling heuristics utilises a set of priorities which
are assigned to available processors, taking into account relationships between tasks.
Each task is selected in order of its priority and scheduled to a processor based on the
minimisation of a predefined cost function. Clustering algorithms merge task clusters
onto a bounded number of processors and order the tasks within each processor. These
are mainly effective for homogenous clusters and do not lend themselves readily to
changes in resource availability or bandwidth conditions. Several solutions which
provide task scheduling for heterogeneous systems have been proposed [3]. Although
more applicable to the grid environment in terms of target resources, the consideration
and influence of dynamic resource characteristics is again limited.

More current research into guided search techniques has provided useful tools to
address the problem of dynamic remapping of resources using re-scheduling and
repair mechanisms. Neighbourhood search techniques use a single- or multi-objective
function to drive the scheduler towards an optimum schedule solution, including
objective goals such as minimisation of communication time and total task

 Dynamic Job Scheduling on the Grid Environment 285

completion time while maximising throughput. The most popular of these are in the
area of Genetic Algorithms [4], using an evolutionary-based “selection of the fittest”
approach to obtaining an optimal scheduling solution from an evolving population of
possible solutions. One of the biggest drawbacks of this technique is the time required
to obtain an acceptable solution, as it must maintain a dynamic population of
candidate solutions throughout the search process. This problem is common to most
of the more complex search techniques.

A more practical approach is with the use of Simulated Annealing, an extension to
the simple Hill-climbing algorithm which uses a simple neighbourhood search to
improve an initial schedule solution. Simulated annealing [6] accepts worse solutions
(to avoid getting caught in local optima) with a probability: P = e –ΔP/T, where
ΔP=f(s*)-f(s) and the parameter T represents the temperature, analogous to the
temperature in the process of annealing. The temperature is reduced according to a
cooling rate which allows a wider exploration of the solution space at the beginning,
avoiding getting trapped in a local optimum. Applied to grid scheduling, this
technique has provided the balance between search time and measured results [7] [8].

2.2 Great Deluge Algorithm

The Great Deluge (also known as Degraded Ceiling) was introduced by Dueck [5] as
an alternative to Simulated Annealing. This uses a Boundary condition rather than a
probability measure with which to accept worse solutions. The Boundary is initially
set slightly higher than the initial solution cost, and reduced gradually through the
improvement process. New solutions are only accepted if they improve on the current
cost evaluation or are within the boundary value. This has been applied successfully
in other NP-hard solution space applications such as timetabling [9] and
Telecommunications [10], and has proved more effective in obtaining a better quality
solution within experimental time constraints. [11] describes a modification of the
Great Deluge algorithm for Multi-criteria decision making.

Given this, it is proposed to build on the prediction models already employed in [7]
to compare the results from an extended Great Deluge scheduler (described in the
next section) against Simulated Annealing. A simple Hill-climbing approach is
included to provide an idea of the scale of improvement in the new approach. The
application used within the experiment is a compute-intensive bin-packing algorithm
(SPAL) used in the optimisation of office and teaching space planning based on
pedagogic and resource constraints for an expanding or new-build educational
institution [12]. It was originally adapted for the GrADS (Grid Application
Development Software) [13] and has been analysed to build a predictive performance
model in which to estimate the computation time during experimentation. The
simulator will also use the Globus Metacomputing Directory Service (MDS) [14] with
the Network Weather Service (NWS) [15] to obtain resource availability information
and processor load, memory and communication for each machine.

2.3 Extended Great Deluge with Reheat

The standard Great Deluge algorithm has been extended to allow a reheat, similar to
that employed with simulated annealing in timetabling [16]. The aim of this approach

286 P. McMullan and B. McCollum

is to both improve the speed at which an optimal solution can be found and at the
same time utilise the benefits of this technique in avoiding the trap of local optima. In
order to reduce the amount of time taken, relatively simple neighbourhood moves are
employed.

Generally, the Great Deluge or Simulated Annealing processes will terminate when
a lack of improvement has been observed for a specified amount of time, as the most
optimal solution will have been reached. Rather than terminating, the Extended GD
will employ the reheat to widen the boundary condition to allow worse moves to be
applied to the current solution. Cooling will continue and the boundary will be
reduced at a rate according to the remaining length of the run. The algorithm for the
Extended Great Deluge is presented in Figure 1.

The initial solution construction is handled with an Adaptive (Squeaky-Wheel)
ordering heuristic [17] technique. This utilises a weighted order list of the events to be
scheduled based on the individual penalties incurred during each iteration of
construction. The adaptive heuristic does not attempt to improve the solution itself,
but simply continues until a feasible solution is found.

Choose virtual machine size
Set the initial schedule s using a construction heuristic – random

selection from machines of chosen size;
Calculate initial cost function f(s) based on Performance Model
Set Initial Boundary Level B0 = f(s)
Set initial decay Rate ΔB based on Cooling Parameter
While stopping criteria not met do
Apply neighbourhood Heuristic S* on S

Calculate f(s*)
If f(s*) <= f(s) or (f(s*) <= B Then
 Accept s = s*
Lower Boundary B = B – ΔB
If no improvement in given time T Then
 Reset Boundary Level B0 = f(s)
 Set new decay rate ΔB based on Secondary

Cooling Parameter

Fig. 1. Extended Great Deluge Algorithm

The first parameter used within the Extended Great Deluge is the initial decay rate,
which will dictate how fast the Boundary is reduced and ultimately the condition for
accepting worse moves is narrowed. The approach outlined in this paper uses a Decay
Rate proportional to 50% of the entire run. This will force the algorithm to attempt to
reach the optimal solution by, at the very most, half-way through the process.
Generally, a continuous lack of improvement will occur before this is reached, at
which time the re-heat mechanism is activated. The ‘wait’ parameter which dictates
when to activate the re-heat mechanism due to lack of improvement can be specified
in terms of percentage or number of total moves in the process. Through
experimentation with a number of data set instances a general value for this parameter
can be established. Figure 2 illustrates the process of initial decay, ‘wait’ time and
subsequent re-heat.

After reheat the Boundary ceiling is once again set to be greater than the current
best evaluation by a similar percentage to that applied in the initial boundary setting.
The subsequent decay is set to a ‘quicker’ rate than with the initial decay, in order to

 Dynamic Job Scheduling on the Grid Environment 287

increase the speed of the exploration of neighbouring solutions for improvement. The
general setting chosen for the algorithm outlined is set to 25% of the remaining time,
with the improvement wait time remaining unchanged.

Extended Great Deluge vs Standard

0

0.2

0.4

0.6

0.8

1

1.2

0 n/2 n

Evaluations

P
en

al
ty

Standard Boundary

Initial Boundary

Evaluation

Reheat Boundary

Point at w hich non-improvement
moves no longer allow ed

Reheat and Further
Improvement

Fig. 2. Boundary behaviour of extended algorithm compared to Standard Great Deluge

The neighbourhood structures employed in the process are deliberately kept
simple, to avoid the scheduler repeatedly getting stuck in local optima.
Neighbourhood heuristics are deliberately kept simple to maximise performance of
the algorithm and include adding / removing selected resources and swapping the
order of tasks and resources.

3 Experimentation and Results

The SPAL application is intended to provide decision support and advice on projected
plans for expansion or reduction of estate, changes to activities (in this case an
educational institution) or cost / income requirements. The application will analyse all
existing and historical data and provide an exhaustive set of projections and
validations to justify and support major strategic change-decisions in the planning
process. Initial ‘quality’ criteria and targets are introduced to the application, which
then undertakes analysis of existing statistics, processes and models within the
institution. This forms the basis for a required projection model which is used to then
begin the process of creating valid projections for schedules, space and resource
requirements and curriculum activity. Figure 3 illustrates the process from initial
requirement specification to termination.
The process is detailed as follows:

Phase A – Analysis of existing data:

1. Estate planning requirements – analysis of existing plans, direct / indirect
costs

2. General Constraints and Utilisation Targets – analysis of historical
timetabling trends and schedule patterns

288 P. McMullan and B. McCollum

1 2 3 4 5 6

Projection model

grid processes

Initial
target criteria

Strategy
decision-base

multi-objective
comparison and
decision process

Projections and validation

Phase A

Phase B

Phase C

Phase D

Fig. 3. Processes involved in SPAL analyser

3. Staffing and resource requirements – plans, inventory, human resource
details and costs

4. Curriculum expansion – analysis of existing curriculum and enrolment
patterns

5. General FTE (Full-Time Equivalent) statistics, pro-rata income and costs
6. Research, Commercial and Administration activities, including resource

usage, costs and income

Phase B – Projection Model

7. Profiling of delivery and estate requirements based on expansion of student
numbers, extended curriculum, increased / reduced estate, cost projections or
projected cost reductions

Phase C – Projections and Validation of Assumptions

8. Creation and validation of scenarios based on initial requirements, including
timetable and allocation, estate projections and curriculum structures

Phase D – Decision Process

9. Multi-objective decision process based on overall set criteria, including full
comparison to set targets and trade-off with measures of quality between
dominant pareto-front solutions

 Dynamic Job Scheduling on the Grid Environment 289

10. Feedback of decisions to projection model (step 7) - analysis repeats for
given process time

The quality measurement used for the final strategy model or feedback to further
iterations of the process is a multi-objective trade-off between a number of pareto
points. [18] provides further explanation of the multi-objective process and its
applications.

The experiments were run using the dynamic information obtained using MDS
and NWS and the Performance Model to estimate execution time and hence provide
a basis for driving the Great Deluge algorithm in optimising the schedule solution. A
set of 8 benchmark data instances and constraints were used in the SPAL application,
each of which have a differing level of complexity based on the amount of
constraints involved. A total of 10 iterations were used for each instance (listed in
order of difficulty), with average computation times presented in Figure 4. This is
compared against two similar runs – one with standard Hill Climbing, the other using
Simulated Annealing. In order to provide accurate comparison between techniques,
the same random seed was used for each method, therefore the solution quality
measurements did not differ between each. A standard cluster size of 10 virtual
machines was used.

1000

1200

1400

1600

1800

2000

2200

2400

1 2 3 4 5 6 7 8

Data Set

C
o

m
p

u
ta

tio
n

 T
im

e
(s

)

Great Deluge

Simulated Annealing

Hill-Climbing

Fig. 4. Great Deluge vs Simulated Annealing and Hill Climbing

As can be seen, the Great Deluge generally performs better over Simulated
Annealing, although in several cases there is very little difference between each. The
most obvious occurrence of this is in Data Sets 2 and 8, where the ratio between
amount of constraints and the size of problem is almost 1:1 for both, which may
explain the lack of significant improvement. The experiments were also run using
different cluster sizes of virtual machine to determine the effects of a decrease or
increase in predicted communication load. In general, the Great Deluge algorithm
achieved better results than Simulated Annealing. With more, smaller sized resources
the difference between the two are greater for the smaller data sets (1 - 3), therefore
the Great Deluge is most effective when potential resource usage and communication
is higher.

290 P. McMullan and B. McCollum

Figure 5a gives a breakdown of the first (least complex) data set, with runs over 2,
4, 8 and 16 processors. As can be seen, the amount of improvement over different
cluster sizes depends on the characteristics of the data set. The eighth data set used is
one which represents a much more complex set of requirements and data model. The
difference actually decreases as extra processors are introduced, as shown in Figure 5b.
The main reason for this stems from the fact that the smaller data sets are generally less
constrained by their nature, with a much larger potential search space. Therefore an
increased amount of potential solutions with which to compare in order to maintain our
pareto set of non-dominated solutions requires more inter-processor communication.
As cluster size increases, communication requirements also increase and potential
gains can be reduced accordingly.

500

700

900

1100

1300

1500

1700

1900

2 4 8 16

Data Set 1

C
o

m
p

u
ta

ti
o

n
 T

im
e

(s
)

Great Deluge

Simulated Annealing

(a)

1500

1700

1900

2100

2300

2500

2 4 8 16

Data Set 8

C
o

m
p

u
ta

ti
o

n
 T

im
e

(s
)

Great Deluge

Simulated Annealing

(b)

Fig. 5. Performance of Methods for differing cluster sizes

4 Conclusions and Future Work

In this paper, we set out to improve on current research into task scheduling for
distributed applications running on the Computational Grid. The work extends current
investigations into using directed searches to achieve a schedule of resource
allocation, optimising on computation and communication time. Measurements are
based on a predictive performance model of computation on the grid, but show that
the current approach improves on previous similar techniques in this area. Although

 Dynamic Job Scheduling on the Grid Environment 291

Simulated Annealing is more effective than standard hill climbing algorithms in
escaping from local optima, the Great Deluge is more successful given the limited
time in which an effective scheduling solution must be achieved. Investigation will
continue to directly compare the results from the scheduling algorithm against other
reported benchmark results in the current literature. A full appraisal of the
performance model will also be performed to determine how close the simulated
results are to real distributed applications on the Grid. There are also many parameters
used within the Great Deluge algorithm, such as cooling / reheat frequency. Full
analysis of the limits of these parameters and how they affect solution quality will be
carried out.

References

[1] Fernandez-Baca, D.: Allocating Modules to Processors in a Distributed System. IEEE
Transactions on Software Engineering 15(11), 1427–1436 (1989)

[2] Tracy, D., et al.: A Comparison of eleven Static Heuristics for Mapping a Class of
Independent Tasks onto Heterogeneous Distributed Computing Systems. Journal of
Parallel and Distributed Computing 61, 810–837 (2001)

[3] Liu, L., Zhan, J., Lian, L.: A Runtime Scheduling Approach with Respect to Job
Parallelism for Computational Grid. In: Proc. Of 3rd International Conference of Grid
and Cooperative Computing (2004)

[4] Mika, M., et al.: A Metaheuristic Approach to Scheduling Workflow Jobs on a Grid. In:
Grid Resource Management: State of the Art and Future Trends, Kluwer Academic
Publishers, Boston (2003)

[5] Dueck, G.: Threshold Accepting: A General Purpose Optimization Algorithm Appearing
Superior to Simulated Annealing. J. Computational Physics 90, 161–175 (1990)

[6] Kirkpatrick, S., Gellat, J.C.D., Vecci, M.P.: Optimization by Simulated Annealing.
Science 220, 671–680 (1983)

[7] Yarkhan, A., Dongarra, J.: Experiments with Scheduling Using Simulated Annealing in a
Grid Environment. In: Parashar, M. (ed.) GRID 2002. LNCS, vol. 2536, pp. 232–242.
Springer, Heidelberg (2002)

[8] Fidanova, S.: Simulated Annealing for Grid Scheduling Problem. In: IEEE John Vincent
Atanasoft International Symposium on Modern Computing (JVA ’06), pp. 41–45 (2006)

[9] McMullan, P.: An Extended Implementation of the Great Deluge Algorithm for Course
Timetabling. In: International Conference on Computational Science (ICCS 2007).
LNCS, Springer, Heidelberg (to appear)

[10] Kendall, G., Mohamad, M.: Channel Assignment in Cellular Communication Using a
Great Deluge Hyper-Heuristic. In: Proc. of IEEE International Conference on Network
(ICON’04), pp. 769–773 (2004)

[11] Petrovic, S., Burke, E.K.: University Timetabling, Handbook of Scheduling: Algorithms,
Models and Performance Analysis, ch. 45. CRC Press, Boca Raton (2004)

[12] McMullan, P., Roche, T.: An Intelligent Space Allocation and Planning Tool for
Educational Requirements. Technical Report, RTS-TR-2005-2 (2005)

[13] Berman, F., et al.: The GrADS Project: Software Support for high-level Grid application
development. Int. Journal of High Performance Computing Applications 15(4), 327–344
(2001)

292 P. McMullan and B. McCollum

[14] Foster, I., Kesselman, C.: The Globus Toolkit. In: Foster, I., Kesselmanm, C. (eds.) The
Grid: Blueprint for a New Computing Infrastructure, ch. 11, Morgan Kaufmann, San
Francisco (1999)

[15] Wolski, R., Spring, N., Hayes, J.: The Network Weather Service: a Distributed Resource
Performance Forecasting System for Metacomputing. Future Generation Computing
Systems 15(5-6), 757–768 (1999)

[16] Burke, E.K., Newall, J.P.: Solving Examination Timetabling Problems through
Adaptation of Heuristic Orderings, Technical Report, Nottingham (2002)

[17] Abramson, D., Krishnamoorthy, M., Dang, H.: Simulated Annealing Cooling Schedules
for the School Timetabling Problem. Asia-Pacific Journal of Operation Research 16, 1–22
(1999)

[18] Marler, R.T., Arora, J.S.: Survey of multi-objective optimization methods for
engineering. Journal Structural and Multidisciplinary Optimization 26(6), 369–395
(2004)

Parallelism Granules Aggregation with the

T-System

Alexander Moskovsky, Vladimir Roganov, and Sergei Abramov

Program System Institute Russian Academy of Science,
Pereslavl-Zalessky, 152020, Yaroslavl Region, Russia

moskov@lcc.chem.msu.ru,var@pereslavl.ru,
abram@botik.ru

http://www.botik.ru/PSI

Abstract. T-system is a tool for parallel computing developed at the
PSI RAS. The most recent implementation is available on both Linux
and Windows platforms. The paper is dedicated to one of important
T-system aspects — ability to change parallelism granule size at run-
time. The technique is available, primarily, for recursive programs, but
it’s possible to extent it to non-recursive ones as well. In the latter case,
we employ C++ template“traits”for program transformation. The tech-
nique is shown to reduce overhead incurred by runtime support library
dramatically.

Keywords: T-system, OpenTS, parallel programming, C++, computa-
tional clusters, parallel computing.

1 Introduction

The building of snow castle is a favorite winter-time game of Russian children.
One has to use large snowballs to build one (or two, or three) walls and, may be,
a tower. Then the castle is ready to protect it’s builders from others in snowball
game. If weather is appropriate (just below zero Celsius plus a major snowfall),
snow castles mushroom along recreation areas in residential city blocks. One,
who ever seen a snow castle know, that it’s constructed of large snowballs, not
small ones, the size is to be like ones to build a snowman, or even larger. It’s
just too boring to build snow castle out of small snowballs, while small ones can
be used to fill gaps between major ones, level walls and correct imperfectness.
And it’s not possible to build a snow castle treating snowflakes individually.

As well, the proper choice of granule size is very important for the parallel
computation to be effective. If the granules are too large, there may be not
enough granules to load all available CPUs. With large granules the cost of
scheduling error is larger too: cohesion, caused by assigning tasks to wrong CPU,
will last longer. At the same time, if granules are too small, the overhead incurred
by runtime system may be too large. In this paper we describe the granule size
control techniques, applicable for the context of the T-system approach. In T-
system, a potential granule is called“T-Function” and is, actually, a C-functions

V. Malyshkin (Ed.): PaCT 2007, LNCS 4671, pp. 293–302, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

http://www.botik.ru/PSI

294 A. Moskovsky, V. Roganov, and S. Abramov

that can be computed in parallel. That creates a possible conflict of goals: the
“functions” in C/C++ program are to structure source code and make program
easier to read, while in T-system they serve as granules of parallelism, which size
should be large enough to pay back runtime system overhead. So, the dynamic
granules size — aggregation of multiple function calls in single granule — may
be very important to improve ease of parallel programming with the T-system.

2 Related Work

The ability to dynamically adjust size and number of parallelism granules can
be enabled by either well-defined program structure or rigorous approach, based
on functional programming and graph reduction. The Open MP [1] may be con-
sidered as the most widely used implementation of the first approach: number
of threads created is in particular section is defined equal to number of CPUs
available. However, Open MP is mostly applied to loop parallelization, when
loop iterations have approximately equal CPU instructions. In more sophis-
ticated cases, graph partitioning is widely used in high-performance scientific
calculations involving meshes [2].

Much more general approaches exist in the realm of parallel functional pro-
gramming. “Task inlining”[3], “lazy task creation”[4] and “leapfrogging”[5] has
been devised almost two decades ago for Mul-T [3] and Multilisp[6]. In princi-
ple, all these techniques are applicable in context of any futures-based system,
like it has been recently shown for Java-based system in [7]. A lot of work has
been done on granularity control in Glasgow Parallel Haskell both in terms of
CPU and memory resources [8,9]. However, the application of these approaches
in high-performance computing requires very tight limits on overhead, added
by the mechanism. For the parallel programming environment to be useful, it
should not only provide good speedup when running parallel programs, but allow
low-level optimization as well. It’s well known, that good optimizing compiler
may improve speed of application by 100-300% and this requires only applying
some optimization switches during compilation. For the majority of platforms,
good optimizing compilers are available for C/C++ and Fortran, but not other
programming languages. It may also important to allow compiler apply loop
optimization techniques, like loop unrolling, vectorization, skewing etc [10], to
load CPU pipelines and multiple execution units. The T-system design addresses
these issues: we use C++ as a basic language, and allow low-level optimization in
parallelism granules, at the same time, C++ inlining, in principle, should allow
compiler to optimize loops including “aggregated” granules (see below).

In this paper we focus on implementation of granules aggregation in the con-
text of T-system [11]. T-system provides programming model, which extends
C++ language to express parallelism, and runtime support library to enable
program execution on multi-cores, SMPs, computational clusters. The T-system
enables writing much more compact programs model than traditional Message-
passing interface (MPI) libraries. There are many C++ extensions available,

Parallelism Granules Aggregation with the T-System 295

designed to provide high-level programming tools [12]. It’s interesting to note,
that even original C++ design goals was to support parallelism, but it has been
decided later to rely on libraries with that aspect [13]. Rather novel approach
relies upon C++ templates to “extend” C++ language for parallelism [14,15,16].
Due to size limitations of this manuscript, we would like to refrain from com-
prehensive overview of C++ language extensions. However, we must notice dis-
tinctive features of T-system approach:

– “Functional-based” approach to parallelisation (see below)
– Mutliple assigment support for global variables (in T++ language, see below)
– Custom ligtweight thread library (in Open TS)
– Distributed garbage collector

The ability to aggregate granules, specified by a programmer is a distinctive
feature as well. Combined with the availability on both Windows and Linux
Platform makes T-system convenient tool to a wide community of potential
users.

3 OpenTS: T-System Implementation

Open TS is the most recent full-scale implementation of T-system approach
[11]. OpenTS provides a T++ — a language for parallel programming, which is
a seamless extension of C++ language with only 7 keywords:

– tfun — a function attribute which should be placed just before the function
declaration. A function with the “tfun” attribute is named “T-function”,
and runtime support system can compute such functions is parallel — in
separate threads of execution.

– tval — a variable type attribute which enables variables to contain a non-
ready value. The variable can be cast to the “original” C++-type variable,
which makes the thread of execution suspend until the value becomes ready.

– tptr — a T++ analogue of C++ pointers which can hold references to a
non-ready value.

– tout — a function parameter attribute used to specify parameters whose
values are produced by the function. This is a T++ analog of the “by-
reference” parameter passing in C++.

– tdrop — a T++ -specific macro which makes a variable value ready. It may
be very helpful in optimization when it’s necessary to make non-ready values
ready before the producer function finishes.

– tct — an explicit T-context specification. This keyword is used for specifi-
cation of additional attributes of T-entities.

Generally, Open C++ [17] reflection is used for conversion of the T++ pro-
grams to C++ with calls to Open TS runtime support library. The simplest
sample program — Fibonacci numbers calculation is presented below.

296 A. Moskovsky, V. Roganov, and S. Abramov

tfun int fib(int n)
{

if (n<2) return 1;
return (fib(n-1)+fib(n-2));

}
tfun int main (int argc, char *argv[])
{

int n = atoi(argv[1]);
printf("Fibonacci %d is %d\n",n,(int)fib(n));
return 0;

}

Casting (int)fib(n) is necessary to make main thread to wait for other threads
to complete. Open TS runtime support library relies on MPI for communica-
tion in cluster environment, while addtional options are available (PVM, and
TCP/IP when MPI is not applicable). Open TS features custom lightweight
thread library, which is capable to make up to millions of context switches on
a modest CPU. Another important Open TS capability is automatic garbage
collection of non-ready values. By the end of 2006, the Windows port has been
finished. The “cross-platform” version is available for download at URL http://
www.opents.net.

4 Granule Aggregation in Recursive Programs

Sometimes, even bantamweight threads are too heavy: the program may be most
naturally expressed in terms of functions which take only few CPU instructions
to compute. The Fibonacci example above is program of that kind: most of
CPU time is spent on thread and non-ready values management by the runtime
system, not on summation of integers. One may require programmer to coarsen
parallelism grains supplied to system — the simplest solution. Consider the
following modification of original Fibonacci code:

int cfib (int n) {
return n < 2 ? n : cfib(n-1) + cfib(n-2);

}

tfun int fib (unsigned n)
{
if (n < 32) {
return cfib(n);

} else {
return fib(n-1) + fib(n-2);

}
}

tfun int main (int argc, char* argv[])

http://www.opents.net
http://www.opents.net

Parallelism Granules Aggregation with the T-System 297

{
int n;
if (argc < 2) {
fprintf(stderr,"Usage: %s <number>\n", argv[0]);
return -1;

}
n = atoi(argv[1]);
printf("fib(%d) = %d\n", n, (int)fib(n));
return 0;

}

The whole source is obscured a bit, moreover, the summation is replicated
in two pieces of program — making in harder to support. The alternative for
OpenTS is an implementation of technique, similar to “inline” of MultiLisp [6].
In that case, when a user program is calling a T-function “fib”, runtime system
may decide don’t create any new T-threads, but, instead, evaluate a function,
calling it’s as ordinary C-function. That reduces parallelism: the runtime system
will not be able to make some threads run in parallel. At the same time, it
removes much overhead from runtime execution, since there is no need to create
extra task object, schedule it and so forth. The benefit in terms of execution
time reduction on one CPU is observable for Fibonacci:

Table 1. Exectuion times for calculating 41-st Fibonacci number

Program Number of threads Execution time

Fib(41) 535828592 7108.952 sec
Fib(41)-aggregate 8192 5.603 sec

Fib-cilk-5.4.3 n/a 19.7 sec

Here and below, measurements hes been done on dual Athlon MP 1800+ sys-
tem with 1Gbyte of RAM, only one CPU was used. Program has been built
with GNU C++ compiler version 3.2.2 and -O3 optimization flag. Here we ap-
plied a simple heuristic: calls, with recursion level deeper than the threshold
(namely, 17), are implemented as C-call, not thread-creating calls. For compar-
ison, we present also running time for calculation of the 41-st Fibonacci num-
ber with Cilk version 5.4.3, which is approximately 19 seconds. The Cilk [20]
is a multi-threading programming environment for symmetric multi-processors
(SMPs) and multi-core processors, which won HPC Challenge class 2 (most pro-
ductivity) [21] award on Supercomputing conference [22] in the year 2006.

The recurtion depth heuristic can be applied for a more sophisticated program:
calculating the π number with the numerical integration method (it’s concept
similar to sum-tree test of [4]):

#include <math.h>
#include <stdio.h>
#include <stdlib.h>

298 A. Moskovsky, V. Roganov, and S. Abramov

tfun double isum(double begin,
double finish,
double d) {

double dl = finish - begin;
double mid = (begin + finish) / 2;
if (fabs(dl) > d)

return isum(begin, mid, d) +
isum(mid, finish, d);

return (double)f(mid) * dl;
}
tfun double f(double x) {

return 4/(1+x*x);
}
tfun int main(int argc, char* argv[]) {

unsigned long h;
double a, b, d, sum;

if (argc < 2) {return 0;}
a = 0; b = 1; h = atol(argv[1]);
d = fabs(b - a) / h;
sum = isum(a, b, d);
printf("PI is approximately %15.15lf\n", sum);
return 0;

}

One may notice, that only minor changes were necessary to make this program to
run in parallel with the Open TS. Without granules aggregation, the overhead,
introduced by the T-system would be very large, comparing it with few CPU
instructions, which are necessary to calculate the “isum” function. To make this
program efficient in that case, it would be necessary to create a loop inside the
“isum” function, calculating the “f” multiple times. The T-system runtime with
support of recursive granule aggregation is much more forgiving: it even allows
placing “tfun” keyword for “f” function which is not practical to calculate in
parallel on either cluster or SMP system. Consider the run time measurements:
Only subtle differences are observable, one the scale of hundredth of second.

Table 2. Exectuion times for calculating π, 100000000 points

Program Number of threads Execution time

Pi — no aggregation 402653184 5589.667
Pi (tfun f) 8192 11.670 sec
Pi (no tfun) 8192 11.543 sec

Pi — C version 1 8.774 sec

C version is produced, removing all T++ keywords from the source code by
preprocessor, which result in sequential program.

Parallelism Granules Aggregation with the T-System 299

5 Granules Aggregation in “Map” Parallel Programming
Template

The “Map” high-level function is widely known concept in functional program-
ming [19]. The “Map” takes two arguments: input set and function, which has
to be applied to each element of the input set, producing the output set. Since
the operation on elements of the input set are independent from each over, par-
allelization of “Map” is straightforward. In C++, the high-level function can be
implemented with the help of template functions. In C++ Standard Template
Library(STL) it’s a “transform” template, taking input, output iterators and
function. In many cases, “Map” may be substitute for “for” loops. It is also may
be beneficial to use “Map” instead of loop, since loop parallelization in plain
T++ requires at least two loops instead of one: C++ code:

int do_something(int);
...
int res[NMAX]
for (int i=0;i<NMAX;++i)

res[i]=do_something(x[i]);

The equivalent T++ code looks like: T++ code:

tfun int do_something(int x);
...
tval int tres[i];
for (int i=0;i<NMAX;++i)

tres[i]=do_something(x[i]);
for (int i=0;i<NMAX;++i)

res[i]=tres[i]

We have implemented the “Map” template with the C++ language and T-Sim
C++ template library. It is based on ”futures” [6] approach to parallelization,
thus it’s compatible with OpenTS in many aspects. Details of this library will
be presented elsewhere. For the sake of implementation simplicity, user should
supply the “functoid” [18] object to the template. The “Map” based code for an
example above may look like the following:

int do_something(int);
...
Functoid<do_something> f;
MapD(x,x+NMAX,res,f);

The condition of speedup on parallel machine for this program is that the func-
tion do_something must constitute large enough chunk of work. But, in general
case, it may not be sufficient to pay back amount of time, spent by runtime
support library on handling the task and data transmission. That general case
may be the simplest for the programmer to implement. However, our “Map”
template is capable aggregating individual operations, producing larger grains

300 A. Moskovsky, V. Roganov, and S. Abramov

and reducing the runtime overhead. Currently, programmer should supply an
extra parameter to the template, “trait” for granule aggregation. Consider the
following fragment for aggregation by the compile-time specified number:

MapA<FixedAggregation<100> >(x,x+NMAX,res,f);

The “Map” template produces granules by splitting large “transform” into lesser
ones, which constitutes library-supplied grains of parallelism. It should be noted,
that, since aggregation is done at compile time, individual do_something calls
may be inlined by compiler inside the granule loop. This enables all toolset of
optimizations, that are available for loops in modern C++ compilers.

6 Future Work

It’s clear, that for the T-system, runtime overhead may be incurred not only
from the task and thread management, but from the variable mechanism as
well. Consider the following naive program to calculate N-th prime number:

// n -- desired prime number
// j -- current number
// i -- number of primes found <=j
tfun long nprimes (int n, long j, tval long i) {

tval long tmp;
tval long ni;
tmp = nprimes (n,++j,ni); // start the

bool is = is_prime(++j); //verify, if the number is prime

if (n==i) return j; // Runtime environment should cancel
// subsequent "nprimes" calls started,

else {
if (is) {

ni = ++i; // increment the number of primes found
return tmp; // return the result of subsequent calls

}
else {

ni = i; // no change, connect non-ready
return tmp;

}
}

}

For this program to be executed effectively in parallel, runtime system should
provide “lazy” task evaluation strategy, as well as an ability to cancel tasks,
which result are not necessary. The first is existing, and the latter is a prospective
feature of OpenTS. In principle, the overhead of thread management may be

Parallelism Granules Aggregation with the T-System 301

kept low with the help of “inlining” technique [3]. However, management of non-
ready variables ni and tmp may claim more CPU cycles than useful is_prime,
especially, in OpenTS, where grabage collector is present. One of future work
directions may be investigation of dynamic specialization mechanism for non-
ready variables.

7 Conclusion

Implemntation of granules aggregation technique improves a lot ease of use for
parallel programming tool. “The program mer takes on the burden of identifying
what can be computed safely in parallel, leaving the decision of exactly how the
division will take place to the run-time system.” [3] The runtime support library
may vary the “weight” of tasks in wide limits, so it capable to adapt program
to wide variety of parallel computers that exist today: multi-core, SMPs, com-
putational clusters with different kind of interconnects. At the same time, pro-
grammer may write very simple code, separating the computation code from the
code, managing computational process (scheduling, aggregation and so forth).
However, development of adaptive mechanisms, capable to measure individual
granule weight and aggregate them accordingly, is a subject of future work, as
well as attempt to provide lightweight non-ready variables.

Acknowledgments. This work is supported by Russian Foundation of Ba-
sic Research grant N 050708005ofi a and basic research program of Presidium
of Russian Academy of Science “Development of basics for implementation of
distributed scientific informational-computational environment on GRID tech-
nologies”.

References

1. Chandra, R., Menon, R., Dagum, L., Kohr, D., Maydan, D., McDonald, J.: Parallel
Programming in OpenMP. Morgan Kaufmann, San Francisco (2000)

2. Schloegel, K., Karypis, G., Kumar, V.: Graph Partitioning for High-Performance
Scientific Simulations. In: Dongarra, J., et al. (eds.) Sourcebook of parallel com-
puting, Morgan Kaufmann, San Francisco (2003)

3. Kranz, D., Halstead, R., Mohr, E.: Mul-T, A High-Performance Parallel Lisp ACM
SIGPLAN ’89 Conference on Programming Language Design and Implementation,
Portland, OR, pp. 81–90 (June 1989)

4. Mohr, E., Kranz, D., Halstead, R.: Lazy Task Creation: A Technique for Increasing
the Granularity of Parallel Programs IEEE Trans. Parallel Distrib. Syst. 2(3), 264–
280 (1991)

5. Wagner, D., Calder, B.: Leapfrogging: a portable technique for implementing effi-
cient futures Proceedings of the fourth ACM SIGPLAN symposium on Principles
and practice of parallel programming

6. Halstead, R.: MULTILISP: a language for concurrent symbolic computation. ACM
Transactions on Programming Languages and Systems (TOPLAS) 7(4), 501–538
(1985)

302 A. Moskovsky, V. Roganov, and S. Abramov

7. Zhang, L., Krintz, C., Soman, S.: Efficient Support of Fine-grained Futures in Java
International Conference on Parallel and Distributed Computing Systems (PDCS),
Dallas, TX (November 2006)

8. Loidl, H-W., Trinder, P.W., Butz, C.: Tuning Task Granularity and Data Locality
of Data Parallel GpH Programs. Parallel Processing Letters 11(4), 471–486 (2001)

9. Loidl, H.-W.: Granularity in Large-Scale Parallel Functional Program-
ming PhD. Thesis. University of Glasgow (March 1998) Available online,
http://www.dcs.gla.ac.uk/∼hwloidl/publications/PhD.ps.gz

10. Alt, M.: Coding Considerations Practical Methods to Maximum Efficiency for Intel
Itanium Architecture Intel Corp. (2004)

11. Abramov, S., Adamovich, A.I., Inyukhin, A., Moskovsky, A., Roganov, V.,
Shevchuk, E., Yu, S., Vodomerov, A.: OpenTS: An Outline of Dynamic Paral-
lelization Approach. In: Malyshkin, V. (ed.) PaCT 2005. LNCS, vol. 3606, pp.
303–312. Springer, Heidelberg (2005)

12. Talia, D.: Advances in Programming Languages for Parallel Computing in Annual
Review of Scalable Computing, Yuen C. K., pp. 28–58 (2000)

13. Stroustrup, B.: The Design and Evolution of C++ Addison-Wesley (2004) (in
Russian translation: Piter, St.Petersburg 2007)

14. Intel Thread Building Blocks, Intel Corp. http://www.intel.com/cd/software/
products/asmo-na/eng/294797.htm

15. An, P., et al.: An Adaptive, Generic Parallel C++ Library Wkshp. In: Dietz, H.G.
(ed.) LCPC 2001. LNCS, vol. 2624, pp. 193–208. Springer, Heidelberg (2003)

16. Bischof, H., Gorlatch, S., Leshchinskiy, R.: DatTel: A Data-parallel C++ Template
Library. In: HLPP 2003 Second International Workshop on High-Level Parallel
Programming and Applications, June 15-17, 2003, Paris, France (2003)

17. Chiba, S.: A Metaobject Protocol for C++. In: Proceedings of the ACM Con-
ference on Object-Oriented Programming Systems, Languages, and Applications
(OOPSLA), pp. 285–299 (October 1995)

18. McNamara, B., Smaragdakis, Y.: Functional Programming in C++. In: The 2000
International Conference on Functional Programming (ICFP), September 2000,
Montreal, Canada, pp. 18–20 (2000)

19. Abelson, H., Sussman, G.J.: Structure and Interpretation of Computer Programs.
MIT Press, Cambridge (1996)

20. Randall, K.H.: Cilk: Efficient Multithreaded Computing. Ph. D. Thesis, MIT De-
partment of Electrical Engineering and Computer Science (June 1998)

21. Luszczek, P., Bailey, D., Dongarra, J., Kepner, J., Lucas, R., Rabenseifner, R.,
Takahashi, D.: The HPC Challenge (HPCC) Benchmark Suite SC06 Conference
Tutorial, IEEE, US, Tampa, Florida (November 12, 2006)

22. Kuszmaul, B.: A Cilk Response to the HPC Challenge (Class 2) SC06 Conference,
IEEE, USA, Tampa, Florida (November 13-16, 2006)

http://www.dcs.gla.ac.uk/~hwloidl/publications/PhD.ps.gz
http://www.intel.com/cd/software/products/asmo-na/eng/294797.htm
http://www.intel.com/cd/software/products/asmo-na/eng/294797.htm

Toward a Distributed Implementation

of OpenMP Using CAPE

Éric Renault

GET / INT – CNRS UMR 5157 SAMOVAR
91011 Évry, France

eric.renault@int-evry.fr

Abstract. Traditionally, checkpointing techniques have been used to
secure the execution of sequential and parallel programs. This article
shows that checkpointing techniques can also be used to automatically
generate a parallel program from a sequential program, this program
being executed on any kind of distributed parallel system. The article
also presents how this new technique have been included inside the usual
compilation chain to provide a distributed implementation of OpenMP.
Finally, some performance measurements are discussed.

1 Introduction

Radical changes in the way of taking up parallel computing has operated during
the past years, with the introduction of cluster computing [1], grid computing [2],
peer-to-peer computing [3]... However, if platforms have evolved, development
tools remain the same. For example, HPF [4], PVM [5], MPI [6] and more re-
cently OpenMP [7] have been the main tools to specify parallel code in programs
(especially when supercomputers were the main issue for parallel computing),
and they are still used in programs for cluster and grid architectures.

Many works [8,9] have been done in order to automatically extract parallel
opportunities from sequential programs in order to avoid developers from hav-
ing to deal with a specific parallel library, but most methods have difficulties to
identify these parallel opportunities outside nested loops. Recent research in this
field [10,11], based on pattern-maching techniques, allows to substitute part of a
sequential program by an equivalent parallel subprogram. However, this promis-
ing technique must be associated an as-large-as-possible database of sequential
algorithm models and the parallel implementation for any target architectures
for each of them.

At the same time, the number of problems that can be solved using parallel
machines is getting larger everyday, and applications which require weeks (or
months, or even more...) calculation time are more and more common. Thus,
checkpointing techniques [12,13,14] have been developed to generate snapshots of
applications in order to be able to resume the execution from these snapshots in
case of problem instead of restarting the execution from the beginning. Solutions
have been developed to resume the execution from a checkpoint on the same

V. Malyshkin (Ed.): PaCT 2007, LNCS 4671, pp. 303–312, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

304 É. Renault

node or on another node, or to migrate a program in execution from one node
to another, this program being composed of a single process or a set of processes
executing in parallel.

This article adresses a different problem. Instead of securing a parallel ap-
plication using checkpointing techniques, checkpointing techniques are used to
introduce parallel computing inside sequential programs, i.e. to allow the par-
allel execution of parts of a program for which it is known these parts can be
executed concurrently. This technique is called CAPE which stands for Check-
pointing Aided Parallel Execution. It is important to note that CAPE does not
detect if parts of a program can be executed in parallel. We consider it is the job
of the developer (or another piece of software) to indicate what can be executed
in parallel. CAPE consists in transforming an original sequential program into
a parallel program to be executed on a distributed parallel system. As OpenMP
already provides a set of compilation directives to specify parallel opportunities,
we decided to use the same in order to avoid users from learning yet another
API. As a result, our method provides a distributed implementation of OpenMP
in a very simple manner.

The article is organized as follows. First, we present CAPE, our method to
make a parallel program from a sequential program. Then, we show that the
result of the execution of the generated parallel program is equivalent to the
execution of the original sequential program. The next section presents how we
have developed a distributed implementation of OpenMP on top of CAPE. Sec-
tion 5 provides performance results we have measured on one of our clusters and
the last section draws a comparison between CAPE and other existing solutions.

2 CAPE

CAPE, which stands for Checkpointing Aided Parallel Execution, consists in
modifying a sequential program (for which parts are recognized as being ex-
ecutable in parallel) so that instead of executing each part the one after the
other one on a single node, parts are automatically spread over a set of nodes
to be executed in parallel. Lots of work have been done to distribute processes
over a set of nodes. Thus, in the following, we consider that another application
(like Globus [15,16], Condor [17,18] or XtremWeb [19,20]) is available to start
processes on remote nodes and return the result of the remote execution on the
original node. Conveniently, this application is called the “dispatcher”.

The behaviour of the dispatcher is as follows. The set of available nodes is
managed so that each time a process has to be restarted on a remote node,
the next node in the set is removed and associated to the process; when the
process finishes, results are made available and the node returns to the set of
available nodes, ready to run another process. Also note that in the following,
it is considered that intermediate files (like images or delta files) are stored on
a shared filesystem that can be created with NFS typically. Considering that
filesystems are independent is not a key issue as it just requires to copy some
files from one location to another.

Toward a Distributed Implementation of OpenMP Using CAPE 305

The main purpose of CAPE consists in managing process images. In the fol-
lowing, the image of a process is the set of information that needs to be saved
in order to be able to restart the execution of the process at the location in the
program where the snapshot was taken without any loss of information. CAPE
is based on a set of six primitives:

– create (filename) stores in file filename the image of the current pro-
cess. There are two ways to return from this function: the first one is after
the creation of file filename in the calling process; the second one is after
resuming the execution from the image stored in file filename. This func-
tion is very similar to the fork system call. The calling process is similar to
the parent process with fork and the process resuming the execution from
the image is similar to the child process with fork. However, create allows
to resume the execution from the image more than once; there is no such
equivalence with the fork system call. The value returned by this function
has a similar meaning as those of the fork system call. In case of error, the
function returns -1. In case of success, the returned value is 0 if the current
execution is the result of resuming its execution from the image and a strictly
positive value in the other case. Unlike the fork system call, this value is
not the PID of the process resuming the execution from the image stored in
the file and has no specific meaning.

– diff (first, second, delta) stores in file delta the list of modifica-
tions to perform on file first in order to obtain file second.

– merge (base, delta) applies on file base the list of modifications from
file delta.

– restart (filename) resumes the execution of the process which image
was previously stored in file filename. Note that, in case of success, this
function does not return as the image of the target process has been changed.
The way processes are restarted from images depends upon the checkpointer.
For example, ckpt version 1.3 [12] requires an extra executable file (called
restart) to load the content of the snapshot before resuming the execution.
With ckpt version 1.4, the snapshot generated by ckpt is an executable file
and can be restarted direclty.

– copy (source, target) copies the content of file source to file target.
– wait for (filename) waits for any merges required to update file file-

name to complete.

The description of the primitives highlights that the size of images is one
of the key issues for an efficient implementation with CAPE: the smaller, the
better. There is no real limitation on the size of images; the absolute limitation
is the size of the virtual address space like any other processes.

Let P1 and P2 be two parts of a sequential program that can be executed
concurrently. Fig. 1 presents the typical code one should write using OpenMP
and Fig. 2 presents the code to substitute to run P1 and P2 in parallel with
CAPE. Error cases (especially when saving the current process image) are not
represented.

306 É. Renault

pragma omp parallel sections
{

pragma omp section
P1

pragma omp section
P2

}

Fig. 1. Example of OpenMP code for parallel sections

parent = create (original)
if (parent)

copy (original, target)
ask the dispatcher to restart (original)

on a distant node
P1

parent = create (after1)
if (parent)

diff (original, after1, delta1)
merge (target, delta1)
wait for (target)
restart (target)

else
P2

parent = create (after2)
if (parent)

diff (original, after2, delta2)
merge (target, delta2)

Fig. 2. General template for CAPE

The first step consists in creating an “original” image used to resume the
execution on a distant node, calculate the delta for each part executed in parallel
and build the “target” image to resume the sequential execution at the end.

The second step consists in executing parts and generating deltas. Thus, the
local node asks the dispatcher to resume the execution of the “original” image on
a distant node. Parts are executed, two “after” images are generated to produce
two “delta” files; then, these “delta” files are merged to the “target” image;
all these operations are executed concurrently. The main difficulty here is to
make sure that both the current frame in the execution stack and the set of
processor registers are consistent. However, this can be easily achieved using a
good checkpointer.

The last step consists in making sure all “delta” files have been included in the
“target” image and then restarting the “target” image in the original process.

Toward a Distributed Implementation of OpenMP Using CAPE 307

3 Proof of Concept

In order to prove that our solution is correct, one must show that when executing
P1 and P2, modified or not by CAPE, the result is the same. That is, the set of
updated variables (and the associated values) from the original program is the
same for both executions. Two assumptions have to be made.

The first assumption is that the implementation of functions related to image
management do not involve onboard effects on the running program. In fact,
functions dedicated to image management shall be understood as a transparent
set of services provided to the application, and executing a program with or
without CAPE must provide the same result. This assumption is not irrealistic
as some checkpointers can be dynamicly linked to a program and creating an
image or resuming the execution from an image can be performed from outside
the program, thus having the program unchanged.

The second assumption is that P1 and P2 satisfy Bernstein’s conditions. Let Ii
be the set of variables read when executing part Pi and Oi be the set of variables
written when executing part Pi. Note that in this context, a “variable” shall be
understood in the most general way, i.e. as a “memory location”. According to
Bernstein’s conditions, both P1 and P2 can be executed concurrently if and only
if the following condition is satisfied: I1 ∩ O2 = O1 ∩ I2 = O1 ∩ O2 = ∅. This
assumption means that no variable must be shared by the different parts except
for reading only. In this case, “delta” files generated by CAPE refers to different
memory location. When the “target” image is being built, there is no conflict
between “delta” files and the result is the same as when the program is executed
sequentially. This limitation is acceptable for many applications. However, others
are requesting the use of shared variables. Fortunately, taking them into account
is not a key issue as several solutions have been developed already. For example,
each shared variable can be encapsulated using a mutual exclusion mechanism;
this way, a single value for the shared variable is seen and updated by all threads,
and optimizations like the use of caches can allow to get better performance. For
the reconstruction of the “target” image, shared variables should be dealt with
differently in order not to take their value from “delta” files but from the mutual
exclusion area.

4 Distributed Implementation of OpenMP Using CAPE

In order to validate the concepts associated with CAPE, we are developing a
distributed implementation of OpenMP. The current implementation is based
on top of ckpt version 1.3 [12]. It has been necessary to slightly patch the
original version of ckpt so as to be able to make the difference between the
execution following the storage of the image of the current process in a file and
the execution which is the result of resuming the execution from an image. No
other checkpointer has been tried yet. However, we believe it shall be easy to
implement this solution on top of any checkpointer as long as functions presented
in Sec. 2 are implemented.

308 É. Renault

dompcc (the Distributed OpenMP compiler we developed) is built on top of
gcc version 3.2.2. It consists in adding an extra stage in the usual compilation
chain for C programs. As shown on Fig. 3, the extra compilation stage (sc, which
stands for Specific Compiler) has been added after the C preprocessor (cpp) and
before the stage of compilation itself (cc).

.c cpp .i cc .s as .o ld

.aar

sc

.c cpp

.i

.h

.h

a.out

Usual compilation chain

extra stage
dompcc

Fig. 3. The compilation chain for dompcc

Including the extra compilation stage at this location in the compilation chain
allows to take benefits of the result of the C preprocessor (file inclusions, macros,
conditionals) and thus to work on a complete C program free of lines beginning
with a pound sign (except lines beginning by # pragma omp used to identify
OpenMP directives). After transforming the original program using sc, the gen-
erated .c file is processed by the C preprocessor again in order to return in
the usual compilation chain at the stage where the usual compilation chain was
rerouted.

It is important to note that, as dompcc is based on gcc, options of gcc are
available for dompcc. For example, if this implementation has to be included in
a larger application, it is possible to use dompcc instead of gcc for compilation.
This way, paths to header files and libraries are set correctly and others if any
for larger applications can be added conveniently. Once compiled, the executable
file is autonomous and can be run directly.

At present, not all OpenMP constructs have been implemented and only the
parallel sections and parallel for constructs are available. The decision
to focus on these two constructs first is based on the fact that they represent the
main cases for parallel applications. However, considering there is no technology
lock for the implementation of the other constructs, we expect to be able to
provide them very soon.

Toward a Distributed Implementation of OpenMP Using CAPE 309

5 Performances

The performance have been measured on a platform composed of a set of eight
Pentium-III running at 800 MHz with 1.2 GB of memory on each node and
operated by Linux RedHat version 3.2.2-5 (using Linux kernel 2.4.20-8). The
interconnexion network on this platform is Ethernet 100 Mbit/s or Myrinet 2000.
However, as our implementation is intended to run on any distributed parallel
system, we used only the Ethernet network so as to be as generic as possible.

In order to measure performance of OpenMP over CAPE, we used a matrix-
matrix product. The size of matrices is given as the number of elements (“Me”
for millions of elements) for each matrix (i.e. 840×840, 1680×1680, 2520×2520
and 3360×3360 respectively). Matrices are dense and each value in the result
matrix is the sum of the scalar products of the corresponding lines and rows.
Note that one optimization have been implemented for both CAPE and MPI
matrix-matrix product: the grain of parallelism is not a single column but a set
of columns (ie. the total number of columns divided by the number of processes).

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 3 4 5 6 7 8

sp
ee

d
up

number of nodes

11.3 Me
6.3 Me
2.8 Me
0.7 Me

(a) Speedup for our implementation

 0

 1000

 2000

 3000

 4000

 5000

 2 3 4 5 6 7 8

tim
e

(s
)

number of nodes

OpenMP over CAPE − 11.3 Me
MPI − 11.3 Me

OpenMP over CAPE − 6.3 Me
MPI − 6.3 Me

(b) Comparison OpenMP/CAPE - MPI

Fig. 4. Performance evaluation

Fig. 4(a) presents the speedup for various matrix size. Performance measure-
ments show that the larger the size of the matrix, the higher the speedup. In
fact, as the complexity of the matrix-matrix product is O(n3), the larger the
matrices, the less important both the network latency to transfer images (which
complexity is O(n2)) and the time to determine the set of updated variables
(which complexity is also O(n2)). As a result, performance measurements show
that, with the current implementation, this technique is well-adapted to coarse-
grain parallel loops. Moreover, performance show that the larger the size of the
grain of parallelism, the better the speed up.

The comparison with an equivalent MPI program is interesting. Fig. 4(b)
presents execution times for matrix-matrix products with both CAPE and MPI.
The MPI program was written for the experiment and satisfies the same re-
quirements as for CAPE (for the complexity essentially). Performance measure-
ments have been done on the same platform with similar experimental conditions

310 É. Renault

(especially average load for CPUs). MPI is mpich version 1.2.5.10 with driver
ch p4. Fig. 4(b) shows that, even if the execution time with MPI is always faster
than the execution time with CAPE, the difference between the execution of
the MPI program and the program automatically generated by CAPE from the
sequential version is not very large. Moreover, both OpenMP over CAPE and
MPI implementations are providing a linear speed up.

In fact, at present, the main part of the overhead when using CAPE is in the
image management. According to Fig. 2, every time an image is generated, it is
written on the disk; then, “after” images are compared to the “original” image
and the difference is also stored on the disk. A significant improvement could be
achieved while using an incremental checkpointer that would directly generates
“delta” files instead of “after” images, avoiding at the same time the cost to
evaluate the difference with the “original” image.

6 Related Works

Other works have presented solutions to provide a distributed implementation of
OpenMP [21]. Considering that OpenMP has been designed for shared-memory
parallel architectures, the first solution consisted in executing OpenMP pro-
grams on top of a distributed shared memory based machine [22]. More recently,
other solutions have emerged, all aiming at transforming OpenMP code to other
parallel libraries, like Global Arrays [23] or MPI [24].

The execution of OpenMP programs on top of a distributed shared memory is
quite straightforward as no specific development is required except making sure
the distributed shared memory behaves the same way as a real shared memory.
Unfortunately, at present, distributed shared memory systems have scalability
issues and several projects (like XtremOS [25]) are aiming at providing large-
scale distributed shared memory or single-system images.

Implementing OpenMP directives on top of a pre-existing message-passing
library involves lots of problems regarding the management of variables. For
example, the determination of the list of variables updated by a thread may
be very complex. This is obvious when variables are specified using either the
private or the shared directive, but it becomes harder when no directive is
provided or when a variable is accessed through indirections (eg. through a
pointer).

The implementation with CAPE allows OpenMP programs to be better scal-
able as traffic and connectivity between nodes is limited. Moreover, there is no
limitations on the detection of memory areas that have been updated as they
are automatically taken into account.

7 Conclusion

This article presented how to transform a sequential program into a parallel
program using checkpointing techniques. We showed that CAPE is consistent,

Toward a Distributed Implementation of OpenMP Using CAPE 311

i.e. executing a program tranformed using CAPE and executing the same pro-
gram sequentially provides the same result. Moreover, CAPE provides three
main advantages. First, there is no need to learn yet another parallel program-
ming environment or methodology as the specification of parallel opportunities
in sequential programs is performed using OpenMP directives. Second, CAPE
inherently introduces safety in the execution of programs as tools for checkpoint-
ing are used to run concurrent parts of programs in parallel. Third, more than
one node is used only when necessary, i.e. when a part of the program requires
only one node to execute (for example if this part is intrinsincly sequential), only
one node is used for execution. As performance measurements show, the only
drawback of the current implementation is that the checkpointer we used for
experiments generates very large images. We are investigating to significantly
reduce the overhead involved by the management of these images.

Then, we presented the distributed implementation of OpenMP we have de-
veloped using CAPE. Performance measurements show that it is interesting to
execute coarse-grain parallel applications and that the larger the size of the
grain, the higher the speed up. Performance measurements also showed that the
execution time for large matrices with our implementation is quite similar to the
execution time when using MPI. Investigations show that the difference between
both execution times is mainly due to the overhead involved by the manage-
ment of images and we proposed a solution to investigate in order to bypass the
problem.

References

1. Buyya, R.: High Performance Cluster Computing: Architectures and Systems,
vol. 1. Prentice-Hall, Englewood Cliffs (1999)

2. Foster, I., Kesselman, C., Tuecke, S.: The Anatomy of the Grid: Enabling Scalable
Virtual Organizations. The International Journal of High Performance Computing
Applications 15(3), 200–222 (2001)

3. Leuf, B.: Peer to Peer. In: Collaboration and Sharing over the Internet, Addison-
Wesley, London (2002)

4. Loveman, D.B.: High Performance Fortran. IEEE Parallel & Distributed Technol-
ogy: Systems & Applications 1(1), 25–42 (1993)

5. Geist, A., Beguelin, A., Dongarra, J., Jiang, W., Manchek, R., Sunderam, V.S.:
Parallel Virtual Machine: A Users’ Guide and Tutorial for Network Parallel Com-
puting (Scientific and Engineering Computation). Scientific and Engineering Com-
putation Series. MIT Press, Cambridge (1994)

6. Snir, M., Otto, S., Huss-Lederman, S., Walker, D., Dongarra, J.: MPI: The Com-
plete Reference (The MPI Core), 2nd edn. Scientific and Engineering Computation
Series. MIT Press, Cambridge (1998)

7. OpenMP Architecture Review Board: OpenMP Application Program Interface,
Version 2.5 Public Draft (November 2004)

8. Allen, J.R., Callahan, D., Kennedy, K.: Automatic Decomposition of Scientific Pro-
grams for Parallel Execution. In: Proceedings of the 14th ACM SIGACT-SIGPLAN
symposium on Principles of programming languages, Munich, West Germany, pp.
63–76. ACM Press, New York (1987)

312 É. Renault

9. Feautrier, P.: Automatic parallelization in the polytope model. In: The Data Par-
allel Programming Model: Foundations, HPF Realization, and Scientific Applica-
tions. In: Perrin, G.-R., Darte, A. (eds.) The Data Parallel Programming Model.
LNCS, vol. 1132, pp. 79–103. Springer, Heidelberg (1996)

10. Barthou, D., Feautrier, P., Redon, X.: On the Equivalence of Two Systems of
Affine Recurrence Equations. In: Monien, B., Feldmann, R.L. (eds.) Euro-Par 2002.
LNCS, vol. 2400, pp. 309–313. Springer, Heidelberg (2002)

11. Alias, C., Barthou, D.: On the Recognition of Algorithm Templates. In: Knoop,
J., Zimmermann, W. (eds.) Proceedings of the 2nd International Workshop on
Compiler Optimization meets Compiler Verification, Warsaw, Poland, pp. 51–65
(April 2003)

12. Web page: Ckpt (2005) http://www.cs.wisc.edu/∼zandy/ckpt/
13. Osman, S., Subhraveti, D., Su, G., Nieh, J.: The Design and Implementation of

Zap: A System for Migrating Computing Environments. In: Proceedings of the 5th
USENIX Symposium on Operating Systems Design and Implementation, Boston,
MA, pp. 361–376 (December 2002)

14. Plank, J.S.: An Overview of Checkpointing in Uniprocessor and Distributed Sys-
tems, Focusing on Implementation and Performance. Technical Report UT-CS-97-
372, Department of Computer Science, University of Tennessee (July 1997)

15. Foster, I., Kesselman, C.: Globus: A Metacomputing Infrastructure Toolkit. The
International Journal of Supercomputer Applications and High Performance Com-
puting 11(2), 115–128 (1997)

16. Web page: Globus (2007) http://www.globus.org/
17. Litzkow, M., Livny, M., Mutka, M.: Condor - A Hunter of Idle Workstations. In:

The 8th International Conference on Distributed Computing Systems, San Jose,
CA, pp. 104–111. IEEE Computer Society Press, Los Alamitos (1988)

18. Web page: Condor (2007) http://www.cs.wisc.edu/condor/
19. Fedak, G., Germain, C., Néri, V., Cappello, F.: XtremWeb: A Generic Global

Computing System. In: Buyya, R., Mohay, G., Roe, P. (eds.) Proceedings First
IEEE/ACM International Symposium on Cluster Computing and the Grid, Bris-
bane, Australia, pp. 582–587. IEEE Computer Society Press, Los Alamitos (2001)

20. Web page: XTremWeb (2006) http://www.xtremweb.org/
21. Merlin, J.: Distributed OpenMP: extensions to OpenMP for SMP clusters. In: 2nd

European Workshop on OpenMP (EWOMP’00), Edinburgh, UK (September 2000)
22. Karlsson, S., Lee, S.W., Brorsson, M., Sartaj, S., Prasanna, V.K., Uday, S.: A fully

compliant OpenMP implementation on software distributed shared memory. In:
Sahni, S.K., Prasanna, V.K., Shukla, U. (eds.) HiPC 2002. LNCS, vol. 2552, pp.
195–206. Springer, Heidelberg (2002)

23. Huang, L., Chapman, B., Liu, Z.: Towards a more efficient implementation of
OpenMP for clusters via translation to global arrays. Parallel Computing 31(10-
12), 1114–1139 (2005)

24. Basumallik, A., Eigenmann, R.: Towards automatic translation of OpenMP to
MPI. In: Proceedings of the 19th annual international conference on Supercom-
puting, Cambridge, MA, pp. 189–198. ACM Press, New York (2005)

25. Consortium, X.: Linux-XOS specification. XtreemOS Integrated Project Deliver-
able D2.1.1 (November 2006)

http://www.cs.wisc.edu/~zandy/ckpt/
http://www.globus.org/
http://www.cs.wisc.edu/condor/
http://www.xtremweb.org/

V. Malyshkin (Ed.): PaCT 2007, LNCS 4671, pp. 313–317, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Multicriteria Scheduling Strategies
in Scalable Computing Systems

Victor Toporkov

Computer Science Department, Moscow Power Engineering Institute,
ul. Krasnokazarmennaya 14, Moscow, 111250 Russia

Phone: +7(495)3627145; Fax: +7(495)3625506
ToporkovVV@mpei.ru

Abstract. An approach to generation and optimization of scheduling and
resource allocation strategies in scalable computing systems is proposed. The
approach allows the decomposition of the problem of multicriteria strategy
synthesis for the totality of parameterized models of programs with the use of
partial and vector quality criteria including, for instance, a cost function and
load balancing factors.

Keywords: scheduling, resource allocation, strategy, scalability, quality criteria.

1 Introduction

The need for special resource management mechanisms in distributed computing
systems arose a long time ago and is well-recognized [1]. In some cases, complex sets
of interrelated tasks (jobs) require co-scheduling [2] and resource co-allocation [3] in
several processing nodes. Each node may be in an autonomous administrative domain
and be represented by a multi-processor unit managed by a local batch system, e.g.
CODINE, LL, LSF, NQE, Condor, PBS etc. Analysis of the resource co-allocation
problem in distributed systems, including Grid, has shown that efficient management
of job processing can be implemented on the basis of strategies that include
combinations of different scheduling algorithms and heuristics [4, 5], various factors
and critera (management policies, workload etc.) [3, 6]. In a number of papers [3-7],
the authors conclude that it is necessary to use multifactor and multicriteria strategies.
However, in practice only one of the possible resource allocation algorithms is used,
and the set of criteria is convolved into a scalar productivity function [3]. In [6], a
method for strategy generation in real-time computer systems is proposed.

In this paper, the method proposed before in [6] is developed and refined as
follows. The problem of multicriteria strategy synthesis is considered for different
parameterized graphs of programs. In the case of a single program model, it may
occur that a schedule does not exist. One possible reason is that there are no free
processors because of failures in the system. Therefore, it is impossible to resolve the
collisions of parallel tasks [7] that compete for the same processor node. Hence, it is
necessary to have strategies for program models with different levels of parallelism
and task details.

314 V. Toporkov

2 Assumptions and Statement of the Problem

By T0
* , we denote the set of program models. Each of these models is associated with

some totality of partially ordered tasks { }T T T Tn= 1 2, ,..., . The relation of the partial

order on T is specified by a directed acyclic graph whose set of vertices corresponds
to tasks of processing and memory access in subset P T⊆ and to tasks of data
exchange in subset D T⊆ . The set of arcs of the graph represents the informational
and logical relations between the tasks. Fig. 1 shows some examples of information
graphs in models with different degrees of parallelism and task details.

 p2

p3

p4

p1

p5

p6

d12

d13

d46

d56

d25

d34

d24

d35

 p2

p3

p4

p1

p5

p6

D1(23) D(23) (45) D(45) 6

(a) (b)

p1 p6

D1(23) P23 D(23) (45) P45 D(45) 6

(c)

Fig. 1. Information graphs of programs with different degrees of parallelism and task details

The nonshaded vertices correspond to data processing, and the shaded ones
correspond to data transmission. The graph of the program is parameterized by a

priori estimates, namely, the running time tij
0 of task T Ti ∈ , i n= 1,..., , on the j th

type of processor resource, j J= 1,..., ; the amount vij of computations etc. The

parameters of processing tasks are given in Table 1, which corresponds to the graphs
shown in Figs. 1a and 1b. When task aggregating, as shown in Fig. 1b and 1c, the
values of the corresponding parameters of subtasks are summarized. The duration of
all of the data exchanges for the graph in Fig. 1a is equal to one time unit, while data
exchanges ()D1 23 and ()D 45 6 in the graphs in Figs. 1b and 1c need two time units and

data exchange ()()D 23 45 needs four time units. In the resource allocation for tasks in

T on a time interval [,]*0 t a resource type is determined by the allocation ui . We

have u ji = if task p Pi ∈ is assigned to a so-called basic processor resource whose

level is bounded and depends on the parallelizing degree, the cost of the j th type
resource, and some other factors [6]. If there occurs a collision of parallel tasks [7] in
P , which compete for the same resource of type j , then, taking into account the

architecture scalability, we introduce a resource of type { }j JD ∈ 1,... , (whose

characteristics are not worse than those of the basic resource) and assign u ji = D . We

represent a variant of admissible resource allocation in a quality criterion ()w r by a

 Multicriteria Scheduling Strategies in Scalable Computing Systems 315

vector ()r t t u un n= 1 1,..., , ,..., , and ti is the running time of task T Ti ∈ . We estimate

the efficiency of the resource allocation by the vector () () ()()W r w r w rL= 1 ,..., ,

where ()w rl , l L= 1,..., , is a partial criterion.

Table 1. Estimates of parameters of tasks

Parameters Processing tasks
 p1 p2 p3 p4 p5 p6

Running time on the processor 1 2 3 1 2 1 2
Running time on the processor 2 4 6 2 4 2 4
Running time on the processor 3 6 9 3 6 3 6
Running time on the processor 4 8 12 4 8 4 8
Amount of computations 20 30 10 20 10 20

An example of the efficiency criterion is a cost function of the form

() ⎡ ⎤CF , / ,= = ≥
= =
∑ ∑c t u v t t ti i i
i

n

ij ij
i

n

ij ij
1 1

0 , (1)

where tij is the time of execution of task pi on a processor of the j th type, n is the

number of processing tasks, and ⎡ ⎤⋅ denotes the smallest integer not less than a given

number.
Suppose that the active (binding) constraints

t tg g
* − ≥ 0 , t th h

h

* − ≥∑ 0 , { }g h n, ,..., ∈ 1 , (2)

are specified for individual tasks and jobs of the program, where t tg h, are the

execution times for tasks T T Tg h i, ∈ and t tg h
* *, are limiting times of execution of

task Tg and a job that includes the task Th .

Let S be a strategy, i.e., a set of alternatives such that each alternative r S∈
corresponds to an admissible resource allocation under the constraints (2). The vector
criterion ()W r generates a binary relation F (e.g., the Pareto-relation) for

comparison of alternatives on S . We refer to the set of alternatives optimal with
respect to F as an F -optimal strategy of resource allocation. It is required to find an

F -optimal strategy for all models of the set T0
* .

3 Strategy Synthesis by the Totality of Criteria and Models

When searching for the F -optimal strategy on the basis of the parallel scheme [7],
the synthesis may be decomposed by the totality of basic schemes, each one providing
a conditionally optimal strategy by the corresponding partial criterion ()w rl .

316 V. Toporkov

Example 1. Suppose conditionally optimal strategies of process allocation should be
constructed by the basic scheme [7] for the information graph in Fig. 1a. The limiting

time t* = 20 is specified for the execution of all these tasks. Let the vector criterion
include the cost function CF (1) and the loading factors UP , ,...,j j = 1 4 , of the basic

processors. The collisions between competing tasks are resolved at the expense of
nonallocated basic processors such that their inclusion in the set of resources is
accompanied by the minimal value of the penalty cost function on the analogy of (1),

where v vij ij
= D , t tij ij

= D
0 , { }j JD ∈ 1,... , . Strategies are constructed for the upper and

lower bounds of the maximal interval of the variation of ti . Strategies conditionally

optimal by criteria CF , UP1 , UP2 , UP3 , and UP4 are represented in Table 2 by the

variants No. 1-3; 4-7; 8 and 9; 10 and 11; and 12-14, respectively. The collisions
between tasks p4 and p5 in variants 2, 13 are resolved by allocating task p4 to a

processor of type 3 and task p5 to a processor of type 4.

Table 2. Scheduling strategies for the graph in Fig. 1a

No. Running time Allocation Criterion
 t1 t2 t3 t4 t5 t6 u1 u2 u3 u4 u5 u6 CF UP1 UP2 UP3 UP4

1 2 3 3 2 2 10 1 1 3 1 2 4 41 0,35 0,10 0,15 0,50
2 2 3 3 10 10 2 1 1 3 3 4 1 37 0,35 0 0,65 0,50
3 10 3 3 2 2 2 4 1 3 1 2 1 41 0,35 0,10 0,15 0,50
4 2 3 3 2 2 10 1 1 3 1 2 1 41 0,85 0,10 0,15 0
5 2 3 3 10 10 2 1 1 3 4 1 1 38 0,85 0 0,15 0,50
6 2 11 11 2 2 2 1 4 1 1 2 1 39 0,85 0,10 0 0,55
7 10 3 3 2 2 2 1 1 3 1 2 1 41 0,85 0,10 0,15 0
8 2 11 11 2 2 2 1 4 2 1 2 1 39 0,30 0,65 0 0,55
9 10 3 3 2 2 2 2 1 2 1 2 1 41 0,35 0,75 0 0
10 2 11 11 2 2 2 1 3 4 1 2 1 41 0,30 0,10 0,55 0,55
11 10 3 3 2 2 2 3 1 3 1 2 1 41 0,35 0,10 0,60 0
12 2 3 3 2 2 10 1 1 3 1 2 4 41 0,35 0,10 0,15 0,50
13 2 3 3 10 10 2 1 1 3 3 4 1 39 0,35 0 0,65 0,50
14 10 3 3 2 2 2 4 1 3 1 2 1 41 0,35 0,10 0,15 0,50

Applying a family of parallel schemes, we synthesize strategies conditionally

optimal by the corresponding partial criterion ()w rl for all models from T0
∗ .

Example 2. Consider the models which are presented by the graphs in Figs. 1a and
1c. For the graph in Fig. 1a, the initial conditions are the same as in Example 1. For
the graph in Fig. 1c, the strategy is constructed on the whole interval of ti variation.

We must construct the F -optimal strategy, where F is the union of Gl , l L= 1,..., ,

and Gl is generated by one of the criteria CF , UP ,..., UP1 4 . The results of the

resource allocation for the graph in Fig. 1c are presented in Table 3 by the variants
No. 1-6.

The F -optimal strategy coincides with the strategy presented in Tables 2 and 3 up
to the equivalence relation.

 Multicriteria Scheduling Strategies in Scalable Computing Systems 317

Table 3. Scheduling strategies for the graph in Fig. 1c

No. Running time Allocation Criterion
 t1 t23 t45 t6 u1 u23 u45 u6 CF UP1 UP2 UP3 UP4

1 2 8 6 4 1 1 1 1 25 1 0 0 0
2 4 8 3 5 1 1 1 1 24 1 0 0 0
3 6 4 6 4 1 1 1 1 24 1 0 0 0
4 8 4 3 5 1 1 1 1 27 1 0 0 0
5 10 4 3 3 1 1 1 1 29 1 0 0 0
6 11 4 3 2 1 1 1 1 32 1 0 0 0

4 Conclusions

In this paper, we propose the approach for the problem of multicriteria scheduling
strategy synthesis in computing systems with a scalable architecture.

First, this approach allows us to obtain a strategy, which is conditionally optimal
by a partial criterion. Second, the strategy synthesis may be decomposed by the
totality of partial criteria. Finally, the general decomposition allows us to generate
scheduling strategies by a vector criterion for different models of the same program.

Acknowledgments. This work was supported by the Russian Foundation for Basic
Research, grant no. 06-01-00027.

References

1. Casavant, T.L., Kuhl, J.G.: A Taxonomy of Scheduling in General-Purpose Distributed
Computing Systems. IEEE Trans. on Software Eng. 14(2), 141–154 (1988)

2. Ioannidou, M.A., Karatza, H.D.: Multi-site Scheduling with Multiple Job Reservations and
Forecasting Methods. In: Guo, M., Yang, L.T., Di Martino, B., Zima, H.P., Dongarra, J.,
Tang, F. (eds.) ISPA 2006. LNCS, vol. 4330, pp. 894–903. Springer, Heidelberg (2006)

3. Kurowski, K., Nabrzyski, J., Oleksiak, A., et al.: Multicriteria Aspects of Grid Resource
Management. In: Nabrzyski, J., Schopf, J.M., Weglarz, J. (eds.) Grid Resource
Management. State of the Art and Future Trends, pp. 271–293. Kluwer Acad. Publ., Boston
(2003)

4. Zhang, Y., Franke, H., Morreira, J.E., et al.: An Integrated Approach to Parallel Scheduling
Using Gang-Scheduling, Backfilling, and Migration. IEEE Trans. on Parallel and
Distributed Systems 14(3), 236–247 (2003)

5. Hanzich, M., Gine, F., Hernandez, P., et al.: CISNE: A New Integral Approach for
Scheduling Parallel Applications on Non-dedicated Clusters. In: Cunha, J.C., Medeiros,
P.D. (eds.) Euro-Par 2005. LNCS, vol. 3648, pp. 220–230. Springer, Heidelberg (2005)

6. Toporkov, V.V.: Optimization of Resource Allocation in Hard-Real-Time Environment. J.
of Computer and Systems Sciences Int. 43(1), 383–393 (2004)

7. Toporkov, V.V.: Decomposition Schemes for Synthesis of Scheduling Strategies in Scalable
Systems. J. of Computer and Systems Sciences Int. 45(1), 77–88 (2006)

Latencies of Conflicting Writes on

Contemporary Multicore Architectures

Josef Weidendorfer, Michael Ott, Tobias Klug, and Carsten Trinitis

Technische Universität München
Lehrstuhl für Rechnertechnik und Rechnerorganisation / Parallelrechnerarchitektur

Boltzmannstraße 3, 85748 Garching bei München
{weidendo,ottmi,klug,trinitic}@in.tum.de

Abstract. This paper provides a detailed investigation of latency penal-
ties caused by repeated memory writes to nearby memory cells from dif-
ferent threads in parallel programs. When such writes map to the same
corresponding cache lines in multiple processors, one can observe the so
called false sharing effect. This effect can unnecessarily hamper parallel
code due to the line granularity based cache hierarchy, which is common
on contemporary processor architectures. In this contribution, a bench-
mark allowing for quantitative estimates about the consequences of the
false sharing effect, is presented. Results show that multicore architec-
tures with shared cache can reduce unwanted effects of false sharing.

Keywords: Multicore, CMP, False Sharing, Cache.

1 Introduction

Within the scope of MMI (Munich Multicore Initiative)1, which was founded
by Lehrstuhl für Rechnertechnik und Rechnerorganisation / Parallelrechnerar-
chitektur (Prof. Dr. A. Bode) at Technische Universität München, there is re-
search going on about positive effects of shared caches in the latest multicore
architectures. These are found for example in recent Intel processors based on
the Intel Core microarchitecture. The processors consist of two or four cores,
using shared cache memory for two cores, respectively [1].

Multicore architectures provide a large number of design alternatives with
regard to cache hierarchies. Within this context, an interesting topic is the effect
of shared or distributed cache memory on the performance of parallel programs.
In general, shared cache memory has an advantage if cores need to access the
same data, or, if a parallel application requires a lot of synchronization and
communication effort.

This paper deals with an effect which can increase synchronization efforts for
parallel applications due to inefficient programming: false sharing. False shar-
ing occurs if two threads running on two different processors repeatedly access
independent data which are physically located at addresses close to each other.
1 http://mmi.in.tum.de

V. Malyshkin (Ed.): PaCT 2007, LNCS 4671, pp. 318–327, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Latencies of Conflicting Writes on Contemporary Multicore Architectures 319

Although the data accesses are independent, the hardware might need to per-
form synchronization, as cache architectures work on blocks of data (a typical
granularity in contemporary architectures being 64 bytes). This effect can signif-
icantly slow down program execution [2]. However, the detection of false sharing
requires detailed analysis with appropriate programming tools, thus, optimiza-
tions aiming at preventing false sharing effects are often omitted.

The next section will explain in detail under which circumstances false shar-
ing effects can occur. Section 3 deals with related work, section 4 describes a
benchmark program capable of making negative false sharing effects visible and
detecting advantages of contemporary processor architectures related to false
sharing. Finally, results obtained on several processor architectures are presented
in section 5, and section 6 gives an outlook on future investigations regarding
shared caches on multicore architectures.

2 False Sharing

On shared memory based multiprocessor systems, threads in a parallel program
exchange data via commonly used main memory addresses.

Fig. 1. Write Access to Memory in a Write Back Cache

Due to the memory wall problem (i.e. the difference in access speed between
main memory and CPUs), caches, holding a copy of a memory block in buffers
which are closer to the CPU are utilized. On the one hand, caches are faster than
memory, on the other hand, their capacity comprises only a portion of that of
main memory. In order to avoid unnecessary load on the memory bus, caches are
often designed as write back-caches: When writing data to main memory, the cor-
responding block is fetched from main memory into the appropriate cache line.
Then the block is marked for exclusive use by the CPU – this corresponds to
the exclusive state in the MESI [3,4] cache coherency protocol. From now, the
copy can be modified in the cache, see fig. 1, (a - c). The state switches to
modified, without requiring a bus transaction. The new value is not written back

320 J. Weidendorfer et al.

Fig. 2. Two CPUs writing to the same Cache Line

into main memory, under the assumption that the CPU will subsequently write
to this memory block, thus avoiding time consuming bus transactions.

It is now assumed that the second CPU writes data to a neighboring cell in
main memory (which belongs to the same memory block). Since this scenario
is not regarded as real communication between two CPUs, the common use of
the same memory block is referred to as false sharing. For the write access to
succeed, the memory block must first be loaded into the second CPU’s local
cache. Prior to this, however, a time consuming write back from the first CPU’s
local cache is required in order to update the data in main memory (see fig.
2, (a)). Then, the memory block (which is now valid) can be loaded into the
second CPU’s cache and modified as required (see fig. 2, (b) and (c)).

False sharing occurs as an undesired event. Normally, variables being used
by two CPUs but not required for data exchange would be written to separate
memory blocks. This means that each CPU works with its own cache copy,
making the caches’ write back strategy work: No bus transactions are required
after the data has been loaded into the cache. Contrary to that, in case of false
sharing the memory block has to be written back and reloaded with each write
transaction, i.e. two undesired full memory transactions are required.

The scenario described above assumes that each CPU has its own separate
cache memory. Even if two cache levels are used, and the second level cache is
implemented as a shared cache, false sharing occurs if the first level cache is
implemented as a write back cache separately for each CPU, as is the case with
Intel’s Core 2 Duo architecture. However, due to the low latency, writing back
from level 2 cache can be intercepted by the other CPU core, which means that
a bus transaction might not be required.

3 Related Work

Several scientific papers dealing with false sharing have been published. In [5],
several definitions of false sharing and its consequences are introduced and
investigated with regard to their applicability. The authors conclude that a
quantitative evaluation of the consequences of false sharing is extremely dif-
ficult, as it depends on several different parameters, such as cache line size, data

Latencies of Conflicting Writes on Contemporary Multicore Architectures 321

layout, application specific data access patterns, coherency protocol overhead,
etc. When an application is adapted to a specific processor architecture to avoid
false sharing, side effects affecting the memory system usually occur. Therefore,
it is extremely difficult to separate and measure false sharing effects from other
effects mentioned above.

In [6], Desikan et al. introduce a method called Sharing Speculation, in which
data is loaded speculatively: When the processor wants to load some data, which
resides in a cache line marked as invalid, the data is sent to the processor but
marked as speculative.

At the same time, cache coherency operations are started in order to make the
cache line valid. As soon as the cache line has been updated, the cache controller
checks if the data has been modified. If it has not been modified, false sharing
has occurred, and the processor is informed that the speculation was successful.
If the data has been modified, the cache sends the correct value to the processor,
which needs to make sure that a valid state is restored.

In [7], Liu and King introduce the concept of Sectored Caches. Each cache
line is split into sub-blocks representing the elementary coherency units. The
advantage of this concept is that in case of false sharing, the cache line does
not need to be marked as invalid, as long as the corresponding sub-blocks are
coherent. The authors present an extension of the MESI-protocol using sectored
caches. By simulating representative benchmark scenarios, it is shown that 30
to 80 per cent of all cache misses caused by false sharing could be avoided. A
similar concept is used by Kadiyala et al. in [8]. In addition, their approach
allows to dynamically adapt the size of the sub-blocks.

The publications mentioned above either deal with evaluating false sharing
or propose mechanisms to reduce its effects. However, none of the papers has
investigated the effects on multicore processors with shared caches.

4 Benchmark

For the investigation of the false sharing problem, a synthetic benchmark which
artificially causes false sharing, has been developed: First, an array whose size
can be specified by a parameter is stored on the heap. The array’s base address
is aligned to an address that can be divided by 64, which ensures that this
base address corresponds to the starting address of a cache line. By the use
of OpenMP directives, two threads are generated. Via sched setaffinity()
system calls, it is ensured that these threads are bound to separate processor
cores. Thus, cache thrashing by moving threads can be avoided. Both threads
then execute in three phases, iterating through the previously allocated array
(see fig. 3). The number of iterations can also be specified by a parameter. For
the investigations carried out for this paper, the number of iterations was chosen
such that the benchmark lasts for about 10 seconds. More specifically, the three
phases work as follows:

– In the first phase the false sharing scenario is simulated: Both threads are
using the previously allocated memory area. In each iteration, each thread

322 J. Weidendorfer et al.

writes one word into the array, respectively. Thread #0 always writes to
the first word in a cache line, thread #1 writes to the second word in the
same cache line. After each iteration, the target address is incremented by
64 Bytes, which corresponds to the cache line length in contemporary x86
processors. If the memory address exceeds the ending address of the allocated
memory space, it is reset to its base address. As long as the array’s size
exceeds 64 Bytes, it is ensured that each iteration accesses another cache
line. The number of iterations should be chosen such that cache lines are
accessed multiple times.

– In the second phase, a scenario with no false sharing is simulated: The array
is divided such that each thread is assigned half of it. Then, each thread
executes the same memory access as in phase 1 on its own memory region.
By ensuring that both threads work on separate memory regions, it is guar-
anteed that one thread never accesses a cache line which resides in the other
processor core’s cache.

– In phase 3, the overhead caused by the loop run and the computation of
the memory addresses is measured. The same loop as in phases 1 and 2 is
executed, with one minor difference: No memory access to the array takes
place inside the loop.

Fig. 3. Access to the Array in the Benchmark Program

Upon entering and upon leaving a phase, each thread reads its CPU’s time-
stamp counter by calling rdtsc. From the difference between those two values,
an average value for both threads is calculated. The three phases are executed
100 times, respectively. Upon each execution, three time stamps are saved, yield-
ing a minimum, a maximum, and an average value for each phase over all 100
executions. These values are then divided by the number of iterations, which
finally gives minimum-, maximum-, and average values for the required clock
cycles for a single iteration. This allows for a comparison of the measurements
for CPUs with different clock rates. In addition, the overhead measurement in
phase 3 gives some hints with regard to the real costs of a pure memory access.

As described in section 2, a false sharing event causes a write back of the
corresponding cache line. The number of such events are additionally measured
using hardware performance counters (e.g. for the Intel Core architecture this
event is called L1D M EVICT).

Latencies of Conflicting Writes on Contemporary Multicore Architectures 323

Critical Evaluation of the Benchmark Test

The basic idea of the benchmark is to enforce false sharing with each write ac-
cess to the array. This means that both processors write alternately to a memory
block in the array. In order to guarantee this, the processors would have to be syn-
chronized. Since x86 synchronization primitives are carried out via the memory
bus, this would cause an overhead tampering the benchmark results significantly.
Therefore, synchronization is avoided, which can lead to variations in the results.
These variations can be derived from finding minima and maxima over 100 test
series. As it is shown in section 5, the average value is stable and close to the
maximum. Furthermore, the data derived from hardware performance counters
allows one to verify whether the number of witnessed cache line evictions (i.e.
false sharing events) corresponds to the number of write accesses. Thus, even
without synchronization, the benchmark can be regarded as representative.

5 Results

Memory access latencies cannot explicitly be measured on modern superscalar
processor architectures, as the instructions following the write access are im-
mediately executed, and the write access is performed simultaneously in the
background. One way to implicitly measure the latencies is to repeatedly ex-
ecute memory accesses and thereby completely utilize the memory subsystem.
Then, the latency of the slowest transaction in the memory subsystem can be
determined in the critical path. In this case, a transaction is part of the critical
path, if its completion is required for starting the next transaction.

By provoking false sharing, the cache coherency protocol’s latency times (see
fig. 2) determine the duration of a complete memory access. This is denoted
as normalized clock cycles in the test series. The pure loop overhead in the

 0

 50

 100

 150

 200

 250

 300

 64 128 256 512 1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M 2M 4M 8M

C
yc

le
s/

Ite
ra

tio
n

Array Size

False Sharing (max)
False Sharing (avg)
False Sharing (min)

No Sharing
Overhead

Fig. 4. Intel Core Duo T2600 with shared L2-Cache

324 J. Weidendorfer et al.

 0

 50

 100

 150

 200

 250

 300

 64 128 256 512 1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M 2M 4M 8M

C
yc

le
s/

Ite
ra

tio
n

Array Size

False Sharing (max)
False Sharing (avg)
False Sharing (min)

No Sharing
Overhead

Fig. 5. Intel Xeon 5300 with shared L2-Cache

benchmark has no influence here, as it is completely overlapped by the higher
latency of the memory subsystem.

The following systems were used as a test environment:

– Intel Core Duo T2600, 2.16 GHz, 667 MHz FSB, 2 MB shared L2-cache,
1 processor (2 cores), 1 GB DDR2 667 MHz

– Intel Xeon 5300 (preliminary), 2.40 GHz, 1066 MHz FSB, 2x4 MB shared
L2-cache (for 2 cores, respectively), 2 processors (8 cores), 8 GB DDR2 667
MHz

– AMD Opteron 275, 2.20 GHz, Hypertransport 1000 MHz, 2x1 MB dis-
tributed L2-Cache, 2 processors (4 cores), 4 GB DDR1 400 MHz

Figures 4 and 5 show the results for Intel CPUs with shared L2 cache, re-
spectively. Due to the very low latency times for array sizes up to 128 Bytes,
it is assumed that hardly any coherency transactions are carried out, and the
write accesses are not always visible from outside. This assumption is also sup-
ported by the hardware performance counter measurements: Only on array sizes
larger than 256 Bytes the number of cache line evictions matches the number
of write accesses. This phenomenon can only be explained by the existence of
a local write buffer above the L1 cache. When the latency increases rapidly at
256 Bytes, the write buffer is full, and its contents become visible from outside,
requiring cache coherency protocol execution. With further increasing array size,
the frequency of memory accesses to the same address is reduced, which seems
to hide the actual costs of such an access. From an array size of 128KB, the
obtained value drops to the latency of an L2 read access. This can be explained
by the fact that the array no longer fits into the L1 cache (i.e. the write back
is no longer in the critical path, but instead has been carried out before by an
eviction of the modified cache line). False sharing no longer occurs. From array
sizes of 1 MB (Core Duo) or 2 MB (Xeon) the array no longer fits into the L2
cache, and the obtained latency is that of a read transaction from main memory.

Latencies of Conflicting Writes on Contemporary Multicore Architectures 325

 0

 50

 100

 150

 200

 250

 300

 64 128 256 512 1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M 2M 4M 8M

C
yc

le
s/

Ite
ra

tio
n

Array Size

False Sharing (max)
False Sharing (avg)
False Sharing (min)

No Sharing
Overhead

Fig. 6. Intel Xeon 5300 with separate L2-Cache

 0

 50

 100

 150

 200

 250

 300

 64 128 256 512 1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M 2M 4M 8M

C
yc

le
s/

Ite
ra

tio
n

Array Size

False Sharing (max)
False Sharing (avg)
False Sharing (min)

No Sharing
Overhead

Fig. 7. Intel Xeon 5300 on separate CPUs

Figures 6 and 7 show the measurement results for the Intel Xeon 5300. In
the first case, the threads are bound to two cores located on the same processor
with separate L2 caches. In the second case, the threads are executed on two
separate processors. One would expect similar results for both cases, which holds
true for array sizes from 2KB. Latencies obtained here correspond to those of
main memory accesses. Thus, it can be assumed that cache coherency is realized
by writing data to main memory. As long as the array size does not exceed the
L2 cache’s capacity, false sharing occurs frequently. The effects which can be
observed up to an array size of 2KB are subject to future research.

Figure 8 shows the results for the AMD Opteron 275, with two cores on one
processor with separate caches. For the measurements whose results can be seen
in fig. 9, one core on two identical processors was used, respectively. Although

326 J. Weidendorfer et al.

 0

 50

 100

 150

 200

 250

 300

 64 128 256 512 1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M 2M 4M 8M

C
yc

le
s/

Ite
ra

tio
n

Array Size

False Sharing (max)
False Sharing (avg)
False Sharing (min)

No Sharing
Overhead

Fig. 8. AMD Opteron X2 275 with separate L2-Cache

 0

 50

 100

 150

 200

 250

 300

 64 128 256 512 1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M 2M 4M 8M

C
yc

le
s/

Ite
ra

tio
n

Array Size

False Sharing (max)
False Sharing (avg)
False Sharing (min)

No Sharing
Overhead

Fig. 9. AMD Opteron X2 275 on separate CPUs

some variations can be observed in fig. 9, both experiments show similar charac-
teristics. The variations probably occur due to side affects caused by the NUMA
architecture. When directly comparing the results to the ones in figures 6 and 7,
it can be observed that for Opteron processors, the latencies drop continuously
after an initial peak, until they eventually become stable for array sizes from
32KB. The level obtained for these array sizes is significantly lower than that
for Intel CPUs. The difference can be explained by the use of the MOESI [9] co-
herency protocol in AMD CPUs. In contrast to the standard MESI protocol (as
being used by Intel processors), MOESI allows for direct exchange of cache lines
between two processors. This also yields advantages with regard to execution
times.

Latencies of Conflicting Writes on Contemporary Multicore Architectures 327

6 Conclusions and Outlook

In this paper, false sharing was investigated for contemporary multicore archi-
tectures. It could be shown that for processors with shared L2 cache, less per-
formance is lost by this effect. As long as the working set exceeds the L1 cache’s
capacity, false sharing is completely avoided. For processors with distributed L2
caches, the performance loss can be reduced by the MOESI coherency protocol.

The benchmark introduced in this paper shows overlapping effects. Thus, the
further improvement as well as the development of additional benchmarks, allow-
ing for separate investigation of these effects, will be subject to further research.
In the long term, it is planned to develop a tool that enables the user to make
assumptions about advantages and disadvantages of multicore architectures with
different caches or cache hierarchies.

References

1. Intel Corporation: Intel 64 and IA-32 Architectures: Software Developer’s Manual,
Denver, CO, USA (2006)

2. Torrellas, J., Lam, H.S., Hennessy, J.L.: False sharing and spatial locality in multi-
processor caches. IEEE Trans. Comput. 43(6), 651–663 (1994)

3. Papamarcos, M.S., Patel, J.H.: A low-overhead coherence solution for multipro-
cessors with private cache memories. In: ISCA ’98: 25 years of the international
symposia on Computer architecture (selected papers), pp. 284–290. ACM Press,
New York (1998)

4. Archibald, J., Baer, J.-L.: Cache coherence protocols: evaluation using a multipro-
cessor simulation model. ACM Trans. Comput. Syst. 4(4), 273–298 (1986)

5. Bolosky, W.J., Scott, M.L.: False sharing and its effect on shared memory perfor-
mance. In: Proc. of the USENIX Symposium on Experiences with Distributed and
Multiprocessor Systems (SEDMS IV), San Diego, CA, pp. 57–71 (1993)

6. Desikan, R., Burger, D., Keckler, S.W.: Sharing speculation: A mechanism for low-
latency access to falsely shared data. Technical Report CS-TR-03-05, The Univer-
sity of Texas at Austin, Department of Computer Sciences, Friday, 11 August, 106
16:16:41 GMT (2003)

7. Liu, K.C., King, C.T.: On the effectiveness of sectored caches in reducing false
sharing misses. In: International Conference on Parallel and Distributed Systems
(ICPADS ’97), December 11-13, 1997, Seoul, Korea, Proceedings, pp. 352–359 (1997)

8. Kadiyala, M., Bhuyan, L.N.: A dynamic cache sub-block design to reduce false shar-
ing. In: ICCD ’95: Proceedings of the 1995 International Conference on Computer
Design, Washington, DC, USA, p. 313. IEEE Computer Society Press, Los Alamitos
(1995)

9. Sweazey, P., Smith, A.J.: A class of compatible cache consistency protocols and
their support by the ieee futurebus. In: ISCA ’86: Proceedings of the 13th annual
international symposium on Computer architecture, pp. 414–423. IEEE Computer
Society Press, Los Alamitos (1986)

V. Malyshkin (Ed.): PaCT 2007, LNCS 4671, pp. 328–339, 2007.
© Springer-Verlag Berlin Heidelberg 2007

A Novel Self-Similar (2S) Traffic Filter to Enhance
E-Business Success by Improving Internet
Communication Channel Fault Tolerance

Allan K.Y. Wong1, Wilfred W.K. Lin2, Tharam S. Dillon2, and Jackei H.K. Wong1

1 Department of Computing, Hong Kong Polytechnic University, Hong Kong S.A.R.
2 Faculty of Information Technology, University of Technology Sydney, Australia

csalwong@comp.polyu.edu.hk, wilfred@it.uts.edu.au,
tharam@it.uts.edu.au, jwong@purapharm.com

Abstract. Internet traffic patterns can cause serious buffer overflow in
electronic business (e-business) systems. This leads to widespread
retransmission that prolongs the service roundtrip time (RTT). As a result
customers are unhappy and avoid returning to do more business. The previous
Real-Time Traffic Pattern Detector (RTPD) was proposed to improve Internet
channel fault tolerance. With RTPD support time-critical applications can
identify the traffic patterns and invoke the corresponding measures to neutralize
their ill effects in a dynamic manner. The extant RTPD, however, cannot detect
self-similar traffic. This inspired the development of the novel self-similarity
(

2S) filter proposed in this paper, which makes the RTPD capability more
complete. The “RTPD +

2S ” package is the enhanced RTPD or ERTPD
package. The test results indicate that the addition of the

2S mechanism can
indeed contribute to improved e-business communication channels over the
Internet.

Keywords:
2S filter, e-business, Internet traffic, ERTPD, dynamic buffer size

tuning.

1 Introduction

Electronic business (e-business) includes both PC-based e-commerce and mobile
business (m-business) on the mobile Internet [1]. No matter what form that an e-
business setup assumes it still fits the general framework of Internet-based distributed
computing. E-businesses are intrinsically time-critical because they should deliver
their service within a reasonable time. This requires fast service response, which
results from fault-tolerant communication channels. For example, only with fast
service response can an e-business galvanize consumers within their short attention
spans [2].

In the distributed computing framework, which includes mobile (wireless) and
tethered (wireline) activities, customers and e-businesses (e.g. e-shops) interact in a
client/server relationship. Wireless interactions involve client mobility, and the

 A Novel Self-Similar (
2S) Traffic Filter to Enhance E-Business Success 329

communication cell in which a client/server interaction is conducted is the smart
space [3] (Figure 1). A mobile client continues to interact with the same server (e.g. e-
shop) while moving from one smart space to another. In contrast, wireline interactions
are cable-based.

Figure 1 shows the essence of an e-shop operation, which is typical of those that
sell shoes in Mainland China. The basic elements are: a virtual e-showroom, its own
shoe manufacturing facility, a remote order service (ROS), and a list of collaborators
that can supply the goods. For example, if the right shoes are not found in the e-
shop’s virtual showroom, the client simply provides the detailed specification so that
the e-shop can either custom-make it or locate it from its collaborators. A key to
success for e-shops is a fast service response that makes customers happy and
willingly return for more business. Part of the fast response requirement is good
communication channel fault tolerance.

Fig. 1. Client/server interaction of an e-shop

Service response (i.e. service roundtrip time (RTT) in the client/server interaction)
can be delayed seriously by widespread retransmission. If the communication channel
in Figure 1 has the error probability ρ , the average number of trials (ANT) to get a

successful transmission is
)1(

1

1 ρ−
≈=∑

∞

=j
jjPANT , where jP the probability of

success at the thj trial. One factor that enlarges ρ and prolongs ANT is e-shop buffer

overflow. The overflow is caused by the unpredictable nature of the incoming request
streams (in the form of IAT (inter-arrival times)), which merge (i.e. represented by

330 A.K.Y. Wong et al.

⊕ in Figure 1) at the service access point (SAP) [4]. A sudden burst of short IATs
would surge the queue length to overflow its buffer easily. Self-similar traffic usually
associates with this kind of short bursts [5]. Post-mortem/off-line analyses confirm
that Internet traffic patterns can be short-range dependence (SRD) (e.g. Markovian) or
long-range dependence (LRD) (e.g. self-similar or heavy-tailed) [6]. One way to
eliminate buffer overflow is to effectively make the buffer length always cover the
queue length [7]. This strategy is called dynamic buffer tuning [8], which should be
statistical [9]. To work effectively, dynamic buffer tuning needs RTPD support
because it needs to detect the current traffic pattern and reconfigure to ward off its
traffic ill effects on the fly [10]. This results in better channel fault tolerance and
shorter client/server service response for e-business.

The only tool published in the literature for on-line traffic pattern detection and
analysis is the real-time traffic pattern detector (RTPD) [11]. It differentiates SRD
from LRD but cannot confirm if a LRD pattern is self-similar or heavy-tailed. The

2S filter proposed in this paper augments the RTPD so that self-similar traffic
patterns can be correctly identified spontaneously. It works by the “continuous

aggregate based (CAB)” mechanism, and the “RTPD + 2S ” combination is the
enhanced RTPD or ERTPD.

2 Related Work

The Internet’s sheer size and heterogeneity naturally involve different protocols for
client/server interactions [12]. As a result the Internet traffic follows the power laws
[13], and over time the traffic pattern change suddenly, for example, back and forth
between LRD and SRD [14]. Using the Hurst (H) effect as the yardstick [15], LRD is
in the 15.0 << H range and 5.00 << H for SRD [6]. The RTPD core is the
based on the traditional R/S (rescaled adjusted statistics) approach for off-line

applications. Basically it is the “ filtrationSRRTM ++ /3 ” package, but R/S is

now enhanced (explained later). The RTM 3 module is a micro Convergence
Algorithm (CA) or MCA implementation [16]. It is micro because it exists as a logical
object, which can be invoked for service anytime and anywhere by message passing.
MCA predicts the mean of any waveform quickly and accurately in a dynamic

fashion. In effect, the “ SRMCARTM //3 + ” is the enhanced R/S (i.e. E-R/S)
mechanism. The filtration process activates the right filter to identify the exact traffic
pattern. For example, the modified QQ-plot filter identifies “heavy-tailedness”. The

novel 2S filter enables the filtration process to successfully identify self-similarity.
The traditional R/S is actually the following expressions,

)var(

},...,2,1:min{},....,2,1:max{

X

kiWkiW
S

R ii =−== , which normally caters

to off-line operations, where ∑
=

−=
i

m
mi XXW

1

)(for ki ,...2,1= and X the mean

 A Novel Self-Similar (
2S) Traffic Filter to Enhance E-Business Success 331

by ∑
=

=
k

i
iXkX

1

1 . The best value for k has to be found by trial and error. This

uncertainty is a serious drawback in practice because the R/S accuracy and speed
depend on k. The R/S ratio is the rescaled range of the stochastic process X over the

interval k. X is the discrete process },...2,1:{ kiX i = . The log-log

plot Hk
S

R)2(≈ yields H [6].

1);2.2.(..........);1.2(.......... 1
00

1

1
1

≥=
+

= =
=

−=

=
− ∑

imM
F

mM

M i
j

Fj

j

i
ji

i

The CA operation is based on the Central Limit Theorem. It is represented by the

equations: (2.1) and (2.2). The estimated mean iM in the thi prediction cycle works

with the chosen (fixed) F (flush limit) number of data points. The cycle time therefore

depends on the delay for collecting the F data points. It was confirmed that iM has

the fastest convergence for F=14 [16]. The other parameters include: a) 1−iM is the

feedback of the last predicted mean to the current iM prediction cycle, b) i
jm is the

jth data item sampled in the current ith iM cycle for)1(,....,3,2,1 −= Fj , and c)

0M is the first data sample when the MCA had first started. In the E-R/S framework

iM replaces X ; that is ∑
=

−=
i

m
imi MXW

1

)(. This makes E-R/S suitable for real-

time applications because the number of data items (e.g. IAT) to calculate iW is now

predictable (i.e. 14=F).

When ERTPD is in action the following elements, E-R/S, RTM 3 and the invoked
filter, are running in parallel. The overall ERTPD execution time depends on the

module that has the longest execution. Repeated measurements confirmed that 2S has
the longest computation time. For example, under certain conditions the Intel’s VTune
Performance Analyzer [17] recorded the following average execution times in clock

cycles: 981 for E-R/S, 250 for RTM 3 , 520 for the modified QQ-plot filter and 1455

for 2S . This means that the overall ERTPD execution time depends on 2S .

3 The Self-Similarity (2S) Filter

The 2S filter identifies self-similar patterns on the fly. In fact, LRD traffic has at
least two fractal elements: heavy-tailed and self-similar. The self-similar nature of
many fractal point processes comes from the heavy-tailed distributions, for example

332 A.K.Y. Wong et al.

the FRP (Fractal Renewal Process) IAT distribution. The heavy-tailed property,
however, is not a necessary condition for self-similarity because at least the FSNDPP
(Fractal-Shot-Noise-Driven Poisson Process) has no heavy-tailed property at all. The

theoretical foundation for the novel 2S filter is the “asymptotically second-order self-

similarity” concept, which is called hereafter the statistical OSSnd2 (or

simply OSSS nd2). This concept associates with a sufficiently large aggregate at

any level l or lag l in a stochastic process X. If }1:{ ≥= lXX m
l

m is an aggregate

in X of size m , OSSS nd2 for a large enough m means that the associated

autocorrelation function (ACF))(lr m (i.e. for mX) is proportional to)22(Hl −− .

OSSS nd2 is LRD, then its ACF is non-summable, =)(lr m ∞=∑
∞

−1l

mr .The

condition “)22()(Hm llr −−∝ for a large m ” is mathematically the slowly decaying

variance property. For a OSSnd2 process X and 15.0 << H the value

relationship H22 −=β holds [6].

The equations (3.1) and (3.2) summarize the OSSS nd2 property and they hold
even for the weaker condition in equation (3.3). The slowly decaying variance

property is conspicuous from the log-log plot for (3.4).))(log(mXVar versus

)log(m yields a straight line with slope β− ;)2(1 β−=H . The working

principle of the 2S filter is to find β for mX

)(
1

)(
)22(

XVar
m

XVar
H

m
−= Equation (3.1)

)()(krlr m = Equation (3.2)

∞→m
lim)()(krlr m = Equation (3.3)

)log())(log())(log(mXVarXVar m β−= Equation (3.4)

2S works with the initial aggregate size m (e.g. m =30). If the sampled data

points do not show stationarity, then another m data points are added so that the next
round of stationarity testing will be based on the 2m data points. This process is called
the “continuous aggregate based (CAB)” mechanism. The stationarity (or
Gaussianity) test, which continues until it is confirmed, is based on the “kurtosis and
skewness (KS)” technique. The kurtosis and skewness values together indicate if an

aggregate is stationary. The R/S and 2S elements in the ERTPD mechanism works

 A Novel Self-Similar (
2S) Traffic Filter to Enhance E-Business Success 333

for stationary conditions only. The normal bell/Gaussian curve represents an ideal
stationary process. It has kurtosis and skewness equal to 3 and 0 respectively. The
ideal [3,0] pair is difficult to obtain statistically, but previous empirical experience
[PRDC05] show that stationarity can be established with chosen thresholds, for
example [3,6 ±±]. Skewness measures a distribution’s symmetry. The distribution

skews to the right for positive skewness and to the left for a negative one. Higher
positive kurtosis than 3 means a more "peaked" distribution. A negative kurtosis

means a "flatter" one. Skewness is
()

sd
x

N
xi

N

i
3

1

3

)1(−
−∑ = , where x is the mean, sd the

standard deviation value and N the number of data points in the aggregate. Kurtosis is

sd
xx

N
i

N

i

4

1

4

)1(

)(
−

∑ −= .

4 Experimental Results

Simulations were designed to verify that the 2S filter does indeed:

a) Detect self-similar Internet traffic patterns correctly on the fly
b) Enhance communication channel fault tolerance.

For the verification of point (b) the 2S filter is combined with the FLC (Fuzzy

Logic Controller) dynamic buffer tuner [18]. The argument is that if the 2S can
reduce the perturbations in the FLC control process consistently, then it contributes to
the improvement of the channel fault tolerance because the chance for buffer overflow
and thus widespread retransmission, is lessened.

The setup for the experiment is similar to Figure 1. The “traffic analysis by
ERTPD” box traces the traffic pattern that produces the dynamic buffer tuning result.

The FLC supported by the ERTPD mechanism, which includes 2S , tunes the buffer
size on the fly to eliminate buffer overflow due to traffic ill effects. The traffic
between the client and the SAP is either a simulated or pre-collected IAT traffic trace.
The self-similar patterns were simulated by the Kramer tool [19]. The VTune tool

[17] was used to measure the 2S execution times under different conditions. The

timing analysis with VTune is important for evaluating the 2S fitness in time-critical
applications in general.

Table 1 shows one set of results produced by the 2S filter. The filter identifies the
self-similar traffic patterns correctly with at least 90% confidence (i.e. the threshold

2R
Th was set at 90%). The data segment made up of the first five aggregates is

basically monofractal because of their very similar H values. The aggregates, 6 and 7

334 A.K.Y. Wong et al.

Table 1. The
2S filter identifies self-similar traffic correctly

Aggregate
number

β slope H (Hurst value),

)21(β−=H

2R
(coefficient of
 determination)

Aggregates
in sequence

1 0.6583 0.671 0.956 (95.6%) 1

2 0.6809 0.660 0.975 (97.5%) 2

3 0.6425 0.679 0.977 (97.7%) 3

4 0.6473 0.677 0.972 (97.2%) 4

5 0.4685 0.766 0.959 (95.9%) 5

6 0.3762 0.812 0.885 (88.5%)

(less than 2R
Th)

6
(rejected)

7 0.1978 0.901 0.605 (60.5%) 7
(rejected)

Table 2.
2S results for the Sony trace in light of stationarity, SRD and LRD

For basic aggregate size of m = 32
Total no. of continuous aggregates 2548
 Stationarity (%), SRD and LRD

patterns intertwined
2446 (96.00%)

 SRD (%) 1983 (81.07%)
 LRD (%) 439 (17.95%)

Table 3.
2S results for the Sony trace (for SRD and LRD differentiation)

Differentiation between self-similar and heavy-tailed traffic patterns
Total number of LRD aggregates (Table 2) 439
Self-similar (SS) (%) 337 (76.77%)
Heavy-tailed (HT) (%) 375 (85.42%)
Both self-similar and heavy-tailed (%) 289 (65.83%)

()HTSSΡ ; both self-similar and heavy-

tailed (overlapped)

77.07%

()HTSSΡ ; self-similar but not heavy-tailed 75.00%

are rejected because they do not satisfy the 2R

Th threshold. The collection of every

aggregate (from 1 to 7) follows these steps: a) start with the basic aggregate size of
m=30 data points; b) carry out the Gaussianity test with the KS technique; and c) if

 A Novel Self-Similar (
2S) Traffic Filter to Enhance E-Business Success 335

Gaussinaity does not exist then collect m=30 more data points. If Gaussianity is
confirmed then β is computed. In fact, the experimental results for different real-life

Internet traffic traces indicate that the Internet traffic pattern definitely changes over
time. This empirical fact is demonstrated here by the Sony trace [20], and the relevant
results show that SRD and LRD data segments intertwine/interleave in the Sony trace
as shown in Table 2. The basic aggregate size for the experiments with the Sony trace
was m = 32. The percentages of SRD and LRD segments are 81.07% and 17.95%
respectively. Table 3 shows that the percentages for self-similar and heavy-tailed
patterns for the LRD segments are respectively 76.77% and 85.42%. Of the 439 LRD
segments 289 (i.e. 65.83%) show both self-similar and heavy-tailed characteristics.
This is possible because self-similarity usually comes from heavy-tailed-ness, even
though the latter is not a necessary condition for the former.

4.1 Results with the FLC Dynamic Buffer Tuner

Dynamic buffer tuners were used successfully to shorten the service response time in
different e-business setups [18]. Practically, improved tuner accuracy means shorter
client/server roundtrip time (RTT). The FLC tuner was used as the test bed because so
far it is the most efficient in the field [18]. Figure 2 shows the FLC design (i.e.
FLC[4x4]) for the experiments. Its essence includes the following:

a) It uses the rate of change of the server queue length, dt
dQ

 for derivative control.

b) It uses the “queue length over buffer length (QOB)” ratio for proportional control.

c) The dot marks the QOB reference (i.e. RQOB) of 0.8, and X marks the inert

“don’t care” state.
d) The control decisions, which depend on the current QOB and dQ/dt values,

include: Addition (buffer elongation) or “+”, Subtraction (buffer shrinkage) or “-
”, and “don’t care”.

e) The linguistic variables for the FLC are as follows:

i) For QOB: ML for Much Less than QOBR, L for Less than QOBR, G for Greater
than QOBR, and MG for Much Greater than QOBR.

ii) For the current dtdQ / : NL for Negative and Larger than the given threshold, NS

for Negative and Smaller than the given threshold, PS for Positive and Smaller
than the given threshold, and PL for Positive and Larger than the given threshold.

With the linguistic variables fuzzy rules for dynamic buffer tuning can be
formulated such as follows (Lnew and Lold denote the adjusted buffer length and the old
buffer length respectively; ICM is the buffer adjustment):

Rule 1: If (QOB is MG) AND (dQ/dt is PL) Then Action is “+”(Addition) AND Lnew
= Lold + ICM
Rule 2: If (QOB is ML) AND (dQ/dt is NL) Then Action is “-”(Subtraction) AND
Lnew = Lold - ICM
Rule 3: If (QOB is L) AND (dQ/dt is NS) Then Action is “X”(Don’t care) AND Lnew
= Lold

336 A.K.Y. Wong et al.

Fig. 2. The FLC[4x4] design

In the verification experiments the dt
dQ

 control was adaptively tuned by a gradient

percentage (GP) to produce the minimum mean deviation from RQOB in the

dynamic buffer tuning process. The tuning is adapted according to the traffic pattern
identified by the novel ERTPD mechanism on the fly. The mean deviation (MD) is

the average deviation from RQOB in different experiments for the same type of

request traffic (e.g. self-similar or Poisson). The GP/MD calibration, which represents
our accumulated real-time traffic analysis experience over time, was used for the
experiments as shown in Figure 3. The MD is scaled for the plot and 0.05 means five

percent. In our experience the deviation from RQOB for some self-similar traffic

conditions under raw FLC control (without ERTPD support) can be as high as 35%.
With the ERPTD presence the worst case observed was around 10%. If the ERTPD
has detected self-similar traffic, the FLC selects %8=GP to minimize MD. This

selection yields MD=0.03, which is similar to the Poisson condition (%5=GP
should be used). A higher MD means increased chance for buffer overflow,
widespread retransmission, large ANT, long service response time and unhappy e-
business customers. Therefore, it is worthwhile to adapt the GP value to gain a lower
MD for improved channel fault tolerance.

Fig. 3. The calibrated MD versus GP relationship

 A Novel Self-Similar (
2S) Traffic Filter to Enhance E-Business Success 337

Figure 4 compares the FLC and “ERTPD + FLC” performance for a self-similar
traffic trace simulated by the Kramer tool [19]. It shows that the latter consistently
produces a much lower MD. The higher deviation by the raw FLC is around 8% and
that for the ERTPD and FLC together (i.e. ERTPD-FLC plot) is only 4%.This is a
significant contribution because it lowers the chance of buffer overflow and prevents
wastage of memory in the dynamic buffer tuning process. As a fringe benefit the
unused buffer memory can be recycled for other tasks in the system for better
throughput.

Fig. 4. FLC versus “ERTPD + FLC[4x4]” for a self-similar trace

Fig. 5. Summary of positive effects of the
2S filter at different stages

338 A.K.Y. Wong et al.

Figure 5 summarizes the positive effects of the 2S filter in e-business from
different angles. It enables the dynamic buffer size tuner (e.g. FLC) to detect the self-
similar traffic conditions and use the detected result to fine-tune the control process.

As a result, the deviation from the control reference, namely, RQOB is lessened.

This is translated into less chance for server buffer overflow and thus less
retransmission that would prolong the client/server service roundtrip time (RTT). This
leads to enhanced fault tolerance for the end-to-end communication channels and
faster service response, which makes customers happy and return for more business.

5 Conclusion

The novel self-similarity (2S) filter should enhance e-business success by improving
Internet communication channel fault tolerance. It normally works as part of the
ERTPD package in the form of a traffic filter to be invoked at the right moment. The

results from different experiments indicate that 2S can indeed identify self-similar

traffic correctly. For example, the FLC dynamic buffer tuner with 2S support

consistently produced less deviation from the chosen RQOB references for self-

similar traffic conditions. As a result e-businesses with ERTPD support should have
shorter service response time on average because the chance for buffer overflow to

occur is lessened by 2S . The next planned step in the research is to validate ERTPD

and 2S with sizeable e-shops over the open mobile Internet.

Acknowledgment

The authors thank the Hong Kong Polytechnic University for supporting this research
with the ZW93 grant.

References

1. Thomas, S.F., Gillenson, M.L.: Mobile Commerce: What It Is and What It Could Be.
Communications ACM 46(12), 33–34 (2003)

2. Venkatesh, V., Ramesh, V., Massey, A.P.: Understanding Usability in Mobile Commerce.
Communications of the ACM 46(12), 53–56 (2003)

3. Garlan, D., Siewiorek, D.P., Smailagic, A., Steenkiste, P.: Project Aura: Toward
Distraction-free Pervasive Computing. IEEE Pervasive Computing 1(2), 22–31 (2002)

4. Wong, A.K.Y., Lin, W.W.K., Ip, M.T.W., Dillon, T.S.: Genetic Algorithm and PID
Control Together for Dynamic Anticipative Marginal Buffer Management: An Effective
Approach to Enhance Dependability and Performance for Distributed Mobile Object-
Based Real-time Computing over the Internet. Journal of Parallel and Distributed
Computing (JPDC) 62, 1433–1453 (2002)

 A Novel Self-Similar (
2S) Traffic Filter to Enhance E-Business Success 339

5. Wu, R.S.L., Wong, A.K.Y., Dillon, T.S.: RDCT: A Novel Reconfigurable Dynamic Cache
Size Tuner to Shorten Information Retrieval Time over the Internet International Journal of
Computer Systems. Science & Engineering 19(6), 363–372 (2004)

6. Molnar, S., Dang, T.D., Vidacs, A.: Heavy-Tailedness, Long-Range Dependence and Self-
Similarity in Data Traffic. In: Proc. of the 7th Int’l Conference on Telecommunication
Systems, Modelling and Analysis, Nashville, USA, pp. 18–21 (1999)

7. Wong, A.K.Y., Dillon, T.S.: A Fault-Tolerant Data Communication Setup to Improve
Reliability and Performance for Internet-Based Distributed Applications. In: Proc. of the
1999 Pacific Rim International Symposium on Dependable Computing (PRDC’99), Hong
Kong (SAR), pp. 268–275 (December 1999)

8. Wong, A.K.Y., Dillon, T.S., Ip, M.T.W., Lin, W.W.K., Wong, B.: A Collaboration Model
for Better Reliability and Performance for Object-Based Distributed Applications over the
Internet. International Journal of Computer Applications in Technology, 16, 78–86 (2002)

9. Paxson, V., Floyd, S.: Wide-Area Traffic: The Failure of Poisson Modeling. IEEE/ACM
Transactions on Networking 3(3), 226–244 (1995)

10. Lin, W.W.K., Wong, A.K.Y., Dillon, T.S.: A Novel Fuzzy-PID Dynamic Buffer Tuning
Model to Eliminate Overflow and Shorten the End-to-End Roundtrip Time for TCP
Channels. In: Cao, J., Yang, L.T., Guo, M., Lau, F. (eds.) ISPA 2004. LNCS, vol. 3358,
pp. 783–787. Springer, Heidelberg (2004), http://www.springerlink.com/index/
VF155CH38XFLLB4H

11. Lin, W.W.K., Wu, R.S.L., Wong, A.K.Y., Dillon, T.S.: A Novel Real-Time Traffic Pattern
Detector for Internet Applications. In: Proc. of the Australasian Telecommunication
Networks and Applications Conference, Sydney, Australia (ATNAC’04), pp. 224–227
(December 2004)

12. Lewandowski, S.M.: Frameworks for Component-based Client/Server Computing. ACM
Computing Surveys 30(1), 3–27 (1998)

13. Medina, A., Matta, I., Byers, J.: On the Origin of Power Laws in Internet Topologies.
ACM SIGCOMM 30(2), 18–28 (2000)

14. Willinger, W., Paxson, V., Hiedi, R.H., Taqqu, M.S.: Long-Range Dependence and Data
Network Traffic. In: Doukhan, P., et al. (eds.) Theory and Applications of Long-Range
Dependence, Birkhauser, pp. 373–408 (2003)

15. Taqqu, M.S.: Fractional Brownian Motion and Long-Range Dependence. In: Doukhan, P.,
et al. (eds.) Theory and Applications of Long-Range Dependence, pp. 5–38. Birkhauser
(2003)

16. Wong, A.K.Y., Wong, J.H.C.: A Convergence Algorithm for Enhancing the Performance
of Distributed Applications Running on Sizeable Networks. The International Journal of
Computer Systems, Science & Engineering 16(4), 229–236 (2001)

17. Intel’s VTune Performance Analyzer, http://ww.intel.com/support/performancetools/
vtune/v5

18. Lin, W.W.K., Wong, A.K.Y., Dillon, T.S.: Application of Soft Computing Techniques to
Adaptive User Buffer Overflow Control on the Internet. IEEE Transactions of Systems,
Man and Cybernetics, Part C (2005)

19. Generator of Self-Similar Network Traffic, http://wwwcsif.cs.ucdavis.edu/~kramer/code/
trf_gen1.html

20. WongTrace, http://www4.comp.polyu.edu.hk/~cswklin/traces_wonghokleung/

Accelerating the Singular Value Decomposition

of Rectangular Matrices
with the CSX600 and the Integrable SVD

Yusaku Yamamoto1, Takeshi Fukaya1, Takashi Uneyama2, Masami Takata3,
Kinji Kimura4, Masashi Iwasaki5, and Yoshimasa Nakamura2

1 Nagoya University, Nagoya, 464-8603, Japan
yamamoto@na.cse.nagoya-u.ac.jp

Tel.: +81-52-789-5380; Fax: +81-52-789-4656
2 Kyoto University, Kyoto, 606-8501, Japan

3 Nara Women’s University, Nara, 630-8506, Japan
4 Niigata University, Niigata, 950-2181, Japan

5 Kyoto Prefectural University, 606-8522, Japan

Abstract. We propose an approach to speed up the singular value de-
composition (SVD) of very large rectangular matrices using the CSX600
floating point coprocessor. The CSX600-based acceleration board we use
offers 50GFLOPS of sustained performance, which is many times greater
than that provided by standard microprocessors. However, this perfor-
mance can be achieved only when a vendor-supplied matrix-matrix mul-
tiplication routine is used and the matrix size is sufficiently large. In this
paper, we optimize two of the major components of rectangular SVD,
namely, QR decomposition of the input matrix and back-transformation
of the left singular vectors by matrix Q, so that large-size matrix multi-
plications can be used efficiently. In addition, we use the Integrable SVD
algorithm to compute the SVD of an intermediate bidiagonal matrix.
This helps to further speed up the computation and reduce the memory
requirements. As a result, we achieved up to 3.5 times speedup over the
Intel Math Kernel Library running on an 3.2GHz Xeon processor when
computing the SVD of a 100,000 × 4000 matrix.

1 Introduction

We consider the problem of computing the singular value decomposition A =
UΣV T of a large thin rectangular matrix A. Such problem arises in many ap-
plications including signal processing, image processing, information retrieval
and electronic structure calculation. The matrix size can be very large in some
applications. For example, the filter diagonalization method [10] for large-scale
electronic structure calculation requires computing the SVD of matrices with
thousands of columns and up to millions of rows repeatedly.

Recently, the use of dedicated floating point coprocessors like ClearSpeed’s
CSX600 [2] and the GRAPE-DR processor [5] has attracted much attention
as a means to solve such large problems. These processors integrate dozens or

V. Malyshkin (Ed.): PaCT 2007, LNCS 4671, pp. 340–345, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Accelerating the Singular Value Decomposition of Rectangular Matrices 341

even hundreds of floating point units and deliver performance that is order of
magnitudes larger than standard microprocessors. For example, the ClearSpeed
Advance board with two CSX600 processors claims 50GFLOPS of sustained
performance [2]. This is several times faster than the speed provided by popular
Intel Xeon processors.

However, it is not straightforward to fully exploit the performance of floating
point coprocessors in intricate matrix computations such as the SVD. In fact,
in the case of the CSX600 processor, the performance mentioned above can
be obtained only when a vendor-supplied matrix-matrix multiplication routine
(BLAS routine DGEMM [4]) is used and the matrix size is sufficiently large.
This is mainly because the host processor and the coprocessor are connected via
the PCI-X bus and the overhead of data transfer between them is substantial.

In this paper, we propose an approach to speed up the computation of SVD
of very large rectangular matrices. To this end, we reorganize two of the main
components of rectangular SVD algorithm, namely, QR decomposition of the in-
put matrix A and back-transformation of the left singular vectors by matrix Q,
so that large-size matrix multiplications can be used efficiently. In addition, we
employ the Integrable SVD (I-SVD) algorithm [6], a fast and memory-efficient
algorithm developed by some of the authors, to compute the SVD of an inter-
mediate bidiagonal matrix. Thanks to these optimizations, our implementation
running on the ClearSpeed Advance board achieves 3.5 times speedup over the
Intel Math Kernel Library running on a 3.2GHz Xeon processor when computing
the SVD of a 100, 000× 4000 matrix.

The rest of this paper is structured as follows: in section 2, we explain the
standard algorithm for rectangular SVD and show how it can be optimized to use
the CSX600 efficiently. Performance results are presented in section 3. Finally,
section 4 gives some concluding remarks.

2 The Rectangular SVD Algorithm and Its Optimization
for the CSX600

Let A be an m × n rectangular matrix and assume that m " n. The standard
algorithm for the SVD of A consists of the following five steps [4]:

(a) QR decomposition of A: A = QR, where Q is an m × n matrix with
ortho-normal columns and R is an n× n upper triangular matrix.

(b) Bidiagonalization of R: R = U1BV
T
1 .

(c) Singular value decomposition of B: B = U2ΣV
T
2 .

(d) Back-transformation by U1 and V1: U ′ = U1U2, V = V1V2.
(e) Back-transformation by Q: U = QU ′.

By performing these steps, we obtain the singular value decomposition A =
UΣV T . Among the steps, we especially focus on steps (a) and (e) since they
involve O(mn2) work, while the others involve only O(n2) to O(n3) work. In
addition, we decided to use our new I-SVD algorithm [6] in step (c) since the

342 Y. Yamamoto et al.

popular QR algorithm is too slow when n exceeds 1,000 and the divide-and-
conquer (DC) method as implemented in LAPACK [1] requires as much as 4n2

words of extra work space, thereby limiting the size of the problem that can be
solved. As for steps (b) and (d), we decided to use the LAPACK routines. In the
following subsections, we explain our implementation of steps (a), (e) and (c) in
more detail.

2.1 QR Decomposition and Back-Transformation by Q

To exploit the performance of the CSX600 in the QR decomposition and back-
transformation by matrix Q, we have to reorganize the algorithm so that most
of the computational work is done in the form of matrix multiplication. Further-
more, since the current implementation of DGEMM on the CSX600 works only
when all the three sizes M , N , and K are greater than 448, we must make sure
that this condition is satisfied.

The QR decomposition routine implemented in LAPACK uses a blocked al-
gorithm [4]. It partitions the matrix A into panels of width L, computes the
QR decomposition of each panel using Householder transformations, aggregates
the transformations as a compact-WY representation [8], and updates the areas
right to the panel using the compact-WY representation. In this approach, the
update operation, which accounts for most of the work, can be done with the
DGEMM. However, to use the CSX600, we need L ≥ 448. In that case, the QR
decomposition of the panel, for which the CSX600 cannot be used, takes long
time and spoils the overall performance.

An alternative approach is the recursive QR decomposition proposed by Elm-
roth and Gustavson [3]. In this algorithm, we partition A into two panels and
proceed in the same way as in the blocked algorithm. However, to compute the
QR decomposition of each panel, we again partition the panel into two smaller
panels and apply the blocked algorithm. This is repeated recursively. This algo-
rithm can perform most of the work in the form of DGEMM, though the size of
matrix multiplication becomes smaller as the level of recursion becomes deeper.
Hence it is more suited for the CSX600 and we adopt it as the algorithm for
step (a).

One of the shortcomings of the recursive QR algorithm is that it requires more
computational work than the blocked algorithm; the former needs 3mn2 work,
while the latter needs only 2mn2 work when L ! n. To mitigate this, we seek
to minimize the computational work in step (e) by looking into the operation
U = QU ′ in more detail.

To do this, we extend the m× n matrix Q to an m×m matrix Q̄ by adding
columns of zeros and extend the n×n matrix U ′ to anm×n matrix Ū ′ by adding
rows of zeros. In the blocked QR decomposition, the matrix Q̄ is expressed as a
product of p = n/L compact-WY representations as follows:

Q̄ = (I − YpTpY
T
p) · · · (I − Y2T2Y

T
2)(I − Y1T1Y

T
1). (1)

Accelerating the Singular Value Decomposition of Rectangular Matrices 343

On the other hand, in the recursive QR algorithm, Q̄ is expressed as a single
compact-WY representation:

Q̄ = I − Y TY T . (2)

If we don’t exploit the zero structure of Ū ′, the work to compute U = Q̄Ū ′ is
about 4mn2 whether we use eq. (1) or (2). However, since Ū ′ has nonzero ele-
ments only in the leading n×n block, most of the operations in the computation
of Y T

1 Ū
′ and Y T Ū ′ can be omitted. The amount of work saved by this is larger

for the recursive algorithm; it is 2mn2 for the recursive QR, while it is 2mnL
for the blocked QR. This effect more than compensates for the increase of work
in the QR decomposition phase. Hence we can regard the recursive algorithm
as the best one both from the utilization of DGEMM and from the amount of
computational work.

2.2 SVD of the Intermediate Bidiagonal Matrix

In step (c), the standard algorithm is the QR algorithm or the divide-and-
conquer method. The QR algorithm requires O(n3) work when computing all
the singular values and singular vectors of an n × n matrix. This is too costly
when n is large, since the coefficient behind O is much larger compared with
those in steps (b) and (d). The DC method is much faster and its execution
time is usually smaller than the time for step (b). However, the DC method as
implemented in LAPACK requires as much as 4n2 words of extra work space.
This limits the size of the problem that can be solved.

In our implementation, we use the Integrable SVD algorithm [6] developed by
some of the authors. The I-SVD algorithm is based on the fact that the solution
of the Lotka-Volterra equation approaches the singular values of a bidiagonal
matrix specified by the initial conditions as time goes to infinity. This property
still holds after some appropriate discretization, and we can formulate a new
algorithm to compute the singular values. The singular values thus computed
can be shown to have small relative errors even if their magnitude is small.
This enables us to compute the singular vectors using the twisted factorization
[7]. Note that we also use the Lotka-Volterra based algorithm in the twisted
factorization to improve accuracy and numerical stability [9]. The computational
work to compute one singular vector is O(n), since each singular vector can be
computed independently and no reorthogonalization among the singular vectors
is needed.

In our context, the algorithm is attractive since it can compute the full SVD
of a bidiagonal matrix in O(n2) time using only O(n) extra work space. Thus it is
superior to the QR and DC algorithms in terms of speed and memory efficiency.
For details of the I-SVD algorithm, the readers are referred to [6] and [9].

3 Performance Results

We implemented the rectangular SVD algorithm using FORTRAN based on the
ideas described in the previous section. More precisely, we use the recursive QR

344 Y. Yamamoto et al.

algorithm in step (a) and adopt the improvement to reduce the work in the
multiplication by Q in step (e). For these two routines, we use the DGEMM
routine on the CSX600 board whenever the matrix size is sufficiently large. In
step (c), we use the I-SVD algorithm. Since most of the computation in the
I-SVD is done with the level-1 BLAS [4], or simple vector-vector operations, we
decided to perform this part on the host processor. Also, steps (b) and (d) are
executed on the host processor using appropriate LAPACK routines, because
these steps occupy only a fraction of the total work when m! n.

As test matrices, we used random matrices whose elements follow a uniform
random variable in [0, 1]. The matrix size m was varied from 12,500 to 100,000,
while n was varied from 1000 to 4000. As a test machine, we use a Xeon (3.2GHz)
machine with 8G bytes of memory and the CSX600 acceleration board.

Now we compare the performance of our program with the Intel Math Kernel
Library (MKL), which is known to be the fastest implementation of LAPACK
on the Xeon processor. Note that the current version of MKL cannot benefit
from the CSX600 board, since it uses the blocked QR algorithm not designed
for a large block size (see subsection 2.1).

Fig. 1 shows the execution time of MKL on the Xeon processor and the
execution time of our program on the Xeon processor with and without the
CSX600 board. As can be seen from the graph, the MKL routine, which uses the
DC method for the bidiagonal SVD, requires about 2850 seconds. Our program
is a little faster, because the improvements described in section 2 is effective also
for the Xeon processor. When the CSX600 board is used, the execution time of
our program is reduced to only 808 seconds, which is 3.5 times faster than MKL.

Fig. 2 shows the speedup obtained by our program with the CSX600 over
MKL. The speedup becomes greater as m increases, and also becomes greater
as n increases as long as m! n holds. From this result, we can expect that the
effect of using the CSX600 increases for larger problems.

0

500

1000

1500

2000

2500

3000

MKL Ours Ours + CSX600

Back trans. by Q

Back-trans. by U1 & V1

Bidiagonal SVD

Bidiagonalization

QR decompostition

Execution time (sec.)

Fig. 1. Comparison of execution times:
Intel MKL on Xeon, our code on Xeon
and our code on Xeon with CSX600

12500

50000

1000200030004000
0

0.5

1

1.5

2

2.5

3

3.5

4

25000

100000

n

m

Speedup

Fig. 2. Speedup obtained by our code
with CSX600 over MKL

Accelerating the Singular Value Decomposition of Rectangular Matrices 345

4 Conclusion

In this paper, we proposed an approach to speed up the computation of singular
value decomposition of very large rectangular matrices using the CSX600 float-
ing point coprocessor. By reorganizing two major components of rectangular
SVD, namely, QR decomposition of the input matrix and back-transformation
of the left singular vectors by matrix Q to use large-size matrix multiplications
efficiently, we were able to exploit the high-performance DGEMM routine on
the CSX600. In addition, we used our fast and memory-efficient I-SVD algo-
rithm to compute the SVD of an intermediate bidiagonal matrix. As a result
of these optimizations, we achieved 3.5 times speedup over Intel MKL running
on 3.2GHz Xeon when computing the SVD of a 100,000 by 4000 matrix. Future
work includes further accelerating the program by porting routines other than
DGEMM to the CSX600 using the Cn language [2].

References

1. Anderson, E., Bai, Z., Bischof, C., Demmel, J., Dongarra, J., Croz, J.D., Green-
baum, A., Hammarling, S., McKenney, A., Ostrouchov, S., Sorensen, D.: LAPACK
User’s Guide. SIAM, Philadelphia (1992)

2. ClearSpeed Technology Inc. http://www.clearspeed.com/
3. Elmroth, E., Gustavson, F.: Applying Recursion to Serial and Parallel QR Fac-

torization Leads to Better Performance. IBM Journal of Research and Develop-
ment 44, 605 (2000)

4. Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. Johns Hopkins Uni-
versity Press, Baltimore (1996)

5. GRAPE-DR Project. http://grape-dr.adm.s.u-tokyo.ac.jp/
6. Iwasaki, M., Nakamura, Y.: Accurate Computation of Singular Values in terms of

Shifted Integrable Schemes. Japan J. Indust. Appl. Math. 1, 239–259 (2006)
7. Parlett, B.N., Dhillon, I.: Fernando’s Solution to Wilkinson’s problem: An Appli-

cation of Double Factorization. Linear Algebra Appl. 267, 247–279 (1997)
8. Schreiber, R., Van Loan, C.F.: A Storage-Efficient WY Representation for Prod-

ucts of Householder Transformations. SIAM J. Sci. Stat. Comput. 10, 53–57 (1989)
9. Takata, M., Kimura, K., Iwasaki, M., Nakamura, Y.: Performance of a New Singular

Value Decomposition Scheme for Large Scale Matrices. In: Proceedings of The
IASTED International Conference on Parallel and Distributed Computing and
Networks, pp. 304–309 (2006)

10. Toledo, S., Rabani, E.: Very Large Electronic Structure Calculations using an Out-
of-Core Filter-Diagonalization Method. J. Comput. Phys. 180, 256–269 (2002)

http://www.clearspeed.com/
http://grape-dr.adm.s.u-tokyo.ac.jp/

V. Malyshkin (Ed.): PaCT 2007, LNCS 4671, pp. 346–359, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Parallel Dynamic SPT Update Algorithm in OSPF

Yuanbo Zhu, Mingwei Xu, and Qian Wu

Computer Science Department, Tsinghua University,
Beijing 100084, China

{zhuyb,xmw,wuqian}@csnet1.cs.tsinghua.edu.cn

Abstract. Shortest-Path-Tree (SPT) computation, as the main load in OSPF
protocol, contributes to the slow convergence time in intra-domain routing.
With the increasing interest for upcoming routers of multi-core based process-
ing board, efficient parallel routing algorithms are required to take this advan-
tage to speedup SPT computation in order to meet the needs for fast failure re-
covery applications such as VoIP. However, currently available parallel SPT
algorithms are all based on static method, which re-computes the entire tree for
each link change. In this paper, we explore parallel algorithms for dynamic SPT
update, a more efficient method, which only updates the affected nodes by mak-
ing use of the previous SPT We first analyze characters of dynamic method to
show how they affect parallel design; then we give our parallel dynamic SPT
algorithm framework, which uses: (1) parallel distance-updating mode, to get a
near liner speedup (assuming perfect load balance) and (2) group-removal
schema, to reduce communication cost. Further, to provide load balance, we
give a task distribution algorithm called RR_DFS, which makes use of the to-
pology information of the previous SPT. Complexity analysis and simulation
result are also presented

1 Introduction

The Shortest-Path-Tree (SPT) computation is a fundamental and critical issue for high
performance routing in the interior network. In Open-Shortest-Path-First (OSPF) [1],
which is a widely deployed intra-domain routing protocol, each router computes a
SPT based on the network topology with itself as the root, and generates route table
using the computed SPT in the routing area SPT computation, also known as the sin-
gle source shortest path problem, can be constructed by Dijkstra algorithm [2] in O(n2

+ m) time, where n is the number of nodes (routers) and m is the number of edges
(links). This complexity seriously limits the scalability of OSPF.

Traditionally, there are two ways to reduce the SPT computation in OSPF: (1) limit
the number of routers in the routing area (less than 200 [1]); and (2) limit the compu-
tation frequency---link changes do not cause immediate computation but wait for
SPT_hold time (30 seconds) to collect enough link changes to start another SPT com-
putation. These two ways work well for the intra-domain routing environment in the
past days. However, as for (1), the growing use of traffic engineering requires, a lar-
ger routing size, in order to increase redundancy to allow routing optimization; as for

 Parallel Dynamic SPT Update Algorithm in OSPF 347

(2), long SPT_hold time seriously delays convergence time (response to link changes)
and reducing SPT_hold is claimed [9][10][11][12] to achieve faster intra-domain
convergence to meet the needs for fast failure recovery applications such as VoIP.
Both trends---to increase network size and to reduce SPT_hold time---bring new chal-
lenges for intra-domain routing algorithm and call for a SPT computation of more
efficiency.

In this paper, we explore the parallel algorithm for SPT computation. Our work is
also motivated by the increasing interest for upcoming routers with multi-core and
multi-NPU based processing board which calls for parallel algorithms in routing.
Though there has been a lot of parallel SPT algorithms [3][4][5][6], however, they are
all based on the inefficient static method, without taking advantage of the alternative
and yet more efficient method in OSPF.---- the dynamic update. Dynamic SPT update
method works in an incremental fashion by using the information of the previous
SPT. Since it only updates the affected nodes instead of re-compute the whole tree, it
is more efficient than the static method and begins to be deployed in commercial
routers [13]. However, its performance bottleneck still exists (especially in some
worse cases) despite lots of improvement work [14][15][16][17], and we believe that
an exploration of parallel algorithms based on dynamic method is a meaningful work
for the next generation routers of multi-core and multi-NPU. To the best of our
knowledge, this is the first time to explore the parallel algorithm for dynamic SPT
computation ([8] gave parallel algorithms in dynamic settings only for all-pairs short-
est path, but not for the single-source SPT problem used in OSPF, which is what we
focus on in this paper).

We work in the following three steps: First, we analyze the characters of dynamic
SPT update method and discuss how they affect the parallel design; then we give an
algorithm framework for the parallel dynamic method. This framework provides par-
allel computation and communication fashions, but it does not include specific task
distribution algorithm. In fact, it allows different task distribution algorithms to pro-
vide different load balance performances. On the assumption of perfect load balance,
we give the computation and communication complexity analysis; further, we con-
sider the load balance problem. We propose a task distribution algorithm called
RR_DFS. It makes use of previous SPT information and provides, to some extend,
load balance while with little extra cost involved.

The rest of the paper is organized as follows: section 2 gives background knowl-
edge for both parallel SPT static algorithms and dynamic SPT update method; section
3 discusses some issues on parallel design of dynamic algorithm; in section 4 we give
our parallel algorithm framework, with complexity analysis followed in section 5;
section 6 presents our task distribution algorithm; and simulation results is shown in
section 7; finally, we make conclusions in section 8.

2 Background

2.1 Parallel SPT Algorithms in Static Method

Parallel algorithms for single-source SPT can be classified into 2 modes: parallel
distance updating (PDU) and parallel sub-region computation (PSC).

348 Y. Zhu, M. Xu, and Q. Wu

 PDU: see [3][4], each processor is given the entire graph and responsible for a
set of nodes. First, a node with local minimum distance is selected in parallel
and communication is performed to get a global minimum, then the distances of
other nodes are updated in parallel before another selection begins.

 PSC: see [5][6], the entire network is partitioned into p sub regions, each being
assigned to a processor. SPT computation is done independently and communi-
cation is needed only between processors who share the same nodes (called
border nodes) to get border nodes’ distance values.

Combination of the two can be found in [7].

2.2 Dynamic SPT Update Algorithms

The main idea of dynamic SPT update algorithm is to make use of the previous tree
and only update affected nodes caused by topology change. Topology changes in-
clude node changes and link weight changes. For node changes, adding/removing a
node usually involves "leaf" information, e.g. a new node Y is added to node X, then
previous SPT is still correct by only appending Y to X; as removing nodes can be
reduced to the case of link change (weight increases to infinite), so we focus on the
cases of link change:

1) SPT_inc: weight increase, and changed link ∈ old SPT

2) nSPT_inc: weight increase, and changed link ∉ old SPT

3) SPT_dec: weight decrease, and changed link ∈ old SPT

4) nSPT_dec: weight decrease, and changed link ∉ old SPT

For a link change, the algorithm first determines, again, whether computation is
needed. E.g. in case nSPT_inc, the old SPT is still correct and no nodes need to be
updated. Otherwise, it starts computation from the end node of the changed link as the
root, identifying some directly affected nodes and adding nodes into a queue. Then it
follows iteration for selection.

In iteration, a node in the queue is selected and declared settled with its path and
distance changed in the SPT. The settled nodes are removed from the queue and their
adjacent nodes become affected nodes by being added into queue, or by being up-
dated by new distance value if it is already in the queue. The algorithm continues the
iteration until the queue is empty.

3 Parallel Analysis

We discuss some issues on parallel design by analyzing three characters that make
dynamic method different from the static, and show how they affect the parallel design.

 Dynamic topology that participates in computation
The nodes that participate in computation (active nodes) in static method can be pre-
dicted; in fact they are all nodes in network. However, in dynamic algorithm, active
nodes are affected nodes which are identified step by step until algorithm ends.

This indetermination makes PSC model which is based on region decomposition
difficult to implement, because region decomposition needs network topology

 Parallel Dynamic SPT Update Algorithm in OSPF 349

information in advance in order to deploy a proper decomposition on the whole graph.
On the other hand, PDU model can be applied in this dynamic environment easily. In
fact, identifying a new node means simply assigning it to a processor.

 Flexible Iteration Times
The number of iterations in dynamic model can be much smaller than the static. The
reason is twofold. (1): there are less active nodes in dynamic model. (2): In static
algorithms, iteration times equal to the number of active nodes, while in the dynamic,
iteration times is flexible, and can be much smaller than the number of active nodes if
we use a group-removal schema.

Now we explain group-removal schema in (2). In dynamic algorithm [16], a node
selected by the minimum distance increase and all its descendent nodes that are reach-
able in the existing SPT are settled. Since a group (the selected node and its descen-
dent) instead of one (only the selected node) is settled in iteration, we call it group-
removal; the correctness of group-removal is promised in dynamic method due to its
use of previous SPT information and the proof can be found in [16]. Since in PDU
mode, the number of communications equals to the number of iterations. Thus, PDU
mode can benefit much less communication by group-removal schema.

 Great Load Changes in Interation
Since a group of nodes are settled and removed from the queue, this load change is
much greater than in static algorithms where in iteration only one node is removed.
Great load change may lead to load imbalance among processors. Since the node
selection requires a global synchronization among processors, such work imbalance
among processors will result in idle time and thus lead to a longer running time.
Therefore, an efficient task distribution algorithm for nodes assignment should be a
crucial issue.

4 Parallel SPT Update Algorithm Framework

Based on above analysis, we give our parallel algorithm framework: each processor
maintains the whole network topology and works in PDU model using group removal
schema. The description is shown below.

Parallel dynamic SPT update algorithm framework:
Phase 1: Initialization:
Identify directly affected nodes, and assign them to processors by adding into the

local queues in parallel.
Phase 2: Iteration: Repeat 2.1 ~ 2.5 until all local queues are empty
2.1 Select local node with the minimum distance increment.
2.2 Send / receive local selected nodes to / from other processors, select the global

node with the minimum distance increment.
2.3 The selected global node and all its descendents are settled and updated in the

new SPT in each processor
2.4 Remove the settled nodes from local queues in parallel
2.5 Update local queues in parallel. For new nodes, assign them to processors, and

add them into the local queues.

350 Y. Zhu, M. Xu, and Q. Wu

Here, we assume the nodes have been assigned to processors, that is to say, spe-
cific task distribution algorithm is not included in the framework and the task distribu-
tion algorithm will be discussed in section 6.

Node selection (2.1) and distance update (2.5) are doing in parallel in PDU mode;
the group removal schema will remove (in 2.3) the selected node (with the minimum
distance increment in 2.2) and all its descendents.

 Example
We give an example for the SPT_inc case. In Fig 1, the weight of link from node B to
C increases from 2 to 7. We assume that there are 2 processors and the task distribu-
tion result is as shown in Table 1.

5

1

2

30

2 to 7

7
2

10

A

B

DC

F

G

E

H

E

5

21
C

1

8 1 9
7

3

5

1

2

30

 7

7
2

12

A

B

DC

F

G

E

H

E

5

21
C

1

9 1 10
12

3

1 1

Fig. 1. An example of the algorithm

Since the changed link belongs to previous SPT and its weight increases, computa-
tion is needed to update SPT. Algorithm starts from node C as root and identifies all
its descendent nodes C, F, H, G to be affected. Assume that the task distribution result
is as shown in Table 1. Local queue for processor 1 and 2 are shown in Table 2. E.g.
for node F, it may be updated by following the old path C with distance increased by
5 or choose another path. Because node E can offer F distance 9 which means that the

Table 1. Task distribution

Processor ID Task nodes
Processor 1 C, F
Processor 2 H, G

Table 2. Parallel algorithm in the first iteration

 Processor 1 Processor 2
1. Init local queue (C, B, 5), (F, E, 1) (H, F, 5), (G, C, 5)
2.1 select local

minimum
(F, E, 1) (G, C, 5)

2.2 communicate for
global minimum

(F, E, 1)

2.3 settle E and its
descent F in SPT

(F, E, 1), (H, F, 5) (F, E, 1), (H, F, 5)

2.4 remove E , F (C, B, 5) (G, C, 5)
2.5 update queue (C, B, 5) (G, F, 2)

 Parallel Dynamic SPT Update Algorithm in OSPF 351

distance increase is 1 based on the old distance 8, therefore, the potential path for
node F in new SPT is node E and the corresponding distance increase is 1.

In the following iteration, each processor selects a node with minimum increase
from local queue and communicates with others. In the example, node F is selected
the global minimum and each processor modifies its SPT by changing the path of F to
be E and increase the distance of F by 1. Besides, node E, the descents of F, is also
settled with its distance increased by the same value 1 and path unchanged. Thus,
nodes F and E are updated in the new SPT in each processor. Then the settled nodes F
and E will be removed from the local queue respectively. In the updating process of
2.5, the settle of node F provides node G with a smaller distance increase, thus G
changes it potential path to be node F and distance increase to be 1. Then the iteration
continues until the local queues are all empty.

5 Complexity

In this section, we first discuss the three components of the execution time: computa-
tion time, communication time and idle time. Then we give the total complexity and
speedup, and analyze factors that affect them

Here we give some definitions. Let K be the number of iterations, N be the number
of affected nodes, E be the number of edges whose sources correspond to affected
nodes, and p be the number of processors.

5.1 Computation Time

The dynamic SPT update algorithm has four operations.

a) adding and removing (phase 1 and 2.3, 2.5);
b) selecting the node with the minimum distance (2.1, 2.2, 2.3);
c) modifying the SPT;
d) updating distance values for the local queue (2.5, 2.2, 2.3).

The operation a takes 2N time, because each affected node will be added and re-
moved only once. The operation b takes K* N time, because there are K iterations and
in each iteration the up-bound of the queue size is N. The operation c takes N time,
because each affected node will be modified in the new SPT. The operation d takes E
time, because each affected edge will lead to one update operation for the source
node. Therefore, the total computation time needed in the dynamic algorithm is

Ttotal = 2N + K* N + N +E (1)

In our parallel algorithm framework, operation a, b, and d are all doing in parallel,
only operation c is doing serially, see section 4, thus, the parallel part takes

Tparallel = 2N + N*K +E (2)

The unparallel or serial part takes

Tserial = N (3)

Therefore, the ideal speedup the parallel algorithm can get is (without considering
the communication cost)

352 Y. Zhu, M. Xu, and Q. Wu

1Speedup =
(2

(2

)

/) /

total

parallel serial

N K

N K

T N E N

T p T N E p N

+ + +

+ + + +
= i

i
 (4)

Since the significant operations are due to the selecting (operation b which takes
K*N time) and the updating (operation d which takes E time) operations, both of
which are implemented in parallel, the parallel algorithm can get approximate linear
ideal speedup.

The extra computation cost for the parallel algorithm is the global minimum select-
ing from p processors, with the cost of p, it follows that the computation time for each
processor is

Tcomp = / ((2) /)E p K N p p N+ + + + (5)

5.2 Communication Time

In each iteration, a send/receive communication is executed. It means sending the
local minimum to other processors and receiving the local minimums from other
processors. The goal of this commutation is twofold. First, it allows the selecting of a
global minimum thus to make the algorithm proceed correctly. Second, with the se-
lected global minimum, each processor can modify its existing SPT dependently.

Note that in most parallel routing table computation algorithms, communications
usually involve two parts: the communication for computation and the communica-
tion for synchronization of the global route table after computation both of which are
inevitable and mean extra cost. Here, in our framework, we put the two together into
one: the communication for computation also works as the synchronizing of the route
table, that is to say, when communication is performed during computation it finishes
the synchronizing of the route table at the same time.

Since the number of selection or communications equals to the number of itera-
tions, the following three numbers have the same value in the algorithm:

1) Iterations times
2) Selections times
3) Communications times

For one communication, only a send / receive operation is needed. That means we
use broadcast for the send operation and waiting for all other processors for the re-
ceive operation. Thus the communication time for each processor is

Tcomm = K (6)

5.3 Idle Time

Idle time exists due to load imbalance among processors. Since a global synchroniza-
tion communication is needed in 2.2 to allow the algorithm to proceed. The proces-
sors with fewer loads will wait at 2.2 for the busy processors to come to send mes-
sages. For the case of perfect load balance, the idle time is zero in each processor.

In our framework, load balance is provided by the task distribution algorithm
which deals with how to assign nodes to processors. For simple, in the following

 Parallel Dynamic SPT Update Algorithm in OSPF 353

complexity analysis, we assume the load is perfect balance among processors and the
idle time is

Tidle = 0 (7)

5.4 Complexity Analysis

Based on (5) (6) (7), the execution time in each processor is

 p comp comm idleT T T T= + +

(/ ((2) /))t p K N p p t Kc sE= + + + +i i (8)

where tc is the average time for one computation operation and ts is the average time
for one communication operation. The speedup of the algorithm follows (with consid-
ering the communication cost)

2Speedup =
(2

(2

())

() /)p s

t N Kc

t N K t Kc

N E N

N E p N

T

T

+ + +

+ + + +
= i

i
 (9)

Next, we will further analyze the complexity and speedup by taking the link
change probability into consideration.

Note that the complexity in (8) and the speedup in (9) we get are for the cases in
which computation is executed or computation time is not zero when the link
changes. However, as we have mentioned in section 2, not all the link changes will
cause computation. In fact, for the nSPT_inc case in table 1, neither computation nor
communication is needed, the execution time for this case is

_ 0TnSPT inc = (10)

For the other cases in table 1, the computation and communication time is as we
have analyzed above, the execution time for them is

_ _ _T T TSPT inc SPT dec nSPT dec T= = = (11)

Now we give the probability of the four link change cases.
For a graph with n nodes and m edges, there are m links in total and n-1 links that

belong to the SPT. We assume the link change is random, that is to say, all the links
have an equal probability to change, therefore, the probability of the changed link
belongs to the previous SPT is

1
SPT

n

m
P

−= (12)

And the probability of the link does not belong to previous SPT is
1

1nSPT
n

m
P

−= − (13)

Assume that for a link change, the probability for increase and decrease are equal,
the probability for the four cases are

354 Y. Zhu, M. Xu, and Q. Wu

_
1

2
SPT inc

n

m
P

−= (14)

_
1

2
SPT dec

n

m
P

−= (15)

_
1

2

1

2
nSPT inc

n

m
P

−= − (16)

_
1

2

1

2
nSPT dec

n

m
P

−= − (17)

Therefore, for the serial algorithm, the computation complexity for each link
change is:

 '
T = 0 _ _ _ _()P P P PnSPT inc SPT inc SPT dec nSPT decT∗ + + +

 = (2())
1

2

1
()*()
2

t N Kc N E N
n

m
+ + +

−− i (18)

And for the parallel algorithm, in each processor, the computation complexity for
each link change is:

 '
PT = 0 _ _ _ _()pP P P PnSPT inc SPT inc SPT dec nSPT decT∗ + + +

 = (/ ((2) /))
1

2

1
()*()
2

t p K N p p t Kc sE
n

m
+ + + +

−− i i (19)

And the speedup for each link change is

3Speedup =
'

'

(2

(2

())

() /)P s

t N KT c

T t N K t Kc

N E N

N E p N

+ + +

+ + + +
= i

i
 (20)

Now we give the factor that affect the complexity (or the execution time) and the
speedup of the parallel algorithm.

According to (19), the factors that affect the complexity include:

a) N, K, E, which depends on the network topology and the link change

b) average degree D, which depends on the network density

c) number of processors p
d) radio of ts/tc, which depends on machine parameters for the parallel implement.

e) the load balance performance, which depends on the task distribution algo-
rithm.

According to (20), the factors that affect the speedup include: a, c, d and e which
have been explained above.

Since N, K, E and D are all fixed due to the network topology and the link changes;
the way left to improve the performance of the parallel algorithm includes: providing

 Parallel Dynamic SPT Update Algorithm in OSPF 355

more processors (less than the number of nodes); an efficient communication mecha-
nism and an efficient task distribution algorithm.

6 Task Distribution Algorithm

In this section, we give a task distribution algorithm to provide load balance. It uses
the topology information of the previous SPT and make the nodes removed in each
iteration be distributed evenly among processors.

The idea of our algorithm is based on this observation: each iteration, the nodes
removed from queue are the selected node and all its descendants (we call it branch)
in the existing SPT. If such changes are distributed onto different processors, queue
sizes will change evenly among processors. That is to say, it is better for nodes in a
branch to be shared by different processors than to be assigned to only one processor.

If we define the nodes assigned on one processor have relativity, the objective of
our task distribution algorithm is to reduce the relativity of nodes in one branch as
much as possible. This can be achieved by using Round-Robin distribution to each
node in the Deep-First-Search (DFS), which at the same time performs the function of
searching for affected nodes. The algorithm which we call Round Robin in DFS
(RR_DFS) is described as follows:

Modified DFS for task distribution:
1.1RR_DFS (node v)
1.2{ Assign v to Processor ID = p;
1.3 add v into local queue of Processor ID = p;
1.4 p = (p + 1) % Processor_number;
1.5 While (DFS find first child v != NULL)
1.6 { RR_DFS(node v);
1.7 DFS Get Next Child v; }
1.8 }

An example is given for the RR_DFS algorithm in Fig 2. (only links that belong to
the SPT are shown) When the weight of link between node P and node A increases,
processors begin DFS process, starting at node A as root to search for affected nodes.
Assume that the nodes in the same level of the DFS have been arraied by their ID
(such as router-id). The affected nodes got by DFS process in Initialization phase and
the result of task distribution algorithm are shown in Fig. 2.

1
1

1

32

2

2

3

3

4

4

4

A

B

DC

H I

E

G

F

J LK

Processor_ID Task nodes

1 A, E, I

2 B, F, J

4 D, H, L

3 C, G, K
P

Fig. 2. An example of the RR_DFS algorithm

356 Y. Zhu, M. Xu, and Q. Wu

If, in the following iteration, node C is selected to be the global minimum, node C
together with its descendant node D and node E are removed from queue in processor
3, 4 and 1 separately, which means that the changed load (node C, D, E) is shared by
processor 3, 4, 1.

RR_DFS algorithm can not promise perfect load balance among processors, but it
provides, to some extend, load balance and its cost is very small. The cost for the DFS
process to search for affected nodes lies on 1.3, and the extra cost for the task distri-
bution lies on 1.2 and 1.4. Since they are all O(1) for one operation, the total com-
plexity for the task distribution algorithm is the same as the complexity for searching
for affected nodes, that is O(N).

7 Simulation

Now we investigate the efficiency of our parallel dynamic SPT update algorithm. The
specific task distribution algorithm we use is the RR_DFS algorithm.

 Simulation Setup

Network Generation
Networks in the simulations are generated using Random Topology Generator (RTG)
[18] software. Fig.3 shows a randomly generated network topology of nodes size
N=200 and average degree D=5.

In the following simulation, we investigate
how the performance change with

1) network size (denoted by node size N): we
fix the average degree D = 10 and use
node size between 50 ~ 500.

2) network density (denoted by average de-
gree D), we fix the node size N = 200,
and use average degree between 3 ~ 200
(all mesh).

Event Generation
For a specific network topology, we test L continuous link changes and L is between
100~500. Changed links are chosen randomly and works in the way of first link down
(weight increases to infinity) and then link up (weight recovers its old value).

Tasks assigned to processors are implemented as threads which use message pass-
ing as their communications.

A. Computation Complexity
During the simulation, we keep record of the number of computation operations in
each processor and take the max number among the p processors to denote the com-
putation complexity in the parallel algorithm.

Since most of the computation is doing in parallel, the speedup of the computation
does not change much with the network size and density, see Fig. 4.(a) and (b). For
small network size, e.g. N=50 the speedup is not significant since the number of af-
fected nodes is small and can not keep all processors busy.

Fig. 3. A randomly generated network

 Parallel Dynamic SPT Update Algorithm in OSPF 357

computation speedup with network size (D=10)

0

1

2

3

4

5

6

50 100 200 300 400 500

nodes

c
o
m
p
u
t
a
t
i
o
n

s
p
e
e
d
u
p

p=2

p=4

p=8

computation speedup with network density (N=20)

0
1
2
3

4
5
6
7
8

3 6 10 20 50 100 200

average degree

c
o
m
p
u
t
a
t
i
o
n

s
p
e
e
d
u
p

p=2

p=4

p=8

(a) (b)

Fig. 4. Computation complexity

B. Communication Times
We record the number of communications each processor performs during the simula-
tion. For L times link changes and C times communications involved, we use C/L to
denote the average communication times for a single link change.

Network Size
Communication times for a single link event do not change much with network size,
see Fig. 5.(a). This is because of the group removal schema. Though the affected
nodes number increases with the network size, however, by using group removal
schema, the size of removed group (including the selected nodes and all its descen-
dants) increases, thus making the communication times do not show much increase.

0 100 200 300 400 500
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0 communication times
 changes with network size (D=10)

co
m

m
ni

ca
tio

n
tim

es
 p

er
 li

nk
 c

ha
ng

e

nodes

0 50 100 150 200

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0
communication times
 changes with network density (N=200)

co
m

m
un

ic
at

io
n

tim
es

 p
er

 li
nk

 c
ha

ng
e

degree

(a) (b)

Fig. 5. Communication times

Network Density
The communication times for a single link change event become smaller as the net-
work density increases, see Fig. 5.(b). This is because that not all link changes will
cause computation, as we discuss in section 2. In the nSPT_inc case, each processor
judges that the old SPT is still correct and ends the algorithm with no communication.
Since for a fixed node size, as the network density increases, the probability of the
nSPT_inc case increases, so the average communica-tion times for a single link change
becomes smaller.

C. Load Balance Performance
To investigate the performance of load balance in our task distribution algorithm
RR_DFS, we implement the frame-work using two task distribution algorithms:

358 Y. Zhu, M. Xu, and Q. Wu

RR_DFS and a random distribution algorithm. The random distribution algorithm can
be described as: divide the nodes on the whole network into p groups randomly and
each group is assigned to one processor before the Initialization phase. Performance
comparison of the two task distribution algorithms are showed in Fig. 6.(a).

Since the RR_DFS algorithm takes the characteristic of the load change into con-
sideration, the load change can be shared among different processors, making the
queue size in each processor decrease averagely, thus a smaller running time can be
got using RR_DFS than random distribution algorithm for most cases, see Fig. 6.(a).

0 100 200 300 400 500
0

20

40

60

80

100

120

140

160

ru
n

ni
n

g
ti

m
e

nodes

 RR_DFS (p=2)
 RR_DFS (p=4)
 RR_DFS (p=8)
 Random (p=2)
 Random (p=4)
 Random (p=8)

0 10 20 30 40 50 60
-50

0

50

100

150

200

250

300

350

di
ff

er
en

ce
 c

o
ef

fic
ie

n
ce

iterations

 Random
 RR_DFS

(a) (b)

Fig. 6. Performance for two task distribution algorithms

Furthermore, we give a detail comparison of the load balance performance between
the two task distribution algo-rithms. We maintain the network node size to be N =
200, average degree D = 10 and processor number p = 2, and we compare the metric
difference coefficient in each iteration before the communication starts in the algo-
rithms. The difference coefficient is defined to be the deviation of the queue size of p
processors. Comparison result is showed Fig. 6.(b). The smaller difference coefficient
value for the RR_DFS algorithm indicates that the working load among processors is
more balanced than the Random distribution algorithm.

8 Conclusion

We explore the parallel algorithm for dynamic SPT update in this paper. Based on the
three characters of the dynamic algorithms: dynamic topology in computation; flexi-
ble iteration times; great load changes in iteration, we give our parallel algorithm
framework which: works in PDU mode to get near linear speedup and use group-
removal schema to reduce communication. Simulation results show that the commu-
nication cost can be limited to a small number and does not change much with
network size and decreases with network density. To further provide load balance, we
propose a task distribution algorithm called RR_DFS. It makes use of the previous
SPT information and shows a good load balance performance compared with the
random distribution in our simulation.

The parallel algorithm present in this paper is for single link change. For multiple
link changes, the algorithm can work by simply dealing with one link change after
another. Though in real-life environment, single link change occupies most cases, it is

 Parallel Dynamic SPT Update Algorithm in OSPF 359

still worthwhile to explore an efficient parallel dynamic algorithm for multiple link
changes, and this is where our further work lies.

Acknowledgements

This research is supported by the National Natural Science Foundation of China (No.
90604024), the Key Project of Chinese Ministry of Education.(No.106012), and Na-
tional 863 project of China (No. 2005AA121510).

References

1. Moy, J.: OSPF version 2, Internet Draft, RFC 2178 (1997)
2. Dijkstra, E.: A note two problems in connection with graphs. Numerical Math 1 (1959)
3. Paige, R., Kruskal, C.: Parallel algorithms for shortest paths problems. In: Proc. 1989 Intl.

Conf. on Parallel Processing, pp. 14–19 (1989)
4. Brodal, G.S., Traff, J.L., Zaroliagis, C.D.: A parallel priority queue with constant time op-

erations. Journal of Parallel and Distributed Computing 49(1), 4–21 (1998)
5. Cohen, E.: Efficient parallel shortest-paths in digraphs with a separator decomposition. J.

Algorithms 21, 331–357 (1996)
6. Klein, P., Rao, S., Rauch, M., Subramanian, S.: Faster Shortest-path algorithms for planar

graphs. In: Proceedings of the 26th Symposium on Theory of Computation (STOC), pp.
27–37 (1994)

7. Traff, J.L., Zaroliagis, C.D.: A simple parallel algorithm for the single-source shortest
pathproblem on planar digraphs. Journal of Parallel and Distributed Computing 60(9),
1103–1124 (2000)

8. Subramanian, S.: Parallel and Dynamic Shortest-Path Algorithms for Sparse Graphs, PhD
Thesis, Brown University (1995)

9. Basu, A., Riecke, J.G.: Stability issues in OSPF. In: Proceedings of ACM SIGCOMM
(2001)

10. Francois, P., Filsfils, C., Bonaventure, O., Evans, J.: Achieving Sub-Second IGP Conver-
gence in Large IP Networks. ACM SIGCOMM Computer Communication Review (2005)

11. Shaikh, A., Greenberg, A.: Experience in Black-box OSPF Measurement. In: Proc. ACM
SIGCOMM Internet Measurement Workshop (IMW) (2001)

12. Alattinoglu, C., Jacobson, V., Yu, H.: Towards Milli-Second IGP Convergence, draft-
alaettinoglu-ISISconvergence-00.txt (2000)

13. OSPF Incremental SPF, Cisco IOS Software Release 12.0 s, [Online]. Available:
http://www.cisco.com

14. Ramalingam, G., Reps, T.W.: An Incremental Algorithm for a Generalization of the Short-
est-Path Problem. Journal of Algorithms 21(2), 267–305 (1996)

15. Narvaez, P., Siu, K.-Y., Tzeng, H.-Y.: New Dynamic Algorithms for Shortest Path Tree
Computation. IEEE Transactions on Networking 8(6) (December 2000)

16. Narvaez, P., Siu, K.-Y., Tzeng, H.-Y.: New dynamic SPT algorithm based on a ball-
andstring model. IEEE/ACM Transactions on Networking 9, 706–718 (2001)

17. Xiao, B., Cao, J., Zhuqe, Q., Shao, Z., Sha, E.: Dynamic Update of Shortest Path Tree in
OSPF. In: Interna-tional Symposium on Parallel Architectures, Algorithms and Networks
(ISPAN’04) (2004)

18. Wei, L.: Random topology generator (RTG). Univ. of Southern California, Los Angeles,
CA. [Online]. Available: http://lasr.cs.ucla.edu/save/topo.html

Pedestrian and Crowd Dynamics Simulation:

Testing SCA on Paradigmatic Cases of Emerging
Coordination in Negative Interaction Conditions

Stefania Bandini, Mizar Luca Federici, Sara Manzoni, and Giuseppe Vizzari

Complex Systems and Artificial Intelligence Research Center
University of Milan–Bicocca, Italy

tel.: +39-02-64487865
{bandini,federici,manzoni,vizzari}@disco.unimib.it

Abstract. The paper presents a set of theoretical experiments per-
formed to evaluate Situated Cellular Agent (SCA) approach within
pedestrian dynamics research context. SCA is a modeling and simu-
lation approach based on Multi Agent Systems principles that derives
from Cellular Automata. In particular, we focus on two emerging phe-
nomena (freezing by heating and lane formation phenomena) that have
been empirically observed and already modeled by analytical particle–
based models and Cellular Automata–based models.

Keywords: Multi-Agent System, Crowd Simulation, Paradigmatic
Cases, Lane Formation, Freezing by Heating, Situated Cellular Agents.

1 Introduction

The research context of this paper refers to bottom–up approaches to Pedestrian
Dynamics that is, the study of potentially complex dynamics that pedestrians
produce as the result of (simple) local interactions occurring within a shared,
limited, partially known spatial environment [1]. The suitability of bottom–up
approach to study these phenomena is supported by several years of studies and
empirical observations in human sciences (e.g. sociology, psychology).

Available models for pedestrian dynamics can be classified into two main
classes: many–particle models (e.g. Helbing’s Social Force Model [5] is the most
known) and approaches based on discrete dynamical systems. The first approach
considers individuals as particles subjected to forces, space is continuous and sin-
gle positions are defined by coordinates. Within the last class, Cellular Automata
(CA) demonstrated to be particularly adequate for this type of context. Accord-
ing to CA peculiarities the spatial environment can be represented as a regular
grid of cells, whose state can include the representation of the presence of indi-
viduals (or other environmental obstacles). Pedestrian movement is represented
by synchronous CA state transition rules (e.g. an occupied cell becomes empty
and, synchronously, an adjacent empty cell becomes occupied) and the dynamics
of the system result from local interactions between CA cells. According to CA

V. Malyshkin (Ed.): PaCT 2007, LNCS 4671, pp. 360–369, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Pedestrian and Crowd Dynamics Simulation 361

approach, several research groups have worldwide developed models for pedes-
trian dynamics both to reproduce specific phenomena (e.g. Lane Formation,
that refers to the spontaneous formation of pedestrian lanes with same direc-
tion [18]), or specific scenarios (e.g. evacuation dynamics from public spaces like
classrooms [7], underground stations [8]), and more general modeling approaches
able to reproduce several phenomena and situations.

The success of CA-based approaches derives mainly from the fact that CA
are simpler to understand and to be used by experts of several application con-
texts than the analytical models. However, like the analytical approaches, they
suffer the limitation of considering individuals as homogeneous entities and gen-
erally do not provide a support to dynamism and flexibility of represented situa-
tions, while sometimes it is preferred to represent behavioral rules at individual
scale. Multi Agent System (MAS) approach to pedestrian (and crowd) mod-
eling [9,10,11], have been recently suggested and experimented since a MAS
can represent a potentially heterogeneous system of agents in a partially known
environment. Within MAS–based approaches, Situated Cellular Agents (SCA)
[19] defines spatially situated agents in an environment endowed of an explicit
structure that qualifies their perceptions, interactions and action abilities. The
structure of SCA environment influences agents’ actions and perception abilities.
SCA has been presented as an extension of CA [3], and has been experimented
in several contexts (among which the modeling of groups of pedestrians [11,12]).

In particular, in this paper we present a set of experiments that have been per-
formed in order to evaluate SCA approach within pedestrian dynamics context.
After a brief overview of SCA approach and its possible adoption in modeling
crowding situations, we will describe and report main results of an experimental
work we performed in order to reproduce Freezing by Heating and Lane For-
mation (in Section 3). The latter have been empirically observed and previously
modeled as collective phenomena resulting from the local interaction induced
by limited spatial resources for pedestrian movements in structured and densely
populated environments [4].

2 SCA Model and Crowd Simulation

2.1 Situated Cellular Agent Model

Situated Cellular Agent model is a specific class of Multilayered Multi-Agent
Situated System (MMASS) [13] providing a single layered spatial structure for
agents environment and some limitations to the field emission mechanism.

A Situated Cellular Agent system is defined by the triple
〈
Space, F,A

〉
where

Space indicates the environment where the set A of agents is situated, acts
autonomously and interacts through the propagation of the set F of fields and
through local reaction.
Space is defined by SCA as an undirected and unlabeled graph of sites. Every

site p ∈ P (where P is the set of sites of the layer) can contain at most one agent
and is defined by the 3–tuple

〈
ap, Fp, Pp

〉

362 S. Bandini et al.

where ap ∈ A∪ {⊥} is the agent situated in p , Fp ⊂ F is the set of fields active
in p and Pp ⊂ P is the set of sites adjacent to p.

A SCA agent is defined by the 3–tuple< s, p, τ > where τ is the agent type, s ∈
Στ denotes the agent state and can assume one of the values specified by its type
(see below for Στ definition), and p ∈ P is the site of the Space where the agent is
situated. Agent type comprises agent state, perceptive capabilities and behavior.
In fact an agent type τ is defined by the 3–tuple

〈
Στ , P erceptionτ , Actionτ

〉
.

Στ defines the set of states that agents of type τ can assume; Perceptionτ is
a function associating to each agent state a vector of pairs representing the
receptiveness coefficient and sensitivity thresholds for that kind of field while
Actionτ represents instead the behavioral specification for agents of type τ .
Agent behavior can be specified using a language that defines four primitives.
The emit(s, f, p) primitive allows an agent to start the diffusion of field f on p,
that is the site it is placed on; react(s, ap1 , ap2 , . . . , apn , s

′) is the primitive that
allows the specification of a coordinated change of state among adjacent agents;
transport(p, q) is the primitive that allows to define agent movement from site p
to site q (that must be adjacent and vacant); trigger(s, s′) is the function that,
like the reaction primitive, specifies that an agent must change its state when
it perceives a particular condition in its local context (i.e. its own site and the
adjacent ones), but it does not require a coordination with other agents.

Each SCA agent is provided with a set of sensors that allows its interaction
with the environment and other agents. At the same time, agents can constitute
the source of given fields acting within a SCA space (e.g. noise emitted by a
talking agent). Formally, a field type t is defined by

〈
Wt,Diffusiont, Comparet,

Composet
〉

where Wt denotes the set of values that fields of type t can assume;
Diffusiont is the diffusion function of the field computing the value of a field
on a given space site taking into account in which site and with which value
it has been generated. Composet expresses how fields of the same type have to
be combined while Comparet is the function that compares values of the same
field type. This function is used in order to verify whether an agent can perceive
a field value by comparing it with the sensitivity threshold after it has been
modulated by the receptiveness coefficient.

2.2 SCA–Based Model of Pedestrian Crowds: Overview

In order to adopt SCA approach in the crowding context, we defined the spatial
abstraction in which the simulated entities are situated as a non–directed graph
of sites, where graph nodes represent available space locations for pedestrians
and graph edges define the adjacency relations among them (and agents’ suitable
movement directions).

We represented as SCA agents of different types both Pedestrians and relevant
elements of the spatial structure that may interact with pedestrians and influence
their movement (i.e. active elements of the environment). Agent type defines the
set of suitable states, perceptive capabilities and behavioral abilities of agents.

Pedestrian and Crowd Dynamics Simulation 363

Agent

Knowledge

Base

(AKB)

Perception

Deliberation

Action

AKB

Modification
AKB

Updating

Environment

Modification

Stimulus or

Environment

Modification

Agent

Action

Set

(AAS)

Selected Action

Fig. 1. A schematic representation of the internal architecture of SCA agents

Figure 1 shows a schematic representation of agent internal architecture. The
architecture comprises two knowledge containers (i.e. Agent Knowledge Base and
Agent Action Set) and three tasks that define the agent actual behavior (i.e.
Perception, Deliberation, and Action). The Agent Action Set (AAS) contains
the set of actions that are allowed to the agent in terms of L*MASS primitives
[14] (i.e. agent abilities), while the Agent Knowledge Base (AKB) contains the
internal representation of agent state and of its local environment (e.g. set of
fields active in its site, set of empty sites in its surrounding). AAS is defined
according to the agent type and cannot change during agent execution, while
the AKB updating can be caused by the execution of trigger or react actions or
by a change in the agent environment (e.g. an adjacent site becomes empty, a new
field reaches the agent site or the agent moves to another site). Perception is a
function that associates a set of influences with the set of possible actions. When
a stimulus reaches the site where the agent is situated or some changes occur
in the local environment (e.g. an adjacent site becomes empty), the perception
module updates the AKB. Thus, action module applies a L*MASS primitive,
in order to produce an action. The phase between perception and execution
is deliberation that is, the component of an agent responsible of selecting an
action to be executed from the set of activated actions (i.e. conflict resolution
among activated actions). The SCA model does not specify a standard way to
perform these tasks. In the following sections we give more details about their
specifications in the presented experiments.

In our experiments we adopted a synchronous–parallel execution method,
where at every step each agent selects the action to be performed (at fixed
environment configuration), in order to take actions at the same time. This so-
lution required the introduction of a conflict resolution strategy in the case of
more than one agent choosing the same destination site.

364 S. Bandini et al.

3 Experimenting SCA on Phenomena Emerging from
Negative Interaction for Space Sharing

This section presents an analysis of SCA expressive power in reproducing known
and well-studied interaction situations in crowds (i.e. Freezing by Heating and
Lane Formation). The latter have been observed within systems of human actors
that interact to share a limited spatial environment in situations like the walking
through a corridor, or the evacuation of a room. Freezing by Heating is a global
slowdown of the system due to the high density rate of pedestrians, while Lane
Formation is the spontaneous formation of two pedestrian flows with opposite
walking directions.

In the following sections we describe the scenarios we modelled in order to
check the ability of SCA to reproduce Freezing by Heating and Lane Formation.
In the first scenario we model an evacuation situation where a given number
of agents tries to leave a room through a single exit. Lane formation has been
studied in an environment similar to a narrow passage populated by pedestrians
moving towards one of two large opposite exits.

3.1 Freezing by Heating

Freezing by heating is a phenomenon that occurs in situations of high density of
pedestrians and it consists in an extreme slowing down of the flow of pedestrians
that can end in a complete stall situation. The immobility (freezing) is caused by
the “will” (heating) of all the pedestrians to move towards a specific destination.
The attempt of each pedestrian to move is the cause of the mutual hampering
of the pedestrians.

Fig. 2. The figure shows the screenshots of the simulation output with a population
density of 40 percent (620 agents). Clear circles represent the agents-pedestrian that
move towards the exit (situated on the right-side of the room).

Pedestrian and Crowd Dynamics Simulation 365

Fig. 3. The figure shows the number of still pedestrians for each simulation step (with
a pedestrian population density of 40 percent). Freezing by heating phenomenon can
be observed at about step 50.

The scenario of the simulation campaign is constituted by a population of
pedestrian that attempt to exit a room endowed with only one exit that doesn’t
allow a huge volume of flow. The modeling of this scenario with SCA is quite
simple (see Figure 2). Space has been modeled with a grid of 31x51 sites (a
regular non oriented graph of Moore neighborhood) where each node represents
a square area of 45 cm (this is the space occupied by a still person, in accord to
literature). The exit is represented by a still agent that occupies a site reachable
only from three adjacent sites.

The agent of type exit has a unique state and constantly emits a field per-
ceived as attractive by the agents pedestrians. The exit field is spread through
the environment with a diffusion function that makes the intensity of the field
decreasing in relation to the distance from the source. Each pedestrian is repre-
sented by an agent, of a specific type, that locally behaves according to its state
and to the intensity of the exit field (in case of multiple adjacent sites presenting
the same intensity value, the agent will choose randomly its destination). When
the agent reaches the exit, it exits the simulation.

The simulation campaign has been performed for a population density of 20,
40 and 60 percent, that means respectively 310, 620 and 930 agents distributed
on 1550 sites/nodes. For each density value have been performed 10 experiments.
At each step of the simulation we measured the number of still pedestrians that
is, agents that are not able to move.

Figure 3 shows the average (measured on 10 experiments on a population
density of 40 percent) of still pedestrians per step. The graphic allows to un-
derstand better what happens in the simulations. The population of pedestrians
is directed towards the exit, some of the pedestrians find it difficult to move
since the very firsts steps. Immobility increases constantly till it reaches a peak,
generally around the step 40-45 (for all the densities). During these steps the
percentage of agents that remain still for more than one step is very high (from
80 percent for simulations of density 20 percent to 91 percent in simulation where
density is 60 percent). After few steps the peak of immobility decreases, slowly
the situation becomes more dynamic and pedestrians can exit the room. The last
agent, in average, leaves the room at step 460 (density 20 percent), 913 (density

366 S. Bandini et al.

40 percent) and 1363 (density 60 percent). The experimentation campaign has
verified the phenomenon of the freezing by heating [7][5].

3.2 Lane Formation

Lane formation refers to the self–organization of pedestrians into separate flows.
It has been empirically observed in scenarios like streets or corridor–like passages
that are walkable in both directions. When density is high, pedestrians start to
move more difficultly since they share a limited spatial environment. Pedestrian
lanes form as the result of local behaviors and interactions of single agents that
pursue their individual goals but also attempt to avoid collisions.

As in the previous experimentation, the simulation scenario consists of a reg-
ular grid of sites representing available locations for pedestrians, and two types
of agents: Pedestrians and Exits. Both types of agents emit a presence field, and
pedestrians are attracted by exits according to their individual goals (i.e. one
of the two exits). In order to maintain constant the population density, pedes-
trians that exit the corridor are reinserted into the simulation. Figure 4 shows
two screenshots where lane formation phenomena, obtained by simulation, can
be observed in corridors of different size.

Fig. 4. Screenshots show lane formation phenomenon obtained in simulations in two
different corridor topologies. Clear agents move towards the exit on the left, while dark
agents are directed to the right exit.

We studied and implemented several behavioral models based on the combi-
nation of basic pedestrian behaviors. At each simulation step, each pedestrian
perceives its local environment through presence fields of active elements of the
environment (i.e. exits) and of other pedestrians. If possible, pedestrians move to-
wards an empty adjacent site that presents the highest value of the field diffused
by agent-exit (i.e. that value represents the next best destination). Otherwise,
they remain still for at most a given number of steps, and then look for any
adjacent empty site. Moreover, to represent the natural tendency of pedestrians
to keep a certain distance between each other [5], each agent emits a presence
field that is perceived as repulsive by other pedestrians. Presence fields of agents
that move towards the same direction are interpreted as less repulsive than those

Pedestrian and Crowd Dynamics Simulation 367

emitted by agents that move in the opposite one. Finally, agents of opposite
directions, under some conditions, are allowed to exchange their positions when
the site occupied by an agent is the next best destination for the other, and vice
versa.

The average speed of a pedestrian that walks in normal situation (neither
in panic nor in danger) is indicated by the literature to be about 1,3 meters
per second ([15]). In order to compare our results with the ones presented in
the literature [18][16][5] we thus defined pedestrian speed in our simulation as
one step each 0,3 seconds. This value has been derived by the minimum time
required to walk along the whole corridor (i.e. 30 nodes representing 45 square
centimeters each) moving one site each simulation step.

The mean speed of pedestrians in relation to population density is shown in
Figure 5, where we reported with dotted lines also the results of reference works
by Blue and Adler [18] and [16]. Simulations have been performed with densities
from 10 to 90 percent.

Fig. 5. The graphic shows the mean speed of pedestrian in relation to population
density where, reported with dotted lines, also the results of reference works of Blue
and Adler and Togawa are displayed

Curves of our simulations are between the two reference curves with some mi-
nor variations in relationship to different simulation settings. At higher densities
the curve reaches values more close to Blue and Adler results, also in terms of
speed values of pedestrians. A qualitative comparison with results reported in
[5] confirmed as well the validity of our approach, although our results have been
obtained by a different behavioral model.

368 S. Bandini et al.

4 Concluding Remarks and Future Works

We presented some experiments performed to verify whether SCA can replicate
freezing by heating and lane formation phenomena. These results suggest SCA
as a suitable tool for the modelling and simulation of evacuation scenarios and
pedestrian dynamics. Results obtained by this MAS–based approach can be
compared to the ones of more traditional approaches. These result encouraged
us in considering MAS as a promising modeling tool that can be considered more
flexible and more easily applicable to different scenarios. Moreover, in relation
to the consideration about emergence and MAS we believe that the obtained
phenomena fits the examined constraints and can though be defined “emergent”
to the extent that they are not previously codified in the agents behavior, but
result from local interactions of the agents. Lanes and groups moreover can be
considered as entities that exert an effect on the behavior of the agent, that means
that it is present a downward causality that is also considered as characteristic
of self organizing systems. To the definition “ emergent” we anyway prefer to
use “resultant” as, in our opinion, it expresses in a less ambiguous way the real
nature of the observed dynamics.

These experiments allowed us to propose some SCA model extensions to im-
prove environment representation and agent behavior. In relation to Spatial Ge-
ography we suggest the introduction of a spatial description of sites; that might
affect agent behavior as well as field diffusion. We suggest to introduce in the
agent description a concept of direction, that could improve the realism of sim-
ulations and to adopt a weighted graph, in order to describe the environment
with a more expressive ability allowing a more fine modulation of agent behavior
and field diffusion. With Directional Fields (field that diffuse only in a specific
direction) could be possible to introduce the concept of ”sight” for the agents
that would bring different way to perceive and influence other agents. Future
activities will concern the extension of SCA formal specification and execution
environment according to the suggestions stated above.

References

1. Schreckenberg, M., Sharma, S.: Pedestrian and Evacuation Dynamics. Springer,
Heidelberg (2002)

2. Bandini, S., Federici, M.L., Manzoni, S., Vizzari, G.: Towards a methodology for
situated cellular agent based crowd simulations. In: Dikenelli, O., Gleizes, M.-P.,
Ricci, A. (eds.) ESAW 2005. LNCS (LNAI), vol. 3963, Springer, Heidelberg (2006)

3. Bandini, S., Manzoni, S., Simone, C.: Enhancing cellular spaces by multilayered
multi agent situated systems. In: Bandini, S., Chopard, B., Tomassini, M. (eds.)
ACRI 2002. LNCS, vol. 2493, pp. 156–167. Springer, Heidelberg (2002)

4. Ferber, J.: Multi-Agent Systems. Addison-Wesley, Harlow (UK) (1999)

5. Helbing, D.: A fluid-dynamic model for the movement of pedestrians. Complex
Systems 6, 391–415 (1992)

6. Blue, V.J., Adler, J.: Cellular automata microsimulation for modeling bidirectional
pedestrian walkways. Trasportation Research Part B 35, 293–312 (2001)

Pedestrian and Crowd Dynamics Simulation 369

7. Klupfel, H.: A Cellular Automaton Model for Crowd Movement and
Egress Simulation. PhD thesis, Universitat Duisburg-Essen (2003) http://
www.ub.uni-duisburg.de/ETD-db/theses/available/duett-08012003-092540/

8. Morishita, S., Shiraishi, T.: Evaluation of billboards based on pedestrian flow in
the concourse of the station. In: El Yacoubi, S., Chopard, B., Bandini, S. (eds.)
ACRI 2006. LNCS, vol. 4173, pp. 716–719. Springer, Heidelberg (2006)

9. Batty, M., Couclelis, H., Eichen, M.: Urban systems as cellular automata. 24 (1997)
10. Torrens, P.: Cellular automata and multi-agent systems as planning support tools.

Planning Support Systems in Practice, 205–222 (2002)
11. Bandini, S., Manzoni, S., Vizzari, G.: Multi-agent approach to localization prob-

lems: the case of multilayered multi agent situated system. Web Intelligence and
Agent Systems: An International Journal 2, 155–166 (2004)

12. Bandini, S., Manzoni, S., Vizzari, G.: SCA: a model to simulate crowding dynam-
ics. Special Issues on Cellular Automata. IEICE Transactions on Information and
Systems E87-D, 669–676 (2004)

13. Bandini, S., Manzoni, S., Simone, C.: Dealing with space in multi-agent system:
a model for situated MAS. In: Castelfranchi, C., Johnson, L. (eds.) Proceedings
of the 1st International Joint Conference on Autonomous Agents and MultiAgent
Systems (AAMAS 2002), July 15-19, 2002, pp. 1183–1190. ACM Press, New York
(2002)

14. Bandini, S., Manzoni, S., Pavesi, G., Simone, C.: L*MASS: A language for situ-
ated multi-agent systems. In: Esposito, F. (ed.) AI*IA 2001: Advances in Artificial
Intelligence. LNCS (LNAI), vol. 2175, pp. 249–254. Springer, Heidelberg (2001)

15. Schadschneider, A.: Cellular automaton approach to pedestrian dynamics -theory
(Pedestrian and Evacuation Dynamics) 75–86 (2001)

16. Still, G.K.: Crowd Dynamics. PhD thesis, University of Warwick, Warwick (2000)
http://www.crowddynamics.com/

17. Helbing, D., Farkas, J.I., Molnàr, P., Vicsek, T.: Simulation of Pedestrian Crowds
in Normal and Evacuation Situations. In: Proccedings of PED01, Pedestrian and
Evacuation Dynamics, pp. 21–58. Springer, Heidelberg (2002)

18. Blue, V.J., Adler, J.L.: Cellular automata microsimulation for modeling bidirec-
tional pedestrian walkways. Trasportation Research Part B 35, 293–312 (2001)

19. Bandini, S., Manzoni, S., Simone, C.: Situated Cellular Agents in Non-uniform
Spaces. In: Malyshkin, V. (ed.) PaCT 2003. LNCS, vol. 2763, pp. 10–19. Springer,
Heidelberg (2003)

http://www.ub.uni-duisburg.de/ETD-db/theses/available/duett-08012003-092540/
http://www.ub.uni-duisburg.de/ETD-db/theses/available/duett-08012003-092540/
http://www.crowddynamics.com/

Coarse-Grained Parallelization of

Cellular-Automata Simulation Algorithms�

Olga Bandman

Supercomputer Software Department
ICM&MG, Siberian Branch, Russian Academy of Sciences

Pr. Lavrentieva, 6, Novosibirsk, 630090, Russia
bandman@ssd.sscc.ru

Abstract. Simulating spatial dynamics in physics by Cellular Automata
(CA) requires very large computation power, and, hence, CA simulation
algorithms are to be implemented on multiprocessors. The preconceived
opinion, that no much effort is required to obtain highly efficient coarse
grained parallel CA algorithm, is not always true. In fact, a great variety
of CA modifications coming into practical use need appropriate, some-
times sophisticated, methods of CA algorithms parallel implementation.
Proceeding from the above a general approach to CA parallelization,
based on domain decomposition correctness conditions, is formulated.
Starting from the correctness conditions particular parallelization meth-
ods are developed for the main classes of CA simulation models: syn-
chronous CA with multi-cell updating rules, asynchronous probabilistic
CA, and CA compositions. Examples and experimental results are given
for each case.

1 Introduction

A Cellular Automaton (CA) is nowadays an object of growing interest as a math-
ematical model for spatial dynamics simulation. In some fundamental works [1,2]
CA is expected to become a complement to partial differential equations due to
its capability of simulating nonlinear and discontinuous processes. Particularly,
CA may be helpful when there is no other way of representing a phenomenon to
be simulated. By now a great variety of CA are known whose evolution simulate
spatial dynamics of natural phenomena, which together with methods and tools
for using them, are integrated under a unique concept referred to as fine-grained
parallelism. The origin of fine-grained parallelism lays in classical CA theory.
Classical CA have Boolean alphabet, deterministic one-cell updating transition
functions, and synchronous mode of operation. They are capable to simulate dif-
fusion, wave propagation, phase transitions, spatial self-organization [2,3], etc.
A more complicated class of CA called Lattice-Gas models [4] is used in hydro-
dynamics. In chemistry [5] and microelectronics [6] asynchronous probabilistic
� Supported by 1)Presidium of Russian Academy of Sciences, Basic Research Program

N 14.16 (2006), 2) Siberian Branch of Russian Academy of Sciences, Interdisciplinary
Project 29 (2006).

V. Malyshkin (Ed.): PaCT 2007, LNCS 4671, pp. 370–384, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Coarse-Grained Parallelization of Cellular-Automata Simulation Algorithms 371

CA (sometimes referred to as Monte-Carlo methods) are used for simulating real
atoms and molecules moving and interacting.

It is clear that CA simulation of processes on micro-level requires very large
CA (up to 1010 − 1012 cells) and many (up to 105) iterative steps to obtain a
wanted information. Hence, parallel implementation on a multiprocessor system
is essential, and methods for CA algorithms parallelization have been developed
and studied. Intrinsic fine-grained parallelism and the results of a number of
case studies has created an illusion that domain decomposition methods always
provide highly efficient parallel programs requiring no much effort [7,8,9] . In
fact, the above is true only for classical CA . As for its numerous modifications
yet known and intensively emerging, the problem may be more complicated. For
example, domain decomposition method is to be modified for CA with multi-cell
updating rules [10,12], the similar should be done when hybrid reaction-diffusion
CA [11] is used. In case of asynchronous CA the operation mode is to be changed
in order to achieve high efficiency of parallel implementation. At the same time,
pursuing high efficiency it is possible to break the equality of the initial CA evo-
lution and that of a decomposed CA. It follows therefrom that the problem is to
be revised. In the paper an attempt to make such a revision is done based on cor-
rectness conditions which aim to guarantee the equality of initial CA evolution
to that of its parallelized version. In fact, correctness conditions should provide
conservation of transition rules of CA elementary automata involved in the inter-
action between processes. But, bearing in mind that CA mimics kinetics of real
or virtual (”stylized ”) particles, correctness conditions may also be regarded as
conservation laws corresponding to the real process under simulation.

The paper aims to formulate correctness conditions for domain decomposition
methods of CA parallelization, and to show how parallel algorithms should be
developed for the most known types of CA simulation models. In the second
section correctness conditions are formulated. The following three sections are
devoted to domain decomposition algorithms of synchronous, asynchronous and
hybrid CA decomposition algorithms which are illustrated by the examples from
series of simulations of flow propagation through porous media of different type.

2 Correctness Conditions for CA Domain Decomposition

2.1 Formal Definitions

Cellular Automaton is defined by four terms, ℵ = 〈A,M,Θ, ρ〉 [12], which have
the following meaning: A is a state alphabet, M is a naming set, Θ is a local
operator, ρ is a mode of functioning. The alphabet may be any set of numbers,
symbols, vectors or matrices. The naming set used in CA-simulation comprises
coordinate vectors of discrete space points (i, j, k), which are for short denoted
by a single symbol m. Two particular sets A and M define a class of cellular
arrays A×M , whose each representative Ω = {(a,m) : a ∈ A,m ∈ M} is a set
of pairs called cells. Each cell corresponds to an elementary automaton, named
m ∈ M in a state a ∈ A. On M naming functions φ(m) : M → M are defined,

372 O. Bandman

whose values associate with a cell m a number of its neighboring cells, forming
a local configuration

Q(m) = {(u0,m), ..., (uk, φk(m)), ..., (uq, φq(m))}, (1)

where UQ(m) = {u0, u1, ..., uq} is a state set of Q(m), and

TQ(m) = {m,φ1(m), ..., φk(m), ...φq(m)} (2)

is the underlying template for Q(m) .
Two local configurations

Q(m) = {(u0,m), (u1, φ1(m))..., (uq , φq(m))},
S(m) = {(v0, ψ0(m), (v1, ψ1(m), ...,)(vs, ψs(m))},

being composed into a substitution of the form

Θ(m) : S(m)→ Q(m), (3)

constitute a local operator, where S(m) and Q(m) are referred to as a basic, and
a next state local configurations of Θ, respectively, m being called a main cell
of Θ.

The next states uk ∈ UQ, k = 0, ..., q, are values of corresponding transition
function

uk = fk(v0, ..., vs), k = 0, 1, ..., q. (4)

Local operator Θ is applicable to a cell m ∈ M , if TS(m) ⊆ M and vk ∈ A for
all k = 0, ..., s. Application of Θ to a cell m ∈ M consists of two actions: 1)
computing next states (4), and 2)updating cells of Q(m) assigning the obtained
values to their states.

A subset M ′ ⊆ M referred to as a main naming set is defined, such that
application of Θ to all m ∈ M ′ comprises an iteration performing a global
transition

Θ(M ′) : Ω(t)→ Ω(t+ 1), (5)

The sequence

Σ(Ω) = (Ω,Ω(1), ..., Ω(t), Ω(t + 1), ..., Ω(t̂)), (6)

obtained during iterative operation of the CA is called the evolution, t being the
iteration number. CA evolution is the result of the simulation task, representing
the process under simulation. If the process converges to a stable global state,
then CA evolution has a termination, i.e. there exists such a t = t̂, that Ω(t̂) =
Ω(t̂ + 1) = Ω(t̂ + 2) = If it is not so, then the evolution is infinite, exhibits
oscillatory or chaotic behavior [2].

The mode ρ ∈ {α, β, ..., σ} of CA operation determines the order of cells to be
chosen for local operator applications during the iteration. Synchronous (denoted
as σ) and asynchronous (denoted as α) modes are the basic ones. Accordingly,
a synchronous CA is denoted as ℵσ and an asynchronous one - as ℵα.

Coarse-Grained Parallelization of Cellular-Automata Simulation Algorithms 373

In synchronous CA cell-states of Ω(t) are updated only after all next states
for all m ∈ M are computed. Theoretically, it may be done in all cells simulta-
neously or at any order, which manifests the cellular parallelism. In fact, when
a conventional sequential computer is used, such a cellular parallelism is imi-
tated by delaying cell updating until all next states are obtained. So, really the
cellular parallelism is a virtual parallelism, which cannot be for the benefit in
conventional computers.

Asynchronous mode of operation suggests no simultaneous operation (neither
real nor virtual). Intrinsic parallelism of ℵα is exhibited by the arbitrary order
of cells to be chosen for application of Θ(m), the updating of cell states of
Q(m) being done immediately after Θ(m) is applied. So, each global transition
Ω(t) → Ω(t+1) consists of |M ′| sequential acts of cell updating, being referred to
as global state transition sequences. Due to random order of those acts the number
of all possible transition sequences is qual to the number of transpositions inM ,
which is μ = |M |!. The important property of asynchronous mode of operation
is that the state values used by transition functions (4) may belong both to Ω(t)
and to Ω(t+ 1). It is the reason why two CA - ℵσ and ℵα with equal 〈A,M,Θ〉
starting from the same Ω may have quite different evolutions. Although, some
exotic ”very good” CA are known, whose evolutions and attractors are invariant
whatever mode of operation is used [12].

2.2 Correctness Conditions of CA Algorithms

A CA ℵ� = 〈A,M,Θ〉 is considered to be a CA-algorithm, if its operation satisfies
the following correctness conditions.

1. Noncontradictoriness. Only one updating of a cell is allowed at one time
step.

Noncontradictoriness is a CA-version of safeness - a main property of parallel
systems correct behavior. [12]. The sufficient condition of noncontradictoriness
is as follows [12].

TQ(mk) ∩ TQ(ml) = ∅ ∀(mk,ml) ∈M. (7)

It guarantees the absence of conflicts, which are situations when two transition
functions fg(m) and fh(φl(m)) are attempting to change the state of one and
the same cell simultaneously. From (7) it follows, that for classical synchronous
CA with |Q(m)| = 1 it is always satisfied. It is not so, if CA is a model of a
process where some cells are to be changed simultaneously, i.e. |Q(m)| > 1. In
this case a bit of cellular parallelism is to be sacrificed for noncontradictoriness
by means of sequentializing the computation procedure as follows.

1) The main naming set M ′ is partitioned into b, b ≤ |TQ|, stage-subsets,
{M ′

0, ...,M
′
b}, such that

M ′
g ∩M ′

h = ∅, ∀(g, h) ∈ 1, ..., b,
p⋃

g=0

M ′
g =M ′, (8)

and for any M ′
g, g = 1, ..., b, the condition (7) holds.

374 O. Bandman

2) The iteration is divided into p stages. At each g-th stage Θ is applied
synchronously to all cells m ∈M ′

g.
Such mode of operation is called a multi-stage synchronous mode with multi-

cell updating and denoted as ℵβ . As for asynchronous CA, they always satisfy
noncontradictoriness conditions, because Θ(m) is applied to a single cell at each
time-step.

Equality of cells. At each iteration Θ(m) should be applied to all cells m ∈
M ′, to any cell m ∈ M ′ being applied only once. Equality of cells is a CA-
version of liveness condition for parallel processes [12]. It provides all cells to have
equal rights to participate in the CA operation process. Synchronous classical
CA satisfy this property by the definition of synchronicity. When multi-stage
synchronous mode is used the equality of cells is provided by condition (8).
In asynchronous CA cells equality is the consequence of binomial probability
distribution law.

2.3 Correctness Conditions of CA Decomposition

Inherent cellular parallelism of CA models predetermines domain decomposition
to be a basic principle for CA parallelization. In terms of CA this principle is
read as follows. CA ℵ� = 〈A,M,Θ〉 is represented by a composition of n ones,
such that

1) ℵ(k)
� = 〈A,Mk, Θ〉, k = 1, ..., n;

2) each domain Mk is a compact part of M ;
3) domains do not intersect, i.e.

n⋃

k=1

Mk =M, Mk ∩Ml = ∅, for all k, l ∈ {1, ..., n}; (9)

4) all domains have equal cardinalities, |M1| = |M2| = ... = |Mn|.
5) It is convenient to assign cell names in the domains in such a way, that

(i, j) ∈Mk is equal to (i(modNi), j(modNj)) ∈M , where Ni ×Nj is the size of
Ω.

Since the result of CA simulation is its evolution, the main condition of coarse-
grained parallelization is the equality of evolutions, i.e. the evolution of n oper-
ating in parallel CA ℵ(k)

� = 〈A,Mk, Θ〉, k = 1, ..., n; should be equal to that of a
non-decomposed ℵ� = 〈A,M,Θ〉 i.e.

Σ(Ω) = Σ
(n⋃

k=1

Ωk

)

∀Ω =
n⋃

k=1

Ωk., (10)

The condition being laid down, the problem is to organize the parallel op-
eration in such a way that the condition is satisfied, i.e. make each domain to
interact with the adjacent ones by exchanging data that are needed to be used
in one of them for computing next-states in the other. To be more formal, let’s
denote as (Ml, Mr) a pair of adjacent domains. Being applied to a cell ml ∈Ml,

Coarse-Grained Parallelization of Cellular-Automata Simulation Algorithms 375

Θ(ml) has to interact with the cells from S(ml), some of which, are allocated
in Mr forming a border area of Mr denoted by Υr. The similar border area Υl

comprises cells from Ml which are to be used by Θ(mr).

Υr =
⋃

ml∈Ml

(TS(ml) ∩Mr), Υl =
⋃

mr∈Mr

(TS(mr) ∩Ml). (11)

To provide interactions between the domains two sets of cells (Υ ′
l , Υ

′
r), whose cells

are in one-to-one correspondence with those of (Υr , Υl), should be appended to
the borders of (Ml,Mr), respectively, forming the extended naming sets M̂l, and
M̂r.

The procedure of data exchange consists of copying cell states of ml ∈ Υl into
its counterpart Υ ′

r ⊆ M̂r, and copying cell states of Υr into Υ ′
l ⊆ M̂l. Modes of

the exchange procedure depend on the mode of ℵ�, but in all cases correctness
properties is achieved by obeying the following data exchange rules.

1. At any iteration each cell state ml ∈ Υl should be copied into the corre-
sponding cell of its counterpart Υ ′

r.
2. Between two acts of copying the state of ml ∈ Υl into Υ ′

r, the cell ml should
be updated, and only once.

3. No cell in an appended area m′ ∈ Υ ′
l is allowed to be updated by Θ(ml).

The first two rules provide the condition of cells equality in the adjacent border
areas. The third ascertains that noncontradictoriness condition is not violated
in border areas.

From the above rules the method for allocating the a CA ℵρ = 〈A,M,Θ〉 to
be run on n processors is as follows.

Step 1. Cut the cellular array into n compact equal parts with naming sets
{Mk : k = 1, ..., n} satisfying (9).

Step 2. Determine the border areas Υl ⊆Mk and their counterparts Υ ′
r ⊆Mk

according to (11) for all the borders of each domain.
Step 3. Develop the data exchange procedure according to the above four rules

and to the mode of operation of ℵρ.

It is the last step which constitutes the problem of parallelization, because the
differential peculiarities of CA simulation models require special techniques to
obey the above four data exchanging rules. For the most widely used CA-models
the techniques are presented in the next section,

3 Parallelization of CA Algorithms

3.1 Synchronous CA Parallelization

The most simple for parallelization are synchronous CA-models with a single
cell updating, |Q(m)| = 1. For them the procedure of data exchanging is trivial:
at each iteration the border areas of adjacent domains are copied into their
counterparts. It is easily seen that the procedure obeys all four data exchange
rules. MPI tools, which are mainly used for performing data exchange, allow

376 O. Bandman

to make the transfer of data during the internal cells next states computation.
Hence, the efficiency of parallel implementation is close upon 100%. It decreases
only when the size of the domains is so small, that internal computation time does
not exceed the time of data transferring [15]. The most known and well studied
CA-models of this type belong to Lattice-Gas hydrodynamics [4]. The peculiarity
of Lattice-Gas CA is in the fact that each iteration consists of two sequential
stages (propagation and collision of particles). Since intercell communication
occurs only at the propagation stage, the exchange of data may be done during
the collision stage, which makes data exchange no time consuming procedure.
Parallel implementation efficiency is thoroughly investigated in [14], where it is
shown that degradation of the parallelization efficiency may occur due to small
domain size and due to communication system problems.

As for synchronous CA-models with multi-cell updating (|Q(m)| = q, q > 1),
the procedure of data exchange is more complicated, because noncontradictoriness
conditions (7,8) require the following two statements to be taken into account.

- In each k-th domain the main naming set M ′
k ⊆ Mk is partitioned into p

stage-subsets {M ′
g : g = 1, ..., q}.

- Belonging to different stage-subsets M ′
g, g = 1, ..., q the main cells of Θ(ml)

ml ∈ M ′
l occur at different distances from the domain border. Hence, border

areas differ from stage to stage, Υl(g) �= Υl(h).

Based on the above statements data exchanging procedure is as follows.

1) In all domains the stage subarrays M ′
g ⊂ Mk, g = 1., , , .q, are defined

according to (9).
2) The iteration is divided into q stages. At each g-th stage Θ is applied to

the cells of M ′
g of all the domains.

3) For each g-th stage subarray, g = 1, ..., q, border areas Υl(g) ⊆ Ml and
Υr(g) ⊆ Mr should be determined according to (11) for all borders pairs of
adjacent domains (Ml,Mr), l, r = 1., , , .n.

4) Each domain Mk, k = 1, ..., n, should be appended by the counterparts
Υ ′

r(g) and Υ ′
r(g) of the border areas Υl(g) and Υr(g), respectively, at all its

borders.
5) At each g-th stage, g = 1, ..., q, the next cell states of border areas Υl(g) ⊆

Ml are copied into its counterpart Υr(g)′ ⊆Mr in all domains Mk ∈M .

Example 1. A bright example of a CA with multi-cell updating is a Margolus’
diffusion model ℵβ = 〈A,M,Θ〉, proposed in [3], and proved to be equivalent
to Laplace PDE in [10]. A = {0, 1}, M = {(i, j) : i, j = 0, ..., N}. In M two
subsets are defined: M even = {(i, j) : i(mod2) = 0, j(mod2) = 0} and Modd =
{(i, j) : i(mod2) = 1, j(mod2) = 1}. They induce on M two partitions by 2 × 2
blocks given by a template T (i, j) = {(i, j}, (i, j + 1), (i+ 1, j + 1), (i+ 1, j)}. If
(i, j) ∈M even the template represents the even partition, otherwise it represents
the odd one. The local operator is as follows

Θ(i, j) : {(v0, (i, j)), (v1, (i, j + 1)), (v2, (i+ 1, j + 1)), (v3, (i+ 1, j))}
→ {(u0, (i, j)), (u1, (i, j + 1)), (u2, (i+ 1, j + 1)), (u3, (i+ 1, j))}, (12)

Coarse-Grained Parallelization of Cellular-Automata Simulation Algorithms 377

where uk =
{
vk−1(mod4), with probability π
vk+1(mod4), with probability 1− π , k = 0, 1, 2, 3.

The mode of operation is two-stage synchronous, i.e. at even t Θ(i, j) is applied
toM even, at odd t – toModd. The model is used for simulating flow propagation
of water through a porous substance under the influence of isotropic diffusion.
(Fig. 1).

Fig. 1. A snapshot (t = 4 ·105) of the simulation process or flow propagation in porous
medium under isotropic diffusion. A fragment 300 × 600 cells is shown. Black cells
correspond to solid walls, grey pixels - to fluid, white - to empty space.

Proceeding from the given physical parameters of the sample under simulation
the cellular naming set is chosen as M = {(i, j : i = 0, ..., 8N, j = 0, ..., N}, with
N = 1000. According to the above method the parallel algorithm is as follows.

1. The cellular array is decomposed into n = 16 domains with naming sets
Mk = {(i, j) : i = 0, ..., 499, j = 0, ..., 999}, k = 1, ..., n, and N(mod2) = 0.

2. On each domain Mk, k = 1, ..., 16, two subsets of names Meven ⊆Mk and
Modd ⊆Mk are defined.

3. Border areas and their counterparts are determined for the even and the
odd stages as follows.

Even stage. Since the number of cells in any domain is even, then according to
(11) for any pair of adjacent domains Meven

l ⊆ Ml,M
even
r ⊆ Mr TS(i, j)even

l ∩
M even

r = ∅ for all ((i, j)l(even)) ∈Ml, which yields in

Υl = Υr = Υ ′
l = Υ ′

r = ∅

Odd stage. The underlying template TS(N − 1, j) = {(N − 1, j)(N − 1, j +
1)(N, j)(N + 1, j)} of the border cells of Ml indicates that cells included in two
last terms – (N, j) and (N + 1, j) – are allocated in Mr, being named there as
{0, j), (0, j + 1)}, j=0,...,N-1. Substituting it into (11) yields for j=0,...,N-1,

Υr = {(0, j)}, Υl = {(N − 1, j)}, Υ ′
l = {(N, j)}, Υ ′

l = {(−1, j)},

and Υ ′
l and Υ ′

r are appended adjoining the borders of Ml and Mr, respectively.
The similar is true for all adjacent borders.

378 O. Bandman

4. After the even stage is completed no exchanges are done because the border
areas for even stage are empty.

5. After the odd stage is completed data exchange is performed between all
adjacent pairs of the domains: cell states of Υl are copied to the corresponding
cells of Υ ′

r and cell states of Υr are copied to the corresponding cells of Υ ′
l .

The algorithm has been programmed and implemented in 16 processors of
the cluster MVS-1000/128 in Siberian Supercomputer Center. Implementation
of the algorithm in 16 processors showed the run time 1.012 times greater than
that of a CA with the array size of one domain.

3.2 Asynchronous CA Parallelization

As distinct from the CA, whose parallel implementation is extremely efficient,
the asynchronous case exhibits a problem for parallel simulation. The reason is
in the impossibility of forming packages for data exchange. Each state ml ∈ Υl is
to be copied to Υ ′

r of the adjacent domain just after the cell is updated. No delay
for even a single time-step τ is allowed, because at the same time-step the cell
(u,ml) may be updated by the application ofΘ to its neighbor, which violates the
noncontradictoriness condition. It is evident that transferring data to adjacent
processor after each updating of a border cell results in a very low efficiency of
parallel implementation, because of transfer latency time, which is usually some
orders larger than the transmission of a data bit. Moreover, in those random
intercommunications one should avoid the deadlocks, which is an additional task.
So, the above direct data exchange method should be rejected. The advantages of
synchronous CA parallel implementation inspires the search of a transformation
of the given asynchronous CA into a synchronous one having the same evolution.
Unfortunately, there is no transformations which provide equality of evolutions
in general case. Thus, the attempt is made to find a multi-stage synchronous
CA, whose evolution approximates that of a given asynchronous ℵα. It has been
used for particular cases in [16,?], and considered in detail in [15]. The term
”approximation” is used in the following sense. Some order is imposed to the
random choice of cells to be updated, which brings no distortion in the evolution
progress, but only restricts the ensemble of all possible transition sequences to
the next global state. The algorithm for constructing ℵβ = which approximats
the given ℵα = 〈A,M,Θ〉 is as follows.

1. Parameters A,M , and Θ are the same than those of ℵα,where Θ : S(m)→
Q(m) with |TQ(m)| = q.

2. A template TB is defined, such that

TB(m) ⊇ TQ(m). (13)

Naturally, TB(m) should be chosen of minimum cardinality, because it results
in a less amount of stages.

3. On the main naming set M ′ ∈ M the subsets {M ′
0, ...,M

′
b}, b = |TB(m)|

are defined satisfying the condition (8) for multi-stage CA. Moreover, for any
M ′

g, g = 1, ..., b, the noncontradictoriness condition should be met, i.e.

Coarse-Grained Parallelization of Cellular-Automata Simulation Algorithms 379

TB(mk) ∩ TB(ml) = ∅ ∀(mg,mh) ∈Mg,
⋃

mg∈Mg

TB(mg) =M. (14)

4. Each iteration is divided into b stages. At each gth stage Θ is applied
synchronously to all cells m ∈M ′

g, the subsets M ′
g being chosen in any order.

In [15] it is proved that ℵβ obtained by the above algorithm is the restriction
of ℵα in the sense that the set of its evolutions is included in the ensemble of
all possible evolutions of ℵβ, being far less in cardinality. By the above transfor-
mation he parallelization method of the ℵα is reduced to that of multi-stage CA
parallelization.

Example 2.When anisotropy imposed by the pore walls properties and an addi-
tional pressure are to be taken into account, probabilistic asynchronous diffusion
CA called a ”naive diffusion” is used, ℵα = 〈A,M,Θ〉, A = {0, 1},M = {(i, j)},
The application of Θ to a cell (i, j) ∈ M makes the cell (i, j) to exchange
states with one of its nearest neighbors φk(i, j) chosen with probability p = pk,
k = 1, 2, 3, 4.

Θ(i, j) : {(v0, (i, j)), (v1, (i− 1, j)), (v2, (i, j + 1)), (v3, (i+ 1, j)), (v4, (i, j1))}
→ {(u0, (i, j)), (u1, (i− 1, j)), (u2, (i, j + 1)), (u3, (i+ 1, j)), (u4, (i, j1))},

where

(u0 = vk)&(vk = u0) if
{

(v0 = 1&vk = 0) with p = pk,
(v0 = 0&vk = 1) with p = 1− pk.

The probabilities are determined by physical properties of the medium. Par-
ticularly, in case of hydrophobic pores and presence of a convective flow in the
direction of the jth axis they are as follows.

p1 = p3 = 0.25pd, p2 = 0.3pd, p4 = 0.2pd pd = sin
π

20
d,

where d is the distance between the cell (i, j) and the nearest wall. The local
operator is applied to all cells of the array, i.e. M ′ = M . Parallel application
of the model has been tested in simulation of flow propagation through the
sample of porous substance having the same dimensions than those of Example
1. The parallel algorithm consists of two phases: 1)constructing the multistage
approximation ℵβ, and 2) determining the parameters of the data exchange
procedure.

Phase 1
1. The template TB = {(i+k, j+ l) : k, l = −1, 0, 1}, satisfying (12) is defined

with s = |S(m)| = 9.
2. Stage-subsets Mg, g=0,1,...,8, are formed according to (8) as follows:

(i, j) ∈Mg if g = 3i(mod3) + j(mod3), (15)

380 O. Bandman

Fig. 2. A snapshot (t = 70 · 103) of the simulation process or flow propagation in
hydrophobic porous medium under anisotropic diffusion. A fragment 300 × 600 cells
is shown. Black cells correspond to solid walls, grey pixels - to fluid, white pixels - to
empty space.

Phase 2
1. The array is decomposed in 16 domains of 501 × 1002 cells, N = 501 is

chosen being a multiple to |S(m)| = 3 × 3, which allows to distribute the cells
of M among the stage-subsets according to the rule (15).

2. Border areas and their counterparts are computed following (11) as follows.

if g(mod3) = 0 : Υl =Υ ′
r = ∅, Υr ={(i, N − 2), (i, N − 1),

Υ ′
l ={(i,−1), (i,−2)},

if g(mod3) = 1 : Υl =Υ ′
r = ∅, Υr =Υ ′

l = ∅,
if g(mod3) = 2 : Υr =Υ ′

l = ∅, Υl ={(i, 0), (i, 1)}, Υ ′
r ={(i, N), (i, N + 1), }

for i = 0, ..., N − 1.
(16)

The algorithm has been programmed and implemented in 16 processors of the
cluster MVS-1000/128 in Siberian Supercomputer Center. The running time in
16 processors is 1.056 times greater than that for running the same amount of
iterations in a single domain in a single processor.

3.3 Parallelization of Composed CA

Real life simulation tasks require several simple CA-models to operate in com-
mon for being adequate to a phenomenon under study. A number of methods
are known [18] for composing some simple CA to obtain a CA-model of a com-
plicated phenomenon. Two basic methods are the most used: a sequential com-
position called superposition, and a parallel composition, which are worth to
be considered concerning coarse grained parallelization.

When superposition is used the process under simulation is composed of n
component CA ℵ(k)

ρ = 〈A,M,Θ(k)〉, k = 1, ..., n, which have identical alphabets
and naming sets, but may differ in local operators and modes of operation. The
composed CA ℵρ = 〈A,M,Φ〉, Φ = {Θ(1), ..., Θk, ..., Θn}, operates as follows.

Coarse-Grained Parallelization of Cellular-Automata Simulation Algorithms 381

Each iteration Ω(t) Φ−→ Ω(t+1) consists of n sequential transitions Ω(k)(t) Θ(k)

−→
Ω(k)(t), k = 1, ..., n, each kth transition being an iteration of ℵ(k)

ρ . It is worth
to notice, that any component CA performs its transition operating in its own
mode. Moreover, a component CA may be itself a composed CA, in what case the
composition exhibits an hierarchial construction. The method of parallelization
of a global superposition reduces to construction of the iteration of ℵρ as a
sequence of n iterations of the parallel algorithms of ℵ(k)

ρ , developing the data
exchange procedures according to the rules, corresponding to their modes of
operation.

More complicated is coarse grained parallelization of CA which is a parallel
composition, when two1 CA operate each on its own cellular array, using cell
states of the other as variables in its transition functions. Let two component
CA be ℵ(1)

ρ = 〈A(1),M (1), Θ(1)〉, and ℵ(2)
ρ = 〈A(2),M (2), Θ(2)〉. They should

have identical modes of operation, identical naming sets, but may have different
alphabet and different local operators.

Θ(1)((i, j)(1)) : S(1)((i, j)(1))→ Q(1)((i, j)(1)),

Θ(2)((i, j)(2)) : S(2)((i, j)(2))→ Q(2)((i, j)(2)).

The basic template

TS(1)(m) = {φ0(m), ..., φl(m), φ(l+1)(m), ..., φs(m)}, m ∈M (1)

has the first l naming functions defined inM (1), and the last s− l ones – defined
in M (2). Similarly,

TS(2)(m) = {φ0(m), ..., φh(m), φh+1(m), ..., φg(m)}, m ∈M (2)

has the first h naming functions defined inM (2), and the last g−h ones – defined
inM (1). Each t-th iteration of a composed CA comprises next state computation
in all cells of both CA.

Parallelization method for a composed CA should follow all the rules given in
Subsection 2.3, being slightly modified as follows.

Step 1. Cellular arrays of both CA are cut into n compact equal parts Mk =
M

(1)
k ∪M (2)

k .
Step 2. Border areas are determined according to (11) for all pairs of adjacent

domains M (1)
l ,M

(1)
r and M (2)

l ,M
(2)
r .

Υ
(11)
r =

⋃
ml∈M

(1)
l

(
T

(1)
S (ml) ∩M (1)

r

)
, Υ

(12)
r =

⋃
ml∈M

(1)
l

(
T

(1)
S (ml) ∩M (2)

r

)
,

Υ
(22)
r =

⋃
ml∈M

(2)
l

(
T

(2)
S (ml) ∩M (2)

r

)
, Υ

(21)
r =

⋃
ml∈M

(2)
l

(
T

(2)
S (ml) ∩M (1)

r

)
,

(17)
1 The amount of component CA is confined to 2 because there is no experience of

testing parallel composition of more than 2 CA, though there is no principal objection
for the method to be extended to any numbers of component CA.

382 O. Bandman

Their counterparts Υ ′(11)
l ∪Υ ′(12)

l are to be appended to M (1)
l , and Υ ′(22)

l ∪Υ ′(21)
l

- to M (2). The similar should be done to all other borders of both domains.
Step 3. Data exchange procedure consists of copying cell states from all border

areas of each component array to their counterparts in the adjacent domains.
The above global parallel composition is used for simulation reaction-diffusion

phenomena, where diffusion may be modeled by a Boolean CA ℵ(1)
ρ), and reac-

tion - by a CA with real alphabet [11] At each iteration transition functions (4)
of ℵ(1)

ρ have to transform real variables from Ω(2) into Boolean form in order to
compute Boolean function. On its turn ℵ(2)

ρ has to transform Boolean cell states
of Ω(1) into reals for computing its transition functions. The latter transforma-
tion includes averaging the Boolean states over the given averaging area which
plays the role of basic local configuration S(2)(m), which is allocated in Ω(2).

Example 3. Simulation of flow propagation through porous medium, where
the fluid is exposed to a chemical reaction (oxidation), is modeled by a paral-
lel composition of ℵ(1)

β = 〈A(1),M (1), Θ(1)〉, simulating Boolean isotropic diffu-

sion , and ℵ(2)
σ = 〈A(2),M (2), Θ(2)〉 simulating reaction in reals. The diffusion

CA ℵ(1)
β = in its turn is the superposition of ℵ(1)

trans = 〈{0, 1},M (1), Θtrans〉,
which performs transformation of real array Ω(2) into a Boolean form, and
ℵdiff 〈{0, 1M (1), Θdiff 〉 simulating diffusion of Example 1, Θdiff being equal
to (12).

Θtrans : S(1)
1 (m(1))→ Q

(1)
1 (m(1)), whereS(1)

1 (m(1)) = {(v,m(1), (u,m(2))},
Q

(1)
1 (m(1)) = {(f1(u),m(2))}, f1(u) = 1 with π = u.

The local operator Θ(2) is applied to the cells of Ω(2) with states in A(2) = [0, 1],
where

S(2)(m)(2) = {(u,m(2)), (v0,m(1)), (v1, φ1(m(1)), ..., (vs, φs(mm(1))},
Q(2)(m) = {(u′,m(2)},

where s is the averaging area size 5× 5− 1, s = 24 and

u′ = 0.2w(1− w), w =
1
s

s∑

l

vk.

Parallel application of the model has been tested on the flow propagation through
the sample of porous medium having the same size than in Example 1. An
iteration of the parallel algorithm is as follows.

Step 1. Both arrays are decomposed into 16 domains 500× 1000 cells {Mk},
k = 1, ..., 16.

Step 2. Border areas and their counterparts are determined according to (11).

Υ
(1)
l (Θtrans) = Υ (1)

r (Θdiff) = ∅,

Coarse-Grained Parallelization of Cellular-Automata Simulation Algorithms 383

Fig. 3. A snapshot(t = 120 · 103) of the simulation process of flow propagation in
porous medium under isotropic diffusion and oxidation. A fragment 300 × 600 cells is
shown. Black cells correspond to solid walls, grey pixels - to fluid, white pixels - to
empty space.

Υ
(1)
l (Θdiff) and Υ (1)

r (Θdiff) are equal to those from Example 1 (step 3).

Υ
(1)
r (Θ(2)) = {(i, j) : i = 0, ...5} Υ

(1)
l (Θ(2)) = {(i, j) : i = N − 1,, N − 6},

Υ
(1)′
r (Θ(2)) = {(i, j) : i = −1, ... − 5}, Υ

(1)′
l (Θ(2)) = {(i, j) : i = N, ..., N + 5},

j = 0, .., N − 1.

Step 3. In all domainsMk next states of Ω(1)
k and Ω(2)

k are computed and data
exchange is performed between all pairs (M (1)

l ,M
(1)
r) of the adjacent domains.

Implementation of the algorithm in 16 processors showed the run time to be
1.021 times greater than that of the same simulation with the size 16 times less.

4 Conclusion

A general approach to domain decomposition methods for coarse-grained paral-
lellization of CA algorithms is proposed. The approach is based on the fundamen-
tal principles of parallel processes correct behavior, which are formulated in the
form of conditions to be met when organizing data exchange between domains. It
is shown that the intrinsic cellular parallellism of CA-models does not garantee
simple and correct coarse-grained parallelization methods, which differ esentially
for different modes of CA operation. For asynchronous mode of operation high
parallelization efficiency may be acheived by transformation CA in a multi-stage
synchronous one. At any case parallelization efficiency is close to 0.9-1.

References

1. Toffolli, T.: Cellular Automata as an Alternative to (rather than Approximation
of) Differential Equations in Modeling Physics. Physica D 10, 117–127 (1984)

2. Wolfram, S.: A new kind of science. Wolfram Media Inc., Champaign, Ill., USA
(2002)

384 O. Bandman

3. Toffolli, T., Margolus, N.: Cellular Automata Machines. MIT Press, Cambridge
(1987)

4. Rothman, B.H., Zaleski, S.: Lattice-Gas Cellular Automata. Cambridge Univ.
Press, Complex Hydrodynamics. London (1997)

5. Latkin, E.I., Elokhin, V.I., Gorodetskii, V.V.: Spiral concentration waves in the
Monte-Carlo model of CO oxidation over Pd(110) caused by synchronization via
COads diffusion between separate parts of catalytic surface. Chemical Engineering
Journal 91, 123–131 (2003)

6. Neizvestny, I.G., Shwartz, N.L., Yanovitskaya, Z.S., Zverev, A.V.: 3D-model of
epitaxial growth on porous {111} and {100} Si surfaces. Computer Physics Com-
munications 147, 272–275 (2002)

7. Sipper, M.: Evolution of Parallel Cellular Machines: The Cellular Programming
Approach. Springer, Heidelberg (1997)

8. Bandini, S., Erbacci, G., Mauri, G.: Implementing Cellular Automata Based Mod-
els on Parallel Architectures: The CAPP Project. In: Malyshkin, V. (ed.) Paral-
lel Computing Technologies. LNCS, vol. 1662, pp. 167–179. Springer, Heidelberg
(1999)

9. Carotenuto, L., Mele, F., Furnari, M.M., Napolitano, R.: Pecans: A parallel envi-
ronment for cellular automata modeling. Complex Systems 10, 23–41 (1996)

10. Malinetski, G.G., Stepantsov, M.E.: Modeling Diuffusive Processes by Cellular Au-
tomata with Margolus Neighborhood. Zhurnal Vychislitelnoy Matematiki i Matem-
aticheskoy Phiziki (in Russian) 36(6), 1017–1021 (1998)

11. Bandman, O.: Simulation Spatial Dynamics by Probabilistic Cellular Automata.
In: Bandini, S., Chopard, B., Tomassini, M. (eds.) ACRI 2002. LNCS, vol. 2493,
pp. 10–19. Springer, Heidelberg (2002)

12. Achasova, S., Bandman, O., Markova, V., Piskunov, S.: Parallel Substitution Al-
gorithm. In: Theory and Application, World Scientific, Singapore (1994)

13. Park, J.K., Steiglitz, K., Thurston, W.P.: Soliton-like behavior in automata. Phys-
ica D 19, 423–432 (1986)

14. Medvedev, Y.G.: Experimental study of Computational characteristic of parallel
implementation of 3D cellular Automata model of viscous flow. In: Proceedings of
Scientific Confernce Parallel Programming Technology, pp. 79–82. Moscow Univ.
Press (2006)

15. Bandman, O.: Parallel Implementation of Asynchronous Cellular Automata Al-
gorithm. In: El Yacoubi, S., Chopard, B., Bandini, S. (eds.) ACRI 2006. LNCS,
vol. 4173, pp. 41–47. Springer, Heidelberg (2006)

16. Nedea, S.V., Lukkien, J.J., Jansen, A.P.J., Hilbers, P.A.J.: Methods for parallel
simulation of surface reaction. In: Werner, B. (ed.) 4th Int. Workshop on Parallel
and Distributrd Scientific and Engineering Computing with Applications, pp. 7–16.
IEEE Comp. Society, Nice, France (2003)

17. Chen, N., Glazier, J.A., Alber, M.S.A: A Parallel Implementation of the Cellu-
lar Potts Model for Simulation of Cell-Based Morphogenesis. In: El Yacoubi, S.,
Chopard, B., Bandini, S. (eds.) ACRI 2006. LNCS, vol. 4173, pp. 58–67. Springer,
Heidelberg (2006)

18. Bandman, O.: Composing Fine-graned Parallel Algorithms for Spatial Dynamics
Simulation. In: Malyshkin, V. (ed.) PaCT 2005. LNCS, vol. 3606, pp. 99–113.
Springer, Heidelberg (2005)

Cellular Automata Models for Complex Matter

Dominique Désérable, Pascal Dupont,
Mustapha Hellou, and Siham Kamali-Bernard

Laboratoire de Génie Civil & Génie Mécanique,
Institut National des Sciences Appliquées,

INSA, 20 Avenue des Buttes de Coësmes, 35043 Rennes, France
{Dominique.Deserable,

Pascal.Dupont,Mustapha.Hellou,Siham.Kamali-Bernard}@insa-rennes.fr
http://www.insa-rennes.fr

Abstract. Complex matter may lie in various forms from granular mat-
ter, soft matter, fluid-fluid or solid-fluid mixtures to compact heteroge-
neous material. Cellular automata models make a suitable and powerful
tool to catch the influence of the microscopic scale onto the macroscopic
behaviour of these complex systems. Rather than a survey, this paper
will attempt to bring out the main concepts underlying these models
and to give an insight for future work.

Keywords: cellular automata (CA) for complex matter (CACM), sand-
pile models, lattice-gas, lattice-grain, hybrid models.

1 Introduction

Complex matter may lie in various forms, from granular matter, soft mat-
ter, fluid-fluid or solid-fluid mixtures to compact heterogeneous material, and
involves a diversity of dynamical processes including sandpile equilibrium or
avalanches, mixing, stratification or segregation, emulsion or sedimentation in
multiphase suspensions, miscible or immiscible flows in porous media and so
forth. Long range propagative phenomena may include the void propagation in
a porous medium, the force transmission in a granular packing, the progres-
sion of wavefronts in active media or the evolution of a fissuration at the onset
of a defect in a compact material. Various aspects of critical phenomena are
encountered in the behaviour of complex matter: liquid-solid transitions from
free flows to arching effects in hoppers, mixed-unmixed transitions of bidisperse
mixtures, laminar to turbulent evolution in fluid flows or instabilities near per-
colation thresholds are such transition examples. A thorough investigation of the
behaviour of complex matter is therefore of major importance for industrial and
scientific applications.

The theoretical methods currently used split up into continuum models, par-
ticle dynamics and cellular automata. Cellular automata make a suitable and
powerful tool to catch the influence of the microscopic scale onto the macroscopic
behaviour of complex systems. In short, a cellular automata network (“CA”) is

V. Malyshkin (Ed.): PaCT 2007, LNCS 4671, pp. 385–400, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

http://www.insa-rennes.fr

386 D. Désérable et al.

a space-time discretization of time into steps and space into interconnected cells
taking on integer values and where the time evolution is governed by a transition
function that updates the new state of the cells synchronously from the current
state of their local neighbourhood. A CA can be one or multidimensional. In the
simplest case, the 1d Wolfram’s elementary cellular automata (“ECA”) is con-
structed from the binary-valued (“k = 2”) transition rule acting from nearest-
neighbours (“r = 1”) so that there exist 256 possible transitions denoted by
their rule number [1]. Even with this minimal definition, a very complex dynam-
ics may be revealed in the space-time diagram, depending on the random initial
configuration. Starting now from the fact that complex matter may behave like a
particulate system, a CA for complex matter (“CACM”) can thereby be viewed
as an extreme simplification of particle dynamics. Moreover, observing that such
primitive CA rules are able to capture the essence of such complex behaviours
readily leads to agree with the “rather than” Toffoli’s paradigm that CA are the
outstanding alternative to find the ordinary (ODE) or partial (PDE) differential
equation of a phenomenon in complex matter [2].

Rather than a survey, this paper will attempt to bring out the main concepts
underlying CACM models and to give an insight for future work. A taxon-
omy is presented as a proposal intended to tidy up the broad world of CACM.
The CACM set is divided into the four following sections devoted to: the sand-
pile models underlying the universal concept of self-organized criticality; the
lattice-gas models in which the reasons why they evolved from pure lattice-
gas to lattice-Boltzmann until extended lattice-Boltzmann are highlighted; the
lattice-grain models in their miscellaneous aspects including the related traffic-
flow model lying far beyond our scope of complex matter; and a unified subset of
hybrid models including a neural approach in reaction-diffusion, an environment
dealing with the rheology of composite pastes, and movable cellular automata. A
discussion is proposed afterwards about general questions related to CA, namely
grain-size, synchronization, topology and scalability, consistency of the models.
We focus on models and applications, not on CACM architectures. For this rea-
son and except in specific cases, such names as von Neumann, Ulam, Burks,
Margolus, Vichniac, Clouqueur, Adamatsky, Latkin, Yepez and other pioneers
not forgotten will neither be referenced nor mentioned. For brevity’s sake, the
reader is also requested in data mining for a more detailed bibliography. This
work is an extension of a previous study of CA for granular matter presented
elsewhere [3].

2 Sandpile Models

This section may show how from a simple sandpile model, when poured at the
top with a flow of grains, can rise a universal concept of self-organized criticality.

2.1 Self-organized Criticality in the Sandpile

The primary sandpile model is the “BTW” CA of Bak, Tang, Wiesenfeld [4]
where a 1d CA simulates a 2d heap. At each timestep, a cell n contains an integer

Cellular Automata Models for Complex Matter 387

zn which denotes the height difference (or local slope) between two neighbouring
sites. Adding a grain is yielded by an elementary operation. Whenever a critical
state zn > zc is reached, where zc is a user-defined local critical slope, then
grains fall. As a matter of fact, the transition which yields the new state of cell
n follows a simple but nonlinear (because of the threshold condition) discretized
diffusion equation. Although this rule is really plain, the model exhibits complex
phenomena at macroscopic level, introducing the concept of self-organized crit-
icality (SOC): the equilibrium of the heap is noised by multiscale fluctuations
between an angle of stability and an angle of repose, with avalanches of all sizes.
Rules of 2d CA for 3d heaps acting on square cells were also defined by the
authors.

According to Kadanoff et al. [5], the process is shown to be self-similar with
scale invariance. Since the sandpile algorithm acts on systems of finite size and
in order to understand how this fact affects the behaviour of the system, the
techniques of finite-size scaling (borrowed from the Wilson’s renormalization
procedure) and of multifractal analysis are used to extract the power-laws and
critical exponents which govern the sizes and frequencies of avalanches.

2.2 Stratification and Segregation in a Binary Sandpile

The sandpile paradigm is applied by Makse et al. [6,7] to granular mixtures of
two different species where four different generalized angles of repose can coexist.
The angle of repose depends on the size of (small or large) rolling grains and on
the aspect of their (rough or smooth) surface. At each timestep, a set of grains of
two different species is poured at the top of the pile. Two macroscopic phenomena
are observed: either a stratification of a mixture of large rough grains and small
smooth grains or a complete segregation of a mixture of small rough grains and
large smooth grains. Moreover, the stratification displays the formation of a two-
layered kink moving uphill at constant velocity whereas the segregation shows a
clear bipartition separated by a thin mixed barrier.

This twofold dynamics is confirmed experimentally, and theoretically, using
a recent continuum formalism introduced first by Mehta, and by Bouchaud et
coworkers (“BCRE”) for a single species sandpile, then extended by Boutreux
et de Gennes (“BdG”) to bidisperse mixtures. The resulting set of “convective-
diffusion” equations which governs the interface between the “fluid” surface and
the underlying “solid” bulk is argued to include the essential features of the
physics of granular flow (see [7] and references therein).

2.3 Self-organization and Stratigraphy in Aerolian Sand Ripples

A well-known self-organized process derived from the dynamics of the sandpile
and commonly found in sand deserts, atop dunes, or sandy beaches is the meta-
morphosis of a flat sandy surface into a periodic rippled pattern due to the
action of an external force, from wind or water. This process can be explained
by the combination of two types of sand grain movement: saltation and reptation.

388 D. Désérable et al.

Similar artifacts are also observed during surface erosion via ion-sputtering in
amorphous material.

A first self-organized CA approach for the analysis of sand ripple is the “worm”
model of Haff et coworkers (see [8] and references therein): the time evolution
is governed by the advancement of a worm’s head incrementing its size and
simultaneously decrementing the size of the worm in front; since short worms
run faster than long ones, a merge between two successive worms should occur.
Werner et Gillespie focus on average size and standard deviation resulting from
random fluctuations of the worm’s size: the evolution of the system is a Markov
process whose analysis follows a mean-field approximation.

A different approach is the “NO” CA of Nishimori et Ouchi which maps a
linear, continuous saltation-reptation process onto a 2d lattice wherein the salta-
tion length depends on the local slope and the reptation follows a 2-dimensional
diffusion equation. Whenever the wind force exceeds a critical value, ripple pat-
terns spontaneously appear. Besides, Barchan dune-like patterns are yielded by a
large-scale model which affects the saltation procedure. The drawback of the NO
CA is that the growth of a ripple’s height is unbounded. It was recently improved
by the saltation-creep-avalanche model of Caps et Vandewalle by reintroducing
the angle of repose into the system [9].

Anderson et Bunas focus on the stratigraphy carried out by a binary mix-
ture but the relevant result of Makse [8], whose BCRE-BdG formalism takes
again into account the interactions within the fluid-solid interface, leads to real-
istic morphologies of either inverse-graded or normal-graded lamination or cross-
stratification depending on the size and shape of the grains.

2.4 Self-organized Criticality in Natural Hazards

The unified concept of SOC was applied to earthquakes by Bak et Tang [10]
as a consequence of the earth crust being in a self-organized critical state. A
simple CA “stick-slip” model yields 2d and 3d exponents as a prediction for the
Gutenberg-Richter power-law distribution for energy released at earthquakes.
Their pioneer-work gave rise to a broad research field in geophysics. A simpli-
fication of the stick-slip motion of the Burridge-Knopoff slider-block is the 1d
CA of Nakanishi which shows a behaviour similar to the Carlson-Langer for-
malism describing the Newtonian equations of motion by coupled ODE. In the
2d “OFC” CA of Olami, Feder, Christensen a nonconservative, quasistatic rule
yields a dynamical phase transition from localized to nonlocalized effects. By
observing that a short-range interaction may lead to unphysical stress distri-
butions, Weatherley et al. defined a new type of CA with long-range energy
transfer. In the same way, the CA of Castellaro et Mulargia includes effects due
to the transient loads of elastic waves, from the observation that a loading rate
acts at a time-scale larger than the one of fracture propagation, which is assumed
comparatively instantaneous [11].

Landslides are commonly caused by a trigger such as an earthquake, a down-
pour or a sudden snowmelt and their study gave also rise to various approaches
of sandpile-type CA in order to extract the critical exponents of their power-law

Cellular Automata Models for Complex Matter 389

behaviour. Most of the authors have calibrated their theoretical results from
thorough inventories of topographic databases to forecast the risk conditions of
real events: debris-flows or snow avalanches [12,13]. More theoretically, the SOC
of the landslide model of Hergarten et Neugebauer is implicitly based on a set of
PDE that includes the aspects of slope stability and mass movement. Recently,
the CA of Piegari et al. which is claimed to be at the edge of the SOC limit, is a
dissipative, anisotropic version of the OFC CA including a space-time dependent
factor of safety derived from the stability criterion of Terzaghi.

It should be notified that an earthquake has nothing to do with a pile of
sand, except for its self-organized behaviour, which emphasizes the universal
character of self-organized criticality. Turcotte et Malamud propose an inverse-
cascade model of metastable clusters as a general explanation for the power-law
frequency-size statistics produced by these self-organized CA and their associ-
ated natural hazards which may lie far beyond our scope of complex matter.

3 Lattice-Gas Models

Owing to the copious amount of literature about lattice-gas, lattice-Boltzmann
and extended lattice-Boltzmann models and to the wide diversity of their appli-
cation fields spreading from hydrodynamics of homogeneous or multicomponent
fluid flows, thermohydrodynamics, magnetohydrodynamics to particle suspen-
sions, soft matter, reaction-diffusion processes, crystallisation or growth process
and even to other areas observed in some granular systems, we should refer the
reader for more general questions to the monograph of Wolf-Gladrow [14] and
to some recent reviews on the subject (Boghosian [15], Chopard et al. [16]).

3.1 Pure Lattice-Gas Models

Applied first to hydrodynamics, lattice-gas CA (“LGA”) define a fluid “particle”
as a large group of molecules. A first emergence of discrete velocity models
comes from Broadwell near ten years before the “HPP” gas of Hardy, Pomeau et
de Pazzis wherein a two-stage transition follows a collision-propagation scheme
(the term “collision-advection” is now preferred because of the risk of confusion
with a long-range propagative interaction). In the input step, two particles can
collide on a site of a square lattice; the output step starts the advection, where
density (namely the number of particles), momentum and energy are conserved
at each site; upon completion of the advection stage, particles have moved to
their nearest-neighbour site.

The “FHP” gas of Frisch, Hasslacher, Pomeau deals with a hexagonal lattice
where up to three particles can collide. The reader is also referred to Wolfram
who produced a similar LGA for fluids. It was shown by the authors that the
HPP lattice-gas could not be consistent with the Navier-Stokes equation while
the FHP symmetries ensure consistency: the evolution equation of the FHP can
be averaged from Boltzmann’s molecular chaos approximation and expanded in a
Taylor series up to the second order; the equilibrium state follows a Fermi-Dirac

390 D. Désérable et al.

distribution from which a Chapman-Enskog analysis yields the hydrodynamic
equations of the FHP, but under condition of low Mach number.

An extended FHP model includes all possible conservative collisions, with up
to a 7-velocity template (one particle may stay at rest). From this model, a 3d
gas may handle 3d problems on a face-centered hypercubic lattice with up to a
27-velocity template [17].

An important feature of LGA is their capability of handling complicated
geometries and boundary conditions: slip, no-slip or partial slip conditions are
easily carried out by reflection, bounce-back or by a combination of both schemes
for particle-wall as well as particle-particle interaction. Therefore, LGA have
proved their efficiency in various applications in hydrodynamics: miscible or im-
miscible fluids or flow through porous media (as in Rothman et Keller [18],
Stockman et al. [19]) are some relevant examples where classical computational
methods may fail or involve extra difficulty to model.

3.2 Lattice-Boltzmann Models

Pure LGA have nevertheless some shortcomings which appear through the above
mentioned analytical transformation of the evolution equation, that is: statistical
noise, lack of Galilean invariance, spurious unphysical quantities resulting from
the symmetries of the network and, at least in the 3d case, huge collision matrices
or lookup tables. Indeed one can overcome some of them: for example the noisy
effect may be shortened by averaging the results of simulation in space and time
or by running a lot of samples with different seeds for their random sequence. But
the best way seems to average the microdynamics before a simulation, whence
the intrinsic specificity of lattice-Boltzmann models.

In lattice-Boltzmann “LB” models, the evolution equation no longer contains
the Boolean motion of actual particles but a real-valued probability of presence,
namely the single distribution function. McNamara et Zanetti [20] introduced
the Bhatnagar-Gross-Krook “BGK” approximation, an ODE which equalizes
the Lagrangian derivative of the distribution along the local velocities with the
difference between Maxwell-Boltzmann equilibrium distribution and single dis-
tribution, normalized by a relaxation time due to collisions. The moments should
ensure the conservation of density, momentum and energy. The BGK equation
yields the evolution equation, again expanded in a Taylor series up to the second
order, from which a Gaussian-type quadrature yields the hydrodynamic Navier-
Stokes equation. It should be pointed out that the collision operator is now
linearized [21].

To prevent inconsistency due to the insufficient symmetries in the HPP grid,
the above development dealt with a 9-velocity template. Similar developments
may be derived from 2d 7-velocity or 3d 15-velocity or 27-velocity templates
depending on the symmetry required. More details about the theoretical aspects
of LB models can be found in Lallemand et Luo [22].

Cellular Automata Models for Complex Matter 391

Typical applications of LB models to hydrodynamics show relevant phenom-
ena in fluid flow, complex fluids or multicomponent fluids in complicated geome-
tries [23,24]. We should also mention the problem of particle suspensions, which
is difficult to tackle by classical computational methods [25].

3.3 Extended Lattice-Boltzmann Models

The “pure” LB model may suffer itself from some limitations depending on par-
ticular situations. For instance, although LB simulations show a good behaviour
for laminar flow or slightly turbulent flow, new extensions are needed for tur-
bulent flow at high Reynolds number. However, knowing that momentum and
configuration spaces are allowed to be freely discretized from BGK construction,
this property was explored to redefine arbitrary mesh grids for a significant in-
crease of the Reynolds number [26]. The lattice-Boltzmann equation turns into
a discretized Boltzmann equation and the collision-advection into a three-stage
collision-advection-interpolation process.

Another weakness of the LB model appears in situation of compressible flow. A
quite different approach leading to a “gas kinetic scheme” is proposed to simulate
shocks of interfaces and high Mach number flows [27]. Besides, a generalized LB
model has been carried out to prevent a risk of numerical instability of the
constrained BGK approximation and to release the Prandtl number, fixed to
unity because of the uniform relaxation time [22].

New extensions of the LB model are likely to appear and continue to evolve
from fine-grain to coarse-grain in the future, in order to tackle new open or
still unsolved problems or problems which remain up to now the private area of
classical computational fluid dynamics [28].

4 Lattice-Grain Models

The fact that granular media are neither a gas nor a liquid nor a solid or that they
can encompass the three phases as a whole was likely to induce the concept of
“lattice-grain” or “granular media lattice-gas” owing to the lack of terminology
about this kind of complex matter.

4.1 Cellular Automata for Granular Flow

Historicity of discrete models of granular flow under gravity covers a period
of forty years, from the pioneer-work of Litwiniszyn [29]. His model is a 2d
random-walk within a brickwork pattern of “cages” with a stepwise grain-cavity
exchange rule acting under gravity and wherein a trough pattern is induced by
an output of dry sand through a bottom slot. In addition, a memory effect,
that can be likened to an inertial effect, allows the cavity to “remember” its
left-right direction at the previous step. Later on, Müllins [30] claims that these
problems can be converted to boundary values problems in ordinary diffusion
theory. Caram et Hong reintroduce a similar “diffusing void model” but dealing
with free surfaces and obstacles.

392 D. Désérable et al.

From the above terminology, prototypes of CA applied to granular flow were
brought out by Savage and Osinov. The underlying process is proved to follow a
Fokker-Planck equation, reducible into a simple diffusion equation in the mem-
oryless case. Although this model is able to display some patterns like funnel
or Couette flows, insufficiencies are due to the physical limitations in the local
interaction law. Some correlative attempts, sometimes with somewhat sophisti-
cated transition rules, were applied again to hopper and Couette flows or to the
free surface segregation of a binary mixture: Gutt et Haff mimic the Newton’s
law of particle dynamics where the gravitational acceleration is simulated by an
integer “position offset”; Fitt et Wilmott adopt a mesoscopic approach where a
cell stands for a box containing a volume of small and large particles.

A conclusive contribution to lattice-grain CA is the energetic model of Baxter
et Behringer [31]. It deals with a hexagonal lattice where an anisotropy of (long)
grains is considered. The two-stage transition follows an interaction-collision
rule using a criterion of energy minimization. Applied to hoppers, the process
displays realistic patterns of grain segregation as well as density waves in the flow.
The main contribution of our model is the use of crystal-like exclusion rules in a
multiphase context [32]. The time evolution follows a two-stage request-exchange
transition using a criterion of kinematic exclusion. Realistic patterns may appear
in various configurations: mass or funnel flow, density waves, arching effect in
hoppers; mixing or segregation of a bidisperse medium in rotating drums are
such examples.

4.2 Lattice-Gas Related Models

A modified version of lattice-gas CA is introduced by Peng et Herrmann [33]
to reveal the phenomena of density waves formation in granular flow through
a vertical pipe under gravity. A power-law distribution of the power spectrum
of the density fluctuations shows that interparticle dissipation and roughness
of the pipe’s walls are responsible for the generation of waves, similar to the
kinetic waves observed in traffic jams. The basic model is a FHP-gas but wherein
the dissipation is simulated in a simple way by added collision rules: while the
FHP-gas must satisfy the principle of single-occupancy, here an off-site collision
mechanism is created, where colliding particles may be driven back to their
source site during a transient state until equilibrium.

A similar approach is the granular media “GMLG” lattice-gas proposed by
Károlyi, Kertész et al. [34], applied to the study of the friction-induced segre-
gation. Extra rules are created in order to include energy dissipation through
particle collisions and friction: a neat scheme defines one restitution coefficient
as the probability of energy conservation and four friction coefficients (since we
are in a binary mixture) for moving particles as probabilities of either to scatter
or to stop upon advection. Although this model uses the same BdG formalism
as in the Makse’s sandpile [7], it should be emphasized that we deal here with a
right FHP extended model.

Cellular Automata Models for Complex Matter 393

4.3 Force Chains in Granular Packing

Another model deals with the process of formation of force chains in a granular
packing. As notified by Liu et al. [35], no confusion should be made with the
BTW sandpile, which is more a concept than a bead pack. In all cases, a 2d
CA simulates a 2d heap. Liu et al. introduce a probabilistic “q” model and
assume that the dominant physical mechanism leading to force chains is the
inhomogeneity of the packing. It is a random walk process where each particle
transmits its weight to exactly one neighbour in the layer below. The network
of force distribution is carried out by a mean-field theory approach. The “HHR”
sandpile of Hemmingsson, Herrmann, Roux [36] gives a description of static
forces in a granular system. The relevant fact is the dip observed under the
heap, where the force network displays a depression underneath the apex. The
related model of Goles et al. is provided with an additional parameter of inertia.
Finally, the introduction of force transmission into our kinetic version [32] by
a top-down scheme allows the model to take into account the influence of the
initial stress state and of the wall roughness in silo flow modelling [37].

This new field focusing on the formation of force networks in granular pack-
ing seems still to be somewhat immature and would likely open gates for further
research. Moreover, as notified in the HHR CA, the downward sequential ap-
proach of these models suffers from a lack of Galilean invariance which should
be somehow restored.

4.4 Traffic-Flow Related Models

A somewhat surprising observation is that granular flow may in some cases
behave as road traffic flow. Therefore, traffic flow theory may help to clarify
our understanding of the complex behaviour of granular matter. Whence this
emergence of works with Leibig, Kurtze et Hong, Helbing, Nagatani... and from
[38] to [39] to bridge the gap. The study of road traffic flow is not a recent
deal: 1d models fit into one or multilane traffic whereas 2d models fit into urban
traffic. The theory of traffic flow arose with the “car-following” model of Lighthill
et Whitham who state some analogy with the pressure in compressible flow in
fluid-dynamics. Although a first single-bit CA was due to Gerlough some decades
ago, it is only recently that a lot of “particle hopping models” were carried out:
see the theory now unified with the “ASEP” asymmetric stochastic exclusion
process and “STCA” stochastic traffic cellular automata models, in Nagel [40]
and references therein.

Let us now consider the Wolfram’s “ECA-184” constructed from Rule 184
[1]. Its space-time diagram from single site seeds shows a car moving alone with
constant velocity; but from an initial disordered state, it exhibits complex phe-
nomena with critical points in phase transitions from jams to congestion de-
pending on the density of the flow. It can be observed that the ECA-184 is the
deterministic limit of the STCA. Related works focus on the formation of kink
solitons which appears in the physics of traffic jams [41]. The particle hopping
models are consistent with the nonlinear diffusion Burger’s equation (ECA-184)

394 D. Désérable et al.

or the noisy Burger’s equation (STCA, ASEP) whereas the density waves are
described by the associated Korteweg-de Vries KdV equation.

5 Hybrid Models

The three following CACM which are related to different species of matter and
did not take place in any previous category are gathered here into a unified set
of hybrid models.

5.1 Cellular-Neural Models of Reaction-Diffusion

Reaction-diffusion processes, often referred to “autowave” phenomena, arise in
various types of active media in complex matter. First CA approaches display-
ing realistic patterns of crystal-growth forms, stripes and streaks, Belouzov-
Zhabotinski rings, spirals, turbulence or Liesegang fronts highlight such physical,
biological or chemical examples. More recently, lattice-gas and lattice-Boltzmann
theories were successfully applied to those reactive systems in a more unified way:
see Boon et al. and Weimar [42], and Chopard et al. [16].

The outcome of Bandman and Pudov’s works is a hybrid, special-purpose
“CA-CNN” system devoted to the study of reaction-diffusion phenomena [43].
It is a novel, fine-grain application of the “parallel substitution algorithm” which
compounds the discrete character of the CA with the intelligency of neural net-
works [44], lying within a range between extended CA with real numbers and
restricted NN with local connections. The time evolution follows a stepwise,
two-stage transition until equilibrium: the cell performs the diffusion rules, a
neural function performs the reaction explicitly from a given PDE. Note that
this model departs distinctly from the Toffoli’s paradigm [2] wherein the task of
PDE solving is implicit. The system is intended to avoid the shortcoming of re-
dundant discrete-continuous-discrete transformations that often cause problems
of inaccuracy or instability in numerical computation. Simulations in the square
lattice are carried out with promising issues [45].

5.2 Cellular Automata for Hydration of Cement-Based Materials

Cement paste is probably one of the most complex material, which can contain
up to 15 different phases arranged into a complex microstructure. This com-
plexity further increases in mortar where cement powder and medium grains
coexist, even more in concrete as coarse aggregates are added in the mixture. A
hybrid VCCTL (Virtual Cement and Concrete Testing Laboratory) environment
is provided at NIST for simulation of hydration of cement-based materials and
prediction of their physical properties by virtual testing [46].

The hydration code of VCCTL is a CA whose input is a 3d microstructure
of a mixture of cement grains and water. This microstructure is obtained using
a 2d digital image of the cement powder, its particle-size distribution and a
given water-to-cement ratio. The output is the cement paste microstructure after

Cellular Automata Models for Complex Matter 395

hydration. The simulation runs during a user-defined number of hydration cycles.
The hydration cycle splits into three steps: dissolution; random-walk diffusion
of the mobile agents; reaction between colliding pixels. The result serves then as
input of continuum methods to extract macroscopic properties, that is, elastic
Young’s modulus and Poisson ratio.

Besides its use for a normal hydration process, VCCTL can also simulate
degradations like leaching, a dissolution of one or more phases that causes harm-
ful effects to quality and durability of the material. The simulation consists in
replacing the pixels representing the leached phases by water-pixels. The in-
fluence of dissolution on the porous network percolation [47] as well as on the
global capillary porosity of the paste serves again, as in the unleached case, as
input data to evaluate the effect on the degraded elastic moduli [48]. Multi-
scale simulations on mortar are also carried out [49] and where representative
elementary volumes are defined for both micro and meso different scales by a
homogenization procedure.

5.3 Movable Cellular Automata

The movable cellular automata “MCA” method of Psakhie, Horie and their
coworkers [50] which may also be termed as “movable lattice particles” according
to Popov’s terminology [51] provides a novel, alternative approach to the conven-
tional finite-element method applied to the elastoplastic behaviour of materials
under the action of small or large deformations. This hybrid model combines the
advantages of cellular automata and molecular dynamics within a mesoscopic
representation of the material.

Like the fictitious “fluid” particles in the hexagonal symmetry of the FHP
lattice-gas, “solid” particles are created, but the basic concept is a pairwise
switching parameter that defines a linked state as a “chemical bond” whenever
two neighbouring particles overlap. The distance between centers is considered
and, during a local deformation, the time evolution of their linked or unlinked
state acts as in a bistable medium. The particle’s motion is governed by a set
of translational and rotational equations following the Newton-Euler interaction
law. In this sense, the method may be related to the Cundall-Strack granular
dynamics except that particles are here fictitious and constrained by the lattice
structure. Moreover, a (micropolar) Cosserat continuum is provided by addi-
tional degrees of freedom for each material point [52].

The effectiveness of MCA is revealed in various critical situations: behaviour
of steel under load at the onset of fracture, response of heterogeneous structures
like concrete under static or dynamic loads, strength properties of anisotropic
material like lignite, roughness at surface interface, friction and melting in rail-
wheel contact, wear phenomena in combustion engines, or crash tests [50,53].

6 Discussion

This attempt of taxonomy of CACM will call several relevant questions and
problems. The following ones are pointed out. Where can be the border between

396 D. Désérable et al.

fine-grain and coarse-grain CACM? Should the time evolution be synchronous?
What about topology and scalability of the network? How to valid the consis-
tency of a model? We focus on and limit ourselves to this non-exhaustive list of
often unsolved questions, issued from our local experience and knowledge.

6.1 From Fine-Grain to Coarse-Grain CACM

From bitscale Wolfram’s ECA to sophisticated models, the range of complexity
in CACM may be extremely wide. The increasing complexity in lattice-gas mod-
els, from pure lattice-gas to lattice-Boltzmann until extended lattice-Boltzmann
as described in the related section is a relevant example thereupon: while a
monophase fluid particle is encoded with a 4-bit (resp. 6-bit) word in the HPP
(resp. FHP) cell, a real-valued distribution function is encoded in the lattice-
Boltzman cell, whereas arbitrary meshes are redefined to encode the discretized
Boltzmann equation in the extended models. Some models are essentially coarse-
grained: the movable cellular automata give a typical example in nature.

Let us consider as a coarse paradigm in parallel computing the subdivision of
a spatial problem into cells according to a given tessellation and in the frame-
work of a cell-processor allocation strategy, whatever the computational method
of the solver might be. Each cell solves its own subproblem at mesoscale and
should exchange data with its near-neighbours at each timestep according to
a predefined neighbourhood template. Why this grid-based network would not
be a CA? This odd question should raise a frequently claimed assertion that
cellular automata would have lost their attractiveness over against the grow-
ing computational power of today computers. Observing that a simple HPP gas
is able to reveal realistic phenomena, though possibly inconsistent, is sufficient
to take this assertion as wrong. Cellular automata will remain a genuine ap-
proach per se and the finer the grain will be, the better the model. Anyhow,
the model-to-architecture correspondence from fine-grain to special-purpose and
from coarse-grain to general-purpose is straightforward.

6.2 Synchronous or Asynchronous Time Evolution

In several CACM, the time evolution is sometimes governed by asynchronous
rules. The principle of simultaneity of a transition rule is not respected in the
asynchronous case, when some models adopt a bottom-up or top-down scanning
of the cells in the case of gravity flows or a partial scanning in order to avoid
coupling between a moving particle and its vicinity. During the force network
generation in granular systems, the time evolution is based on a downward row-
by-row computation in the triangular lattice [35,36,37].

Our idea, which can be denied, is that “there is always something happening
at a complex medium” and that top-down, bottom-up (gravity-based) or partial
(implementation-based) asynchronous modes should be avoided. A sequential,
non synchronous mode breaks the capability for an effective parallel implemen-
tation of the model. Moreover and more physically, it may break the Galilean

Cellular Automata Models for Complex Matter 397

invariance of the physical process [36,22]. So, the question is: how to yield a
pure, synchronous transition rule?

Let us focus on a particular case, namely, our crystal-like granular CA [32].
The basic two-stage transition is unable to allow a void to propagate and solid
grains to tumble down simultaneously. Other similar observations arise in situ-
ation of long-range interactions [11]. Including a synchronous propagative mode
leads to consider the transition and the time evolution at two different scales
and to consider the process as instantaneous within one timestep. This condi-
tion needs to set up a mechanism to stop this transitional sequence, namely, a
criterion of termination for the current timestep. This criterion is carried out by
a global all-to-all communication over the whole network.

In the general case, synchronizing a transition in CA is relevant to the Myhill’s
“firing squad” problem (see Mazoyer [54] and references therein).

6.3 Topology and Scalability of the Network

The local topology of a CA may have an important impact on the behaviour of
the model. In general, nearest-neighbour interactions are considered. For the 1d
case, that means that the individual computation works upon Wolfram’s triplet
(“r = 1”) centered on the cell [1]. The 2d case allows several nearest-neighbour
templates, the usual ones being either the (4-valent) von Neumann or the (8-
valent) Moore neighbourhood in the square tiling and, on the other hand, either
the (3-valent) star or the (6-valent) honeycomb neighbourhood in the hexagonal
tiling. Note that the brickwork Litwiniszyn’s template [29] is homeomorphic to
the honeycomb. As in [45], the Margolus split-swap seesaw in the Moore template
is sometimes encountered in CA rules.

The good properties of the hexavalent grid are important to notify: more sym-
metries, isotropy with maximal number of degrees of freedom, maximal coordi-
nence. A relevant observation is the inconsistency of the (von Neumann) HPP
gas and the consistency of the (honeycomb) FHP gas with the Navier-Stokes
equation. In the 3d case, the face-centered hypercubic lattice is unfortunately
the least frustrating solution, since there exists no isotropic tessellation of the
3d space.

At global level, the question of scalability should be pointed out: is a recursive
network needed for scaling laws? Scaling laws are concerned by the choice of
the size of the model, power-laws, renormalization or homogenization, critical
phenomena and critical exponents. The property of scalability for the underly-
ing CA network is able to facilitate this kind of procedure. For the 1d case, it
is easy to choose a periodic ring of length 2n in ergodic conditions. For the 2d
chessboard, one can refer to the recursive framework of Kadanoff for the ferro-
magnetic Ising model when 4 spins in a cell are condensed into one single spin in
the renormalization procedure [55]. What about the hexagonal case? We show
that it is also the case, where the underlying graph is a hierarchical Cayley graph
with periodic boundaries and maximal symmetries compared with the skewed
framework of Niemeijer and van Leeuwen [56].

398 D. Désérable et al.

6.4 Consistency of the Models

Although difficult, the question of proving whether a CA model is consistent
with mathematical equations involves the most challenging problems which de-
pend upon a diversity of factors. Proofs of consistency are never easy even for
simple cases and the deal may often be worse. Whence the renormalization-
homogenization procedures and the need of comparative studies with other meth-
ods, at least when these methods are practicable. In several cases, the useful
information of power-laws and critical exponents can yet be somehow extracted,
the context of self-organized criticality being a quite meaningful example.

It is worth while keeping track of the diversity of PDE that occurred through-
out our enumeration of simple CACM models: the simple diffusion equation,
the Fokker-Planck equation, the Navier-Stokes equation, the Burger’s one with
its correlated Korteweg-de Vries equation and the recent outcome of, say, the
Boutreux-de Gennes equation. Incidentally, the CA-neural hybrid environment
[43] that might be extended beyond the area of active media jointly with the
“programmable matter” methods [2,57] provide, by their respective explicit and
implicit approach, an idealized laboratory of prospective studies and investiga-
tions upon the CA-PDE relationship.

References

1. Wolfram, S.: Statistical mechanics of cellular automata. Rev. Mod. Phys. 55, 601–
644 (1983)

2. Toffoli, T.: Cellular automata as an alternative to (rather than an approximation
of) differential equations in modeling physics. Physica 10 D, 117–127 (1984)

3. Désérable, D.: Cellular automata for granular matter: what trends? In: Bainov, D.,
Nenov, S. (eds.) Second Int. Conf. on Applied Math. SICAM’05, Plovdiv, p. 64 (2005)

4. Bak, P., Tang, C., Wiesenfeld, K.: Self-organized criticality. Phys. Rev. A 38, 364–
374 (1988)

5. Kadanoff, L.P., Nagel, S.R., Wu, L., Zhou, S.M.: Scaling and universality in
avalanches. Phys. Rev. A 39, 6524–6537 (1989)

6. Makse, H.A., Herrmann, H.J.: Microscopic model for granular stratification and
segregation. Europhys. Lett. 43, 1–6 (1998)

7. Cizeau, P., Makse, H.A., Stanley, H.E.: Mechanisms of granular spontaneous strati-
fication and segregation in two-dimensional silos. Phys. Rev. E 59, 4408–4421 (1999)

8. Makse, H.A.: Grain segregation mechanism in aeolian sand ripples. Eur. Phys. J.
E 1, 127–135 (2000)

9. Caps, H., Vandewalle, N.: Ripple and kink dynamics. Phys. Rev. E 64(041302),
1–6 (2001)

10. Bak, P., Tang, C.: Earthquakes as a self-organized critical phenomena. J. Geophys.
Res. 94(B11), 15635–15637 (1989)

11. Weatherley, D., Mora, P., Xia, M.: Long-range automaton models of earthquakes:
power-law accelerations, correlation evolution, and mode-switching. Pure and Ap-
plied Geophys. 159(10), 2469–2490 (2002)

12. Iovine, G., Di Gregorio, S., Lupiano, V.: Debris-flow susceptibility assessment
through cellular automata modelling: an example from 15–16 December 1999 dis-
aster at Cervinara and San Martino Valle Caudina (Campania, southern Italy).
Natural Hazards Earth Syst. Sc. 3, 457–468 (2003)

Cellular Automata Models for Complex Matter 399

13. Kronholm, K., Birkeland, K.W.: Integrating spatial patterns into a snow avalanche
cellular automata model. Geophys. Res. Lett. 32(19), L19504 (2005)

14. Wolf-Gladrow, D.A.: Lattice-gas cellular automata and lattice Boltzmann models.
Springer, Heidelberg (2000)

15. Boghosian, B.M.: Lattice gases and cellular automata. Fut. Gen. Comp. Sys. 16,
171–185 (1999)

16. Chopard, B., Dupuis, A., Masselot, A., Luthi, P.: Cellular automata and lattice
Boltzmann techniques: an approach to model and simulate complex systems. Ad-
vances in Complex Systems 5(2-3), 103–246 (2002)

17. Frisch, U., d’Humières, D., Hasslacher, B., Lallemand, P., Pomeau, Y., Rivet, J.P.:
Lattice-gas hydrodynamics in two and three dimensions. Complex Systems 1, 649–
707 (1987)

18. Rothman, D.H., Keller, J.M.: Immiscible cellular-automaton fluids. J. Stat.
Phys. 52, 1119–1127 (1988)

19. Stockman, H.W, Li, Ch., Wilson, J.L.: A lattice-gas and lattice Boltzmann study
of mixing at continuous fracture junctions: importance of boundary conditions.
Geophys. Res. Lett. 24(12), 1515–1518 (1997)

20. McNamara, G.R., Zanetti, G.: Use of the Boltzmann equation to simulate lattice-
gas automata. Phys. Rev. Lett. 61(20), 2332–2335 (1988)

21. Higuera, F.J., Succi, S., Benzi, R.: Lattice-gas dynamics with enhanced collisions.
Europhys. Lett. 9, 345–349 (1989)

22. Lallemand, P., Luo, L.-S.: Theory of the lattice Boltzmann method: dispersion,
dissipation, isotropy, Galilean invariance, and stability. Phys. Rev. E 61, 6546–
6562 (2000)

23. Chen, S., Doolen, G.D.: Lattice-Boltzmann method for fluid flow. Ann. Rev. Fluid
Mech. 30, 329–364 (1998)

24. Flekkøy, E.G., Herrmann, H.J.: Lattice Boltzmann models for complex fluids. Phys-
ica A 199, 1–11 (1993)

25. Ladd, A.J.C., Verberg, R.: Lattice Boltzmann simulations of particle-fluid suspen-
sions. J. Stat. Phys. 104(5), 1191–1251 (2001)

26. Chen, H., Succi, S., Orszag, S.: Analysis of subgrid scale turbulence using the Boltz-
mann Bhatnagar-Gross-Krook kinetic equation. Phys.Rev. E 59, R2527–2530 (1999)

27. Xu, K., Prendergast, K.H.: Numerical Navier-Stokes solutions from gas kinetic
theory. J. Comp. Phys. 114, 9–17 (1993)

28. Talia, D., Sloot, P. (eds.): Cellular automata: promise and prospects in computa-
tional science. Special issue of Fut. Gen. Comp. Sys. 16, 157–305 (1999)

29. Litwiniszyn, J.: Application of the equation of stochastic processes to mechanics
of loose bodies. Archivuum Mechaniki Stosowanej 8(4), 393–411 (1956)

30. Müllins, W.W.: Stochastic theory of particle flow under gravity. J. Appl. Phys. 43,
665–678 (1972)

31. Baxter, G.W., Behringer, R.P.: Cellular automata models of granular flow. Phys.
Rev. A 42, 1017–1020 (1990)

32. Désérable, D.: A versatile two-dimensional cellular automata network for granular
flow. SIAM J. Applied Math. 62(4), 1414–1436 (2002)

33. Peng, G., Herrmann, H.J.: Density waves of granular flow in a pipe using lattice-gas
automata. Phys. Rev. E 49, R1796–1799 (1994)

34. Károlyi, A., Kertész, J., Havlin, S., Makse, H.A., Stanley, H.E.: Filling a silo with
a mixture of grains: friction-induced segregation. Europhys. Lett. 44(3), 386–392
(1998)

35. Coppersmith, S.N., Liu, C.H., Majumdar, S., Narayan, O., Witten, T.A.: Model
for force fluctuations in bead packs. Phys. Rev. E 53, 4673–4685 (1996)

400 D. Désérable et al.

36. Hemmingsson, J., Herrmann, H.J., Roux, S.: Vectorial cellular automaton for the
stress in granular media. J. Phys. I 45, 853–872 (1997)

37. Masson, S., Désérable, D., Martinez, J.: Modélisation de matériaux granulaires par
automate cellulaire. Revue Française de Génie Civil 5(5), 629–650 (2001)

38. Wolf, D.E., Schreckenberg, M., Bachem, A. (eds.): Traffic and Granular Flow’95,
Jülich. World Scientific Publishing, Singapore (1996)

39. Schadschneider, A., Pöschel, T., Kühne, R., Schreckenberg, M., Wolf, D.E. (eds.):
Traffic and Granular Flow’05. Springer, Heidelberg (2007)

40. Nagel, K.: Particle hopping models and traffic flow theory. Phys. Rev. E 53, 4655–
4672 (1996)

41. Nagatani, T.: The physics of traffic jams. Rep. Prog. Phys 65, 1331–1386 (2002)
42. Boon, J.-P., Dab, D., Kapral, R., Lawniczak, A.: Lattice gas automata for reactive

systems. Phys. Rep. 273, 55–148 (1996)
43. Bandman, O.L.: Cellular-neural automaton: a hybrid model for reaction-diffusion

simulation. Fut. Gen. Comp. Sys. 18(6), 737–745 (2002)
44. Pudov, S.: First order 2d cellular neural networks investigation and learning. In:

Malyshkin, V. (ed.) PaCT 2001. LNCS, vol. 2127, pp. 94–97. Springer, Heidelberg
(2001)

45. Malinetski, G.G., Stepantsov, M.E.: Modelling diffusive processes by cellular au-
tomata with Margolus neighborhood. Zh. Vych. Mat.Mat. Phys. 36(6), 1017–1021
(1998)

46. Haecker, C.J., Bentz, D.P., Feng, X.P., Stutzman, P.E.: Prediction of cement phys-
ical properties by virtual testing. Cement International 1(3), 86–92 (2003)

47. Bentz, D.P., Garboczi, E.J.: Modelling the leaching of calcium hydroxide from ce-
ment paste: effects on pore space percolation and diffusivity. J. Mat. Struct. 25(9),
523–533 (1992)

48. Kamali, S., Moranville, M., Garboczi, E., Prené, S., Gérard, B.: Hydrate dissolution
influence on the Young’s modulus of cement pastes. In: FraMCos’04, Vail, Colorado,
pp. 631–638 (2004)

49. Bernard, F., Kamali-Bernard, S., Prince, W., Hjaj, M.: 3D multi-scale modeling
of mortar mechanical behavior and effect of changes in the microstructure. In:
FraMCos’07, Catania, Italy (in press)

50. Psakhie, S.G., Horie, Y., Ostermeyer, G.P., Korostelev, S.Y., Smolin, A.Y., Shilko,
E.V., Dmitriev, A.I., Blatnik, S., Spegel, M., Zavsek, S.: Movable cellular automata
method for simulating materials with mesostructure. Theor. Appl. Fract. Mech. 37,
311–334 (2001)

51. Popov, V.L., Filippov, A.E.: Method of movable lattice particles. Tribol. Int. 40(6),
930–936 (2007)

52. Popov, V.L., Psakhie, S.G.: Theoretical principles of modelling elastoplastic me-
dia by movable cellular automata method. I. Homogeneous media. Phys. Me-
somech. 4(1), 15–25 (2001)

53. Dmitriev, A.I., Popov, V.L., Psakhie, S.G.: Simulation of surface topography with
the method of movable cellular automata. Tribol. Int. 39(5), 444–449 (2006)

54. Mazoyer, J.: An overview of the firing squad synchronization problem. In: Choffrut,
C. (ed.) Automata Networks. LNCS, vol. 316, pp. 82–94. Springer, Heidelberg (1988)

55. Kadanoff, L.P.: Scaling laws for Ising models near Tc. Physics 2(6), 263–272 (1966)
56. Désérable, D.: A framework for scaling and renormalization in the triangular lat-

tice. In: Fourteenth Int. Symp. on Math. Theory of Networks & Systems MTNS’
2000, Perpignan, p. 109 (2000)

57. Toffoli, T.: Programmable matter methods. Fut. Gen. Comp. Sys. 16, 187–201
(1999)

V. Malyshkin (Ed.): PaCT 2007, LNCS 4671, pp. 401–409, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Hysteresis in Oscillatory Behaviour in CO Oxidation
Reaction over Pd(110) Revealed by

Asynchronous Cellular Automata Simulation

Vladimir Elokhin, Andrey Matveev, Vladimir Gorodetskii, and Evgenii Latkin

Boreskov Institute of Catalysis SB RAS
Prosp. Akad. Lavrentieva, 5, 630090, Novosibirsk, Russian Federation

elokhin@catalysis.ru

Abstract. The dynamic behaviour of the CO oxidation reaction over Pd(110)
has been studied by means of probabilistic asynchronous cellular automata
(Dynamic Monte-Carlo). The influence of the internal parameters on the shapes
of surface concentration waves obtained in simulations under the limited
surface diffusion intensity conditions has been studied. The hysteresis in
oscillatory behaviour has been found under step-by-step variation of oxygen
partial pressure. Two different oscillatory regimes could exist at one and the
same parameters of the reaction. The parameters of oscillations (amplitude,
period and the shape of spatio-temporal patterns on the surface) depend on
the kinetic prehistory of the system. The possibility for the appearance of the
cellular and turbulent patterns, spiral, target and stripe oxygen waves on the
surface in the cases under study has been shown.

Keywords: CO oxidation, palladium, oscillations, surface waves, asynchronous
cellular automata, hysteresis in oscillatory regimes.

1 Introduction

The complex dynamic behaviour in oxidation reaction over platinum metals
(bistability, oscillations, surface autowaves, etc.) can be directed by the structure of
the reaction mechanism, specifically by the laws of physicochemical processes in the
«reaction medium - catalyst» system. The most popular factors used to interpret the
critical effects are the following [1]: i) phase transformations on the catalyst surface,
including the formation and decomposition of subsurface oxygen during the reaction
(e.g., Pd(110)), ii) structural phase transitions of the surface and its reconstruction due
to the influence of the reaction media (e.g., Pt(100)).

In our opinion, the imitation (or stochastic) simulation is the most efficient tool for
describing the spatio-temporal dynamics of the behaviour of adsorbates on the real
catalytic surface, whose structure can change during the reaction. Recently the
statistical lattice models for imitating the oscillatory and autowave dynamics in the
adsorbed layer during CO oxidation over Pd(110) [2] and Pt(100) [3] single crystals,
differing by the structural properties of catalytic surfaces, has been studied.

402 V. Elokhin et al.

2 Formulation of the Reaction Mechanism

The aim of this contribution is to study the influence of surface diffusion intensity on
the shapes of surface concentration waves obtained in simulations. Let us restrict our
consideration by CO oxidation reaction over Pd(110).

Based on our experimental FEM, TPR, XPS and MB data of CO oxidation
oscillatory reaction on Pd tip surface [4, 5], some elementary steps have been added
to L–H scheme, and a model (probabilistic asynchronous cellular automata) for the
kinetic oscillations in CO + O2 over Pd has been developed. The parameters of the
elementary steps were partly taken from the literature [4]. The following detailed
mechanism of the reaction was used for simulations:

1) O2(gas) + 2∗ → 2Oads; 4) Oads + ∗v → [∗Oss];

2) COgas + ∗ ↔ COads; 5) COads + [∗Oss] → CO2(gas) + 2∗ + ∗v;

3) COads + Oads → CO2(gas) + 2∗; 6) COgas + [∗Oss] ↔ [COads∗Oss];

 7) [COads∗Oss] → CO2(gas) + ∗ + ∗v - «cork-screw» reaction

Here ∗ and ∗v are the active centres of the surface and subsurface Pd layer,
respectively. Formation of the subsurface oxygen (modified surface) proceeds
according to step 4, reduction of the initial surface – due to reactions 5 and 7 “cork-
screw” reaction. The adsorbed COads species can diffuse over the surface according to

the following rules: (i) COads + ∗ ↔ ∗ + COads , (ii) COads + [∗Oss] ↔ ∗ + [COads∗
Oss]; (iii) [COads∗Oss] + [∗Oss] ↔ [∗Oss] + [COads∗Oss]. According to [6], we

suppose that the heat of CO adsorption on the “oxidised” centres [∗Oss] is less than

that on the initial unoxidised [∗] one, i.e. the probability of [COads∗Oss] desorption
(step 6) is greater than of COads (step 2) one.

3 Algorithm of Simulation

The sequence of steps 1)-5) is often used for modelling of oscillations in catalytic
oxidation reactions including the stochastic models, e.g. [7]. In our study, in addition

to steps 1)-5), the possible process of [COads∗Oss] complex formation has been
considered both because of CO adsorption (step 6) and the COads diffusion over the
surface. Besides, the possibility of the “cork-screw” reaction 7 is assumed. Step 4 is
supposed to be irreversible. The model catalyst surface was represented by the square

lattice N×N (N = 500 – 8000) with periodic boundary conditions (surface of torus).

Each lattice cell can exist in one of five states: ∗, COads, Oads, [∗Oss], [COads∗Oss]. For
steps (1), (2), (-2), (4), (5), (6), (-6), (7), the values of ki were specified as a set of
numbers, which can be considered as the rate constants of these elementary steps
taking into account the partial pressures of O2 (step 1) and CO (steps 2 and 6). The
method for processing both step 3 and steps (i)-(iii) of COads diffusion over the
surface will be discussed below. The prescribed constants were recalculated as the
probabilities of the realization of elementary processes wi by the formula: wi=ki/Σki.

 Hysteresis in Oscillatory Behaviour in CO Oxidation Reaction 403

Using a generator of random numbers uniformly distributed over the (0, 1) interval,
we chose one of these processes according to the specified ratio of their occurrence.
Then, also using pairs of random numbers, the coordinates of one cell or two adjacent

cells, depending on the chosen process, were determined from N×N cells of lattice.
This algorithm (first, choice of the process and, second, choice of the cell) makes it
possible to take into account the dependence of the step rates on the adsorbate
coverage.

The states of the cells are determined according to the rules prescribed by the
detailed reaction mechanism. Let us show now the realisation of the chosen process,
e.g., for the reaction 5: COads + [∗Oss] → CO2(gas) + 2∗ + ∗v (the realization of the rest
of reaction steps is similar). When two cells randomly chosen contain a {COads, [∗
Oss]} pair, the states of both cells are changed to the state ∗, and one more molecule
of carbon dioxide formed was put in the reaction rate counter. If the required pair is
not found out, the attempt is rejected. After every choice of one of the above-named
processes and an attempt to perform this process the inner cycle of COads diffusion
was processed, which included M attempts of random choice of a pair of adjacent
cells of the lattice (M = 20-100). If the {COads, ∗}, {COads, [∗Oss]}, {∗, [COads∗Oss]},
{[∗Oss], [COads∗Oss]} pairs turned out to be these pairs, the states in these cells were
interchanged according to the rules (i)-(iii), i.e. diffusion took place. Otherwise, the
attempt of diffusion was rejected. The diffusion is necessary for the spatio-temporal
processes synchronization occurring on the local regions of the model surface.

In our model we suppose that reaction 3) proceeds immediately as soon as
adsorbed COads and Oads appear in the situation of nearest neighbourhood. After each
successful attempt of CO or O2 adsorption as well as of COads diffusion, the
neighbouring cells were checked to find the partners in reaction 3). If the partners
were found, then the cells were given the state ∗, and one more CO2 was added to the
reaction rate counter. The so-called MC-step consisting of N×N attempts of choice
and realization of “main” elementary processes 1)-2), 4)-7) is used as a time unit in
the Monte Carlo models. During the MCS, each cell is tested on the average once.
The reaction rate and surface coverages were calculated after each MCS as a number
of CO2 molecules formed or the number of cells in the corresponding state divided by
the total value of the lattice cells N2.

4 Results and Discussions

The synchronous oscillations of the reaction rate and surface coverages are exhibited
within the range of the suggested model parameters under the conditions very close to
the experimental observations – e.g., Fig 1. These oscillations are accompanied by the
autowave behaviour of surface phases and adsorbate coverages, Fig. 2. One can see
from the Figs. 1 and 2 that the oscillations are quite regular, and the shape of oxygen
waves is of prominent cellular pattern of change: the initiation of oxygen fronts
propagation proceeds simultaneously at different local regions of the model surface,
and the Oads and COads coverages alternate during the period of oscillations. The

404 V. Elokhin et al.

Fig. 1. Dynamics of changes in the surface coverages COads (ZCO - solid line), [COads∗Oss]
(ZCO - dash-dotted line), Oads (ZO), [∗Oss] (ZO’), reaction rate (R) - for CO oxidation over
Pd(110). N = 1000, M = 100. The values of the rate constants of steps (s-1) (see scheme): k1=1,
k2=1, k-2=0.2, k3=inf, k4=0.03, k5=0.01, k6=1, k-6=0.5, k7=0.02. The partial pressures of
reagents (CO and O2) are included in the rate constants of adsorption (k1, k2, k6).

intensity of CO2 formation in the COads layer is low, inside oxygen island it is
intermediate and the highest intensity of CO2 formation is related to narrow zone
between the moving Oads island and surrounding COads layer - «reaction zone»,
characterised by the elevated concentration of the free active centres [2]. The presence
of the narrow reaction zone was found experimentally by means of the field ion
probe-hole microscopy technique with 5 Å resolution [8]. The important role of the
diffusion rate and of the lattice size on the synchronisation and stabilisation of surface
oscillations has been demonstrated. Particularly, in the case of Pt(100), the decrease
of the diffusion intensity (parameter M) from 100 to 30 leads to the irregular
oscillations and to the turbulent patterns on the model surface – in this case the mobile
islands of Oads shaped as cellular waves, spiral fragments, etc., are formed [3]. Similar
spatiotemporal behavior was experimentally observed in CO+O2/Pt(100) using the
Ellipso-Microscopy for Surface Imaging (EMSI) technique [9].

Let us study the influence of diffusion intensity M on the shape of the surface
waves in the case shown in the Fig. 2. Decrease of M up to value M = 50 doesn’t
change significantly the oscillatory and wave dynamics, but decreasing M to value M
= 20 drastically change both the shape of oscillations and the spatiotemporal
behaviour of simulated surface waves.

Period and amplitude of oscillations decrease considerably, the dynamic behaviour
of reaction rate and surface coverages demonstrate the intermittence (oscillatory
regime I). During these oscillations oxygen (Oads) is always present on the surface (as

 Hysteresis in Oscillatory Behaviour in CO Oxidation Reaction 405

Fig. 2. The distribution of different adsorbates over the surface at the moment when the
coverage change on the Pd(110) surface. Dark grey regions indicate the propagating oxygen
islands, light grey regions – COads layer. The lattice size N = 1000, diffusion intensity
parameter M = 100.

Fig. 3. Typical snapshots of the adsorbate distribution over the surface (N = 1000) at step-by
step reducing of k1 in the case of restricted diffusion intensity of COads (M=20). The values of
partial pressure of oxygen (i.e., k1) are the following (from left to right): 1 (a), 0.9 (b), 0.85 (c),
0.8 (d), 0.73 (e), and 0.71 (f). The designations of adsorbate are the same as for Fig. 2.

opposed to the case of Figs. 1 and 2) in the form of turbulent spatiotemporal
structures (Fig. 3a). It is seen from Fig. 3a that the whole surface is divided in several
islands oscillating with the same period but with a phase shift relative to each other,
therefore the reaction rate and coverage’s time dependencies demonstrate the
intermittence peculiarities. Here one can observe on the surface the spatio-temporal

a b c

d e f

406 V. Elokhin et al.

pattern of complicated turbulent shape. The colliding oxygen islands form the spiral-
like patterns. Step-by step decrease of oxygen partial pressure (remember, that the
values for O2 and CO adsorption coefficients, k1, k2, and k6 (s

-1), can be treated as the
product of the impingement rate (ki×Pi) and of the sticking coefficient (Si)) leads to
the gradual thinning of oxygen travelling waves (Fig. 3b-e). At low values of k1 (Fig.
3d-f) the long and thin oxygen stripe (or “worm”-like) patterns are formed on the
simulated surface, and the clear tendency of turbulent patterns to combine into spirals
disappeared at k1 < 0.8. The amplitude of oscillations diminished with decreasing of
k1. At last, at k1 = 0.71 (Fig. 3f), the oxygen stripe wave vanish slowly from the
surface and the system transform to the low reactive state (the surface is
predominantly covered by COads).

The reverse increasing of k1 leads to hysteresis in oscillatory behaviour. The
oscillation appears only at k1 = 0.85 via very fast “surface explosion” (Fig. 4a-h). It is
surprising that the characteristics of oscillations differ drastically from those observed
at gradual decreasing of k1 at the same value of k1 = 0.85. Now the amplitude of
oscillations in the regime II (coverage’s and reaction rate) is larger than in regime I,
and instead of turbulent spiral-like pattern (Fig. 3c) we observe the alternately change

Fig. 4. The snapshots illustrating the rise of oscillations at inverse step-by-step increasing of k1,
k1 = 0.85. The difference between the frames is 5 MC steps. The designations of adsorbate are
the same as for Fig. 2.

of Oads and COads layers via growing cellular oxygen islands (Fig. 4) similar to the
case with large diffusion intensity (Fig. 2). The interval of existence of these
oscillations increased significantly. Noteworthily, that the simulations at higher lattice
size N=8000 in regime II (k1 = 0.83) gave us the “target”-like structures, which were
observed experimentally [10], Fig 5.

Only at k1 = 1 occurs the transformation from the regime II to the regime I – we
observe again the turbulent patterns over the surface (Fig. 3a). In the cases discussed

a b c d

e f g h

 Hysteresis in Oscillatory Behaviour in CO Oxidation Reaction 407

Fig. 5. Simulated “target” structures at N=8000 (a, b), and adsorbed oxygen and carbon
monoxide structures on the Pt(110) experimentally observed by Photo Emission Electron
Microscopy (PEEM) (c) [10]. The designations of adsorbate are the same as for Fig. 2.

above we perform the simulation experiments with constant P(CO), i.e., k2 and k6,
changing over and back the O2 partial pressure (k1).

When we performed the simulations with constant k1 = 1, M=20 and changing
step-wise k2 and k6 (i.e., P(CO)) from 0.5 to 1.5 and back, we also obtained the
hysteresis in oscillatory regime with similar spatiotemporal patterns on the surface.

It has been found in experiments, that the different oscillatory windows could exist
in the parameter space of the particular system, e.g., CO oxidation over Pt(100) [9],

0 5000 10000 15000 20000 25000
MCS

0.70.80.85
0.9

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9
50000 45000 40000 35000 30000 25000

regim e II

1.0

0.98
0.95

C
O
co
ve
ra
ge

regim e I

Fig. 6. The characteristics of two different oscillatory regimes at step-wise decreasing of P(O2)
from k1 = 1.0 to k1 = 0.7 (regime I) and at increasing from k1 = 0.8 to k1 = 1.0 (regime II): k1 =
kads(O2)×S(O2)×P(O2) . Only oscillations of CO coverage have been shown.

408 V. Elokhin et al.

i.e., at different parameters (temperature and CO/O2 ratio) two regions has been found
at a constant total pressure where the rate oscillations and spatiotemporal formations
have been observed. In our case two different oscillatory regimes with discriminate
spatiotemporal dynamics have been found in simulations in the same variation
interval of P(O2) (and P(CO)), Fig. 6.

The interval of existence of oscillatory regime II is quite large: 0.98 > k1 > 0.82.
Increase of k1 in this interval leads to the increasing of the amplitude and decreasing
of the period of oscillations. At low bound of this interval (i.e., at k1 = 0.83) the target
structures of growing oxygen islands has been observed (Fig. 5) – during the oxygen
island propagation CO have the possibility to adsorb into its centre. In this case the
period of oscillations increased significantly (~ 2000 MCS). And only if we fall
outside the upper limit of oscillatory regime II (at k1 = 1) the transformation occurs
from the regime II to the regime I – we observe again the turbulent patterns over the
surface (Fig. 4a). When we switch over from k1 = 1 to k1 = 0.85, we observe again the
oscillatory regime I. Fig. 6 illustrates the whole scenario of k1 change during our
simulation experiments, exemplified by COads dynamics. First we carried out the
simulations at restricted COads diffusion intensity (M = 20) with P(O2) (or k1) equal to
1.0. Then we began to decrease the k1 parameter (or, the same, P(O2)) step-by-step
manner down to the vanishing of the oscillatory regime I at P(O2) = 0.71. The inverse
step-by-step increase of P(O2) leads to the rise of oscillatory regime II at P(O2) = 0.85
(Fig. 6). The characteristics of oscillations (period and amplitude) differ drastically in
these two oscillatory regimes, and what is more, the spatio-temporal patterns are
distinctly different (Figs. 3 and 4). Whereas in oscillatory regime I oxygen is always
present on the surface in the form of small islands, spirals and stripes, oscillatory
regime II characterised by alternate high and low reactive states changing due to
periodic oxygen cellular patterns propagation (cf. Figs. 3 and 4). The transition to the
P(O2) = 1 both from the value 0.98 and 0.85 (Fig. 6) leads to the oscillatory regime I.
After the establishment of the regime I we can turn back to the P(O2) = 0.85 and
observe again the spiral-like spatio-temporal structures of oxygen on the surface (Fig.
3c). That means, that at the same value of the key parameter (e.g., k1 = 0.85) two
different «cycles» could exist. The shape of «integral» oscillations and spatio-
temporal patterns depends on the dynamic prehistory (shape-memory effect).

5 Conclusion

Thus, the hysteresis in oscillatory behaviour has been found by kinetic asynchronous
cellular automata modelling of CO oxidation reaction over Pd(110). Two different
oscillatory regimes could exist at one and the same parameters of the reaction. The
parameters of oscillations (amplitude, period and the shape of spatiotemporal patterns
on the surface) depend on the dynamic prehistory of the system (shape-memory
effect). The possibility for the appearance of the cellular, target and turbulent patterns,
spiral, ring and “worm”-like waves on the surface in the cases under study has been
shown. The results obtained make possible to interpret the surface processes on the
atomic scale.

 Hysteresis in Oscillatory Behaviour in CO Oxidation Reaction 409

Acknowledgements. This work was supported by Russian Fund for Basic Research
Grant # 05-03-32971, INTAS Grant # 05-109-5039 and Russian Science Support
Foundation.

References

1. Imbihl, R., Ertl, G.: Oscillatory kinetics in heterogeneous catalysis. Chem. Rev. 95, 697–
733 (1995)

2. Latkin, E.I., Elokhin, V.I., Matveev, A.V., Gorodetskii, V.V.: The role of subsurface
oxygen in oscillatory behavior of CO + O2 reaction over Pd metal catalysts: Monte Carlo
model. J. Molec. Catal. A, Chem. 158, 161–166 (2000)

3. Latkin, E.I., Elokhin, V.I., Gorodetskii, V.V.: Monte-Carlo model of oscillatory CO
oxidation having regard to the change of catalytic properties due to the adsorbate-induced
Pt(100) structural transformation. J. Molec. Catal. A, Chem. 166, 23–30 (2001)

4. Gorodetskii, V.V., Matveev, A.V., Kalinkin, A.V., Niewenhuys, B.E.: Mechanism for CO
oxidation and oscillatory reactions on Pd tip and Pd(110) surfaces: FEM, TPR, XPS
studies. Chem. for Sustain. Dev. 11, 67–74 (2003)

5. Gorodetskii, V.V., Matveev, A.V., Podgornov, E.A., Zaera, F.: Study of the low-
temperature reaction between CO and O2 over Pd and Pt surfaces. Topics in Catalysis 32,
17–28 (2005)

6. Ertl, G.: Oscillatory catalytic reactions at single-crystal surfaces. Adv. Catal. 37, 213
(1990)

7. Vishnevskii, A.L., Latkin, E.I., Elokhin, V.I.: Autowaves on catalyst surface caused by
carbon monoxide oxidation kinetics: Imitation model. Surf. Rev. Lett. 2, 459–469 (1995)

8. Gorodetskii, V.V., Drachsel, W.: Kinetic oscillations and surface waves in catalytic
CO+O2 reaction on Pt surface: Field electron microscope, field ion microscope and high
resolution electron energy loss studies. Appl. Catal. A: General 188, 267–275 (1999)

9. Lauterbach, J., Bonilla, G., Fletcher, T.D.: Non-linear phenomena during CO oxidation in
the mbar pressure range: a comparison between Pt/SiO2 and Pt(100). Chem. Eng. Sci. 54,
4501–4512 (1999)

10. Jakubith, S., Rotermund, H.H., Engel, W., von Oertzen, A., Ertl, G.: Spatio-temporal
concentration patterns in a surface reaction: Propagating and standing waves, rotating
spirals, and turbulence. Phys. Rev. Lett. 65, 3013–3016 (1990)

CAOS: A Domain-Specific Language for the

Parallel Simulation of Cellular Automata

Clemens Grelck1,2, Frank Penczek1,2, and Kai Trojahner2

1 University of Hertfordshire
Department of Computer Science

c.grelck@herts.ac.uk, f.penczek@herts.ac.uk
2 University of Lübeck

Institute of Software Technology and Programming Languages
trojahner@isp.uni-luebeck.de

Abstract. We present the design and implementation of CAOS, a
domain-specific high-level programming language for the parallel sim-
ulation of extended cellular automata. CAOS allows scientists to specify
complex simulations with limited programming skills and effort. Yet the
CAOS compiler generates efficiently executable code that automatically
harnesses the potential of contemporary multi-core processors, shared
memory multiprocessors, workstation clusters and supercomputers.

1 Introduction

Cellular automata are a powerful concept for the simulation of complex sys-
tems; they have successfully been applied to a wide range of simulation prob-
lems [1,2,3,4,5,6,7,8]. This work is typically done by scientists who are experts
in their field, but generally not experts in programming and computer architec-
ture. Programming complex simulations correctly and efficiently quickly turns
into a painful venture distracting from the interesting aspects of the simulation
problem itself. Current advances in computer architecture make the situation
considerably worse. Abundance of parallel processing power through multicore
technology and the need to parallelise simulation software to effectively use stan-
dard computing machinery confronts us with the notorious hazards of parallel
programming. The model of cellular automata naturally lends itself to parallel
execution. However, the effective utilisation of parallel processing resources on
whatever level requires very specific programming skills and is difficult, time-
consuming and error-prone.

We propose a new domain-specific programming language named CAOS
(Cells, Agents and Observers for Simulation) that is tailor-made for program-
ming simulation software based on the model of cellular automata. Since it is
restricted to this single purpose, it provides the scientist with little programming
experience support for the rapid prototyping of complex simulations on a high
level of abstraction. Nevertheless, the CAOS compiler fully automatically gen-
erates portable and efficiently executable code for a wide range of architectures.
We support both shared memory systems through OpenMP and distributed

V. Malyshkin (Ed.): PaCT 2007, LNCS 4671, pp. 410–417, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

CAOS: A Domain-Specific Language for the Parallel Simulation 411

memory systems through Mpi. In fact, both approaches may be combined hav-
ing the compiler generate multithreaded OpenMP code within Mpi processes
for hybrid architectures. Thus, CAOS not only supports today’s multicore pro-
cessors, but likewise clusters of workstations, traditional supercomputers and
combinations thereof.

The remainder of the paper is organised as follows: In Sections 2, 3 and 4 we
introduce cells, agents and observers, respectively. Section 5 outlines some im-
plementation aspects and reports on performance measurements. We addresses
related work in Section 6 and conclude in Section 7.

2 Cells

Fig. 1 shows the general layout of a CAOS program, which is organised into a
sequence of sections. Following a set of declarations, which we will only sketch
out briefly, we find the basic constituents of CAOS: cells, agents and observers.
This section is concerned with cells; agents and observers are explained in the
following sections. Cells consist of attribute declarations (the state space), an
initialisation (the initial state) and a behaviour definition (the state transition
function). This specification of a single cell is complemented by a grid definition
that defines the assemblage of these uniform cells to a cellular automaton.

Program ⇒ Declarations Cells Agents Observers
Cells ⇒ Grid Attributes Init Behaviour
Grid ⇒ grid Axis [, Axis]* ;
Axis ⇒ Index .. Index : Id <.> Id : Boundary
Index ⇒ IntConstant | Id
Boundary ⇒ static | cyclic
Attributes ⇒ cells { [Type Id ;]+ }

Fig. 1. Grammar of CAOS programs

As mentioned earlier, the state space of CAOS cells can be quite complex:
Following the key word cells we have a sequence of attribute declarations each
associated with a type. This part very much resembles the definition of attributes
in class definitions of an object-oriented languages. As types CAOS currently
supports boolean values (bool), integer numbers (int), double precision floating
point numbers (double) and user-defined enumeration types. The latter are very
similar to those in C and can be defined in the declaration section of a CAOS
program. Enumeration types are handy to use symbolic names whenever the
state space is rather small. For example, in the Game of Life it may be more
expressive to use an enumeration type
enum dead_or_alive {dead, alive};

than representing the state by boolean or integer values. The corresponding cell
definition could look like
cells { dead_or_alive state; }

412 C. Grelck, F. Penczek, and K. Trojahner

Cells are arranged to multi-dimensional grids using the grid declaration. Fol-
lowing the key word grid we have a sequence of axis specifications. Each axis
specification itself consists of three parts separated by colons. First, we specify
the extent of the grid along this axis. Grid sizes may be hard-coded using an
integer constant. However, in most cases it is more convenient to use a symbolic
constant defined in the declaration section or a symbolic parameter, which allows
us to determine the grid size at runtime. A parameter declaration of the form
param int size = 100;

makes the CAOS compiler automatically generate a command line option -size
num that can be used to overrule the default value specified (100 in this exam-
ple). Of course, parameters can be used throughout the CAOS program at any
appropriate expression position and not only in grid specifications.

The second part of an axis specification introduces two new identifiers as
symbolic names for neighbouring cells along decreasing (left of <.> symbol) and
increasing (right of <.> symbol) indices. These symbolic directions are the only
means to access attributes of neighbouring cells; they avoid the error-prone use
of explicit numerical indices and calculations on them.

Any grid has a finite size which raises the question of how to handle cells on
the boundary. By putting one of the key words static and cyclic into the last
part of the axis specification we offer the choice between an additional layer of
constant cells and cyclic neighbourship relations. As an example, consider the fol-
lowing specification of a 2-dimensional grid using compass names for directions:
grid 1..100 : north <.> south : static,

1..size : west <.> east : cyclic;

Cells may be initialised by the available set of constants and parameters. Fur-
thermore, entire start configuration can be read from files. We skip this part
of the language and head straight on to the more interesting behaviour specifi-
cation, i.e. the state transition function of our cells. Fig. 2 defines the syntax.
Essentially, a CAOS behaviour specification is a C- or Java-like block of assign-
ments. In addition to the state identifiers declared in the cells section of a CAOS
program, we have local variables in the behaviour section. Such local variables
are pure placeholders for intermediate values. Apart from them, the body of a
behaviour specification is a sequence of assignments to either local variables or
state variables.

Behaviour ⇒ behaviour { [Type Id [= Expr] ;]* [Instruction]* }
Instruction ⇒ Assignment | Cond | ForEach | Switch
Assignment ⇒ Id = Expr ;
Cond ⇒ if (Expr) Block else Block
ForEach ⇒ foreach (Type Id in Set) Block
Switch ⇒ switch (Id) { [Case]+ [Default]
Case ⇒ case CaseVal [, CaseVal]* : Block
Block ⇒ Instruction | { [Instruction]* }

Fig. 2. Syntax of the behaviour section

CAOS: A Domain-Specific Language for the Parallel Simulation 413

Expressions are made up of local and state variables as well as the usual
operators on the basic types supported by CAOS. The most noteworthy part
here is the access to state variables of neighbouring cells. Whereas the exist-
ing values of a cell’s own state variables are accessed simply by the variable’s
name, neighbouring cell’s state variables are referred to using the directions in-
troduced in the grid specification. Given the above cell and grid specifications,
a cell may access the state of its left neighbour by state[west] or its upper
neighbour by state[north]. CAOS also provides an associative and commu-
tative operator on directions: With state[north^west] we can easily address
the upper left neighbour without complicated and error-prone numerical in-
dex computations. Neighbourhoods are not limited to immediate neighbours:
state[north^north] is perfectly fine. As the boundary condition on this axis
was defined as static, the CAOS compiler will introduce a constant boundary
layer of sufficient size.

CAOS provides a set of versatile control constructs. The C- or Java-like con-
ditional, for example, allows us to implement the Game of Life:
behaviour { int cnt = 0;

if (state[north] == alive) cnt = cnt + 1;
if (state[south] == alive) cnt = cnt + 1;
if (state[east] == alive) cnt = cnt + 1;
if (state[west] == alive) cnt = cnt + 1;
if (state[north^east] == alive) cnt = cnt + 1;
if (state[north^west] == alive) cnt = cnt + 1;
if (state[south^east] == alive) cnt = cnt + 1;
if (state[south^west] == alive) cnt = cnt + 1;

if (state == alive) {
if (cnt == 2 || cnt == 3) state = alive;
else state = dead;

}
else {

if (cnt == 3) state = alive;
else state = dead;

} }

A more concise specification of the counting process can be achieved using the
foreach construct:
foreach (dir d in [north, south, east, west,

north^east, north^west, south^east, south^west]) {
if (state[d] == alive) cnt = cnt + 1;

}

The body code is executed for each element of the set of directions, represented
by the local variable d of type dir. Likewise, the decision making code may be
written more intuitively thanks to the switch-construct:
switch (state) { case alive: switch (cnt) { case 2,3: state = alive;

default: state = dead;
}

case dead: switch (cnt) { case 3: state = alive;
default: state = dead;

} }

414 C. Grelck, F. Penczek, and K. Trojahner

CAOS provides further variations of the foreach and switch constructs using
explicit guard expression. Moreover, there is a range of probabilistic constructs
that allow programmers to introduce non-determinism. However, due to the
limited space we cannot elaborate on them.

3 Agents

Agents are similar to cells in that they consist of a set of attributes. Agents move
from cell to cell; at any step during the simulation an agent is associated with
exactly one cell. A cell in turn may be associated with a conceptually unlimited
number of agents. Like the cells, agents have a behaviour (or state transition
function). The behaviour of an agent is based on its existing state and the state
of the cell it resides at as well as all other agents and cells in the neighbourship
as described above. In addition to updating its internal state, an agent (unlike
a cell) may decide to move to a neighbouring cell. Conceptually, this is nothing
but an update of the special attribute location. Agents also have a life time, i.e.
rather than moving to another cell, agents may decide to die and agents may
create new agents.

4 Observers

It is paramount for any simulation software to make the result of simulation,
and in most cases intermediate states at regular intervals as well, visible for
interpretation. Observers serve exactly this purpose. They allow us to observe
the values of certain attributes of cells and agents or cumulative data about them
(e.g. averages, minima or sums) at certain regular intervals of the simulation or
just after completing the entire simulation.

Each observer is connected with a certain file name (not a certain file). The
parallel runtime system takes full advantage of parallel I/O both when using Mpi

and OpenMP as backend. This file system handling is particularly tricky if it is
to be hand-coded. An auxiliary tool suite provides a comfortable user-interface
to observer data produced through parallel file I/O.

5 Implementation and Evaluation

We have implemented a fully fledged CAOS compiler1 that generates sequential
C code. On demand, the grid is automatically partitioned for multiple Mpi pro-
cesses. The process topology including the choice and number of partitioned grid
axes are fully user-defined. A default process topology provided at compiler time
may be overwritten at program startup. Additionally, each Mpi process may be
split either statically or dynamically into a user-defined number of OpenMP

threads, provided that the available Mpi implementation is thread-safe. Proper

1 The current version does not yet support agents.

CAOS: A Domain-Specific Language for the Parallel Simulation 415

and efficient communication between Mpi processes including the organisation
of halo or ghost cells at partition boundaries is taken care of by the compiler
without any user interaction. For implementation details see [16].

We use 2-dimensional Jacobi iteration as the basis for some performance eval-
uating experiments. Fig. 3 shows the complete CAOS code, which also serves as
a reference example for CAOS programs. Note the observers that, at a certain
time step (usually the last one) save the entire state as well as the average. Our
experiments use two different machines: a 72-processor SUN SF15k with NUMA
shared address space and an 8-node PC cluster with Intel Pentium IV processors
and a gigabit ethernet connection.

param int atTstep = 1;
param int size = 100;

grid 0..size : left <.> right : static,
0..size : up <.> down : static;

cells { double state; }

init { state = 0.0; }

init[down] { state = 500.0; }

behaviour { double a = 0.0;
foreach (dir d in [up,down,left,right]) {

a = a + state[d];
}
state = a / 4.0;

}

observeall ("jacobi.outfile.all", timestep==atTstep) {
double "state" = state;

}

observe ("jacobi.outfile.reduce", timestep==atTstep) {
double "avgState" = avg(state);

}

Fig. 3. Jacobi iteration specified in CAOS

Fig. 4 shows the outcomes of our experiments on the shared address space
(left) and on the distributed memory (right) architecture. While the latter fig-
ures show good speedups and scalability in the range of available nodes, the for-
mer provide some interesting insights into the suitability of Mpi, OpenMP and
a combination of the two as low-level execution models for CAOS (and similar
numerical codes), at least on the given machinery. Using our purely Mpi-based
code generator achieves substantially better performance values than the purely
OpenMP-based one. Likewise, using 2 or 4 OpenMP threads inside each Mpi

process does not pay off, although this organisation exactly matches the SF15k
architecture. The SUN Mpi implementation seems to be considerably more ad-
vanced than the OpenMP support in the C compiler. We also assume that the

416 C. Grelck, F. Penczek, and K. Trojahner

MPI

OMP

MPI+OMP(2)

MPI+OMP(4)

4864×4864
500 steps

elapsed Time

Processors

300s

50s

100s

150s

200s

250s

300s

1 2 4 8 16

elapsed Time

Processors (Nodes)

6144×6144
500 steps

250s

200s

150s

100s

50s

1 2 4 6 8

Fig. 4. Execution Times of CAOS Jacobi iteration on a shared address space system
(left) using either Mpi or OpenMP or a combination of both as execution platform
and on a distributed memory workstation cluster (right) using only Mpi

Solaris operating system may not schedule threads in a way that harnesses the
hierarchical memory organisation.

6 Related Work

Mathematica and MatLab are well-known general-purpose systems that are also
suitable for implementing cellular automata on a level of abstraction that ex-
ceeds that of standard programming languages. As examples for domain-specific
languages and systems we mention CANL [9], CDL [10], TREND [11], CAR-
PET/CAMEL [12,13], CELLANG [14] and JCASim [15]. Limited space does
not allow us to discuss their relationship with CAOS in the desirable detail. A
similar purpose inevitably results in certain similarities; differences lie in the
number of axes supported, the concrete syntactical support for high-level pro-
gramming, the way concurrency in the cellular automaton model is exploited (if
at all) and the orientation towards runtime performance in general.

7 Conclusion

CAOS is a new domain-specific programming language that supports specifica-
tion of multidimensional extended cellular automata at a high level of abstrac-
tion. Our automatically parallelising compiler exploits the restricted pattern of
communication for generating efficiently executable code for both shared and
distributed memory architectures. It provides access to the potential of mod-
ern computer architectures with modest programming skills. Space limitations
prevent us from giving a complete introduction to the CAOS language. Further
information on the project, including a technical report that covers compilation
in-depth [16] and a source distribution with demos for download, is available at
http://caos.isp.uni-luebeck.de/

CAOS: A Domain-Specific Language for the Parallel Simulation 417

References

1. Ermentrout, G.B., Edelstein-Keshet, L.: Cellular automata approaches to biological
modeling. Journal of Theoretical Biology 160, 97–133 (1993)

2. Gutowitz, H.: Cryptography with Dynamical Systems, pp. 237–274. Kluwer Aca-
demic Publishers, Boston (1993)

3. Nagel, K., Schreckenberg, M.: A cellular automaton model for freeway traffic. J.
Phys. I France 2 (1992)

4. Guisado, J., de Vega, F.F., Jiménez-Morales, F., Iskra, K.: Parallel implementation
of a cellular automaton model for the simulation of laser dynamics. In: Alexandrov,
V.N., van Albada, G.D., Sloot, P.M.A., Dongarra, J.J. (eds.) ICCS 2006. LNCS,
vol. 3993, pp. 281–288. Springer, Heidelberg (2006)

5. Stevens, D., Dragicevic, S., Rothley, K.: iCity: A GIS-CA modelling tool for urban
planning and decision making. Environmental Modelling & Software 22 (2007)

6. Georgoudas, I.G., Sirakoulis, G.C., Scordilis, E.M., Andreadis, I.: A cellular au-
tomaton simulation tool for modelling seismicity in the region of Xanthi. Environ-
mental Modelling & Software 22 (2007)

7. D’Ambrosio, D., Iovine, G., Spataro, W., Miyamoto, H.: A macroscopic collisional
model for debris-flows simulation. Environmental Modelling & Software 22 (2007)

8. Canyurt, O., Hajela, P.: A cellular framework for structural analysis and optimiza-
tion. Computer Methods in Applied Mechanics and Engineering 194 (2005)

9. Calidonna, C., Furnari, M.: The cellular automata network compiler system: Mod-
ules and features. In: International Conference on Parallel Computing in Electrical
Engineering, pp. 271–276 (2004)

10. Hochberger, C., Hoffmann, R., Waldschmidt, S.: Compilation of CDL for differ-
ent target architectures. In: Malyshkin, V. (ed.) Parallel Computing Technologies.
LNCS, vol. 964, pp. 169–179. Springer, Heidelberg (1995)

11. Chou, H., Huang, W., Reggia, J.A.: The Trend cellular automata programming
environment. SIMULATION 78, 59–75 (2002)

12. Spezzano, G., Talia, D.: A high-level cellular programming model for massively par-
allel processing. In: Proc. 2nd Int. Workshop on High-Level Programming Models
and Supportive Environments (HIPS’97), pp. 55–63. IEEE Press, New York (1997)

13. Spezzano, G., Talia, D.: Programming high performance models of soil contamina-
tion by a cellular automata language. In: Hertzberger, B., Sloot, P.M.A. (eds.)
High-Performance Computing and Networking. LNCS, vol. 1225, pp. 531–540.
Springer, Heidelberg (1997)

14. Eckart, D.: A cellular automata simulation system: Version 2.0. ACM SIGPLAN
Notices 27 (1992)

15. Freiwald, U., Weimar, J.: The Java based cellular automata simulation system
JCASim. Future Generation Computing Systems 18, 995–1004 (2002)

16. Grelck, C., Penczek, F.: CAOS: A Domain-Specific Language for the Parallel Sim-
ulation of Extended Cellular Automata and its Implementation. Technical report,
University of Lübeck, Institute of Software Technology and Programming Lan-
guages (2007)

Parallel Hardware Architecture to Simulate

Movable Creatures in the CA Model

Mathias Halbach and Rolf Hoffmann

TU Darmstadt, FB Informatik, FG Rechnerarchitektur
Hochschulstraße 10, D-64289 Darmstadt, Germany

Phone: +49 6151 16 {3713, 3606}; Fax: +49 6151 16 5410
{halbach, hoffmann}@ra.informatik.tu-darmstadt.de

Abstract. The general question of our investigation is: how can the sim-
ulation of moving objects (or agents) in a cellular automaton (CA) be
accelerated by hardware architectures. We exemplify our approach using
the creatures’ exploration problem: n creatures are moving around in an
unknown environment in order to visit all cells in shortest time. This
problem is modeled as CA because this model is massively parallel and
therefore it can be perfectly supported by hardware (FPGA technology).
We need a very fast simulation because we want to observe and evaluate
the collaborative performance for a different number of creatures, dif-
ferent behaviors of the creatures and for many different environments.
As a main result from these simulations and evaluations we expect to
find the best algorithms which can fulfill the task with the lowest work
units (generations × creatures). In this contribution we have investigated
the question how the creatures’ exploration problem can be accelerated
in hardware with a minimum of hardware resources. We have designed
and evaluated five different architectures that vary in the combination
or separation of the logic for the environment, for the creatures and for
the collision detection. A speedup in the range of thousands compared
to software can be reached using an architecture which separates the
environment from the creatures and makes use of the memory banks
embedded in the FPGA.

1 Introduction

The repeated simulation of complex Cellular Automata (CA) models under vary-
ing parameters is very time consuming on a single computer. As the CA model
is inherently massively parallel, a hardware implementation is a promising alter-
native to multiprocessor simulation systems.

Previous investigations [1], [2], [3], [4] have shown that a speed up of hundreds
to thousands is possible by the use of dedicated FPGA logic compared to software
simulation on a personal computer. The resources needed to implement a Cellular
Automaton in hardware depend on the number of cells in the field, the kind of
neighborhood and the complexity of the rule.

In this contribution, we are solving a frequently encountered problem in which
an automaton consists of two types of cells, many simple ones and few complex

V. Malyshkin (Ed.): PaCT 2007, LNCS 4671, pp. 418–431, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Parallel Hardware Architecture to Simulate Movable Creatures 419

ones. The goal is to find efficient parallel hardware architectures which allow to
simulate and evaluate such CA systems much faster than by software on a PC.

The problem used as an example is the so called “creature’s exploration
problem”: A number of creatures with local intelligence are moving around au-
tonomously in an environment in order to visit all empty cells in shortest time
(with a minimum number of time steps, i. e. generations). The environment is
given by a field of cells, called the environment cells. The environment cells are
either of type empty or of type obstacle. A creature can move to an empty cell
if no other creature tries to move to the same position (otherwise it is a conflict
situation). The creatures behavior is given by a state machine, which reacts on
an input signal m (move, creature can move). If the creature cannot move, it
will turn to the right or to the left. The state machine is implemented by a state
table.

The challenge is to find out the optimal behaviors for n collaborating creatures
to perform the given task in shortest time. It is already very time consuming
to find out the optimal behavior for a single creature if the number of states
are larger than 5 or 6. The problem becomes much more difficult with multiple
creatures and different behaviors.

We found an optimal behavior for one creature for a given set of initial con-
figurations (environment plus the initial position and state of the creature) by
the use of FPGA logic. Even with FPGA technology, it is not easy to find the
optimum because the set of solutions is growing exponentially with the number
of states. Like in software, the hardware implementation must try to simplify
the complexity of the search procedure, e. g. by avoiding to test equivalent state
machines and by not generating state machines with less states than required.

The problem of finding an optimal solution of moving agents using a state ma-
chine has also been addressed in [5], and the problem has practical applications
like mowing a lawn [6] or exploring an unknown environment by robots.

In our preceding investigations optimal 6-state algorithms for a single creature
were detected by the aid of FPGA acceleration [7]. These algorithms were used
in further software evaluations for multiple creatures [8]. It turned out that the
given task can be performed with a minimum number of work units using a
certain number of creatures with an appropriate algorithm.

The goal of the presented work was to find an efficient parallel hardware
architecture in order to simulate and test the performance of CA environments
with complex creatures as fast as possible.

2 Formal Description of the Problem

The CA consists of two types of cells: (a) environment cells and (b) creatures.
The environment cells are simple, static in their state and have four fixed links
to their neighbors. The creatures are variable in their location and they have
a variable state (direction, control state). Moreover, a creature has only one
dynamic link to the neighbor in front of its moving direction. In the classical
uniform CA model the union of these types forms a complex cell, which can be

420 M. Halbach and R. Hoffmann

switched dynamically to the actual needed type. Environment cells carry either
the value free or obstacle. Free cells can be visited whereas obstacles cannot. The
border of an environment must be defined by cells of type obstacle. A rectangular
environment can be described by

– the size nx and ny with nx, ny ∈ N,
– the positions of the obstacles including the border positions H ⊂ {c | c =

(x, y) ∈ N0 ×N0 ∧ 0 ≤ x < nx ∧ 0 ≤ y < ny} =: P,
– the border {c | c = (x, y) ∈ P ∧ (x ∈ {0, nx − 1} ∨ y ∈ {0, ny − 1})} ⊆ H

where P is the set of all possible positions. The free cells are given by F := P\H.
Each creature (with index i ∈ I, |I| = number of creatures) is defined by its

actual position, direction and control state at the time step t ∈ N0:

– position: pi,t ∈ F,
– direction: ri,t ∈ {0, 1, 2, 3} =: D, where 0 represents north, 1 represents east

etc.,
– control state: si,t ∈ S = {v | v ∈ N0 ∧ 0 ≤ v < S} with si,0 := 0

The number of possible control states is S which is a measure for the “brain
power” of the creature. The creature looks one cell ahead in its actual moving
direction ri,t and is able to read information from this position. We call the
corresponding cell front cell and this position front position, which is defined as
ṗi,t ∈ F by

ṗi,t :=

⎧
⎪⎪⎨

⎪⎪⎩

(xi,t, yi,t + 1) if ri,t = 0 (north)
(xi,t + 1, yi,t) if ri,t = 1 (east)
(xi,t, yi,t − 1) if ri,t = 2 (south)
(xi,t − 1, yi,t) if ri,t = 3 (west)

with (xi,t, yi,t) = pi,t.

Other front cell’s features are tagged in the same way, e. g. ḣ is the obstacle
information of the front cell.

A creature must move to its front position if the front cell is reachable. The
front cell is reachable (1) if the environment cell is free (not an obstacle) and
(2) not occupied by another creature and (3) there is no conflict. If more than
one creature wants to move to the same front cell, a conflict exists that must be
resolved.

In general there are two solutions to resolve the conflicts: (1) either all crea-
tures are stopped or (2) exactly one creature is selected to move on. The detection
of the conflict requires a neighborhood distance of two, or a two phase algorithm
[9]. In a fully parallel hardware implementation with uniform cells [4] we have
placed a special collision detection logic in the front cell. This logic detects the
conflicts and in such a case sends a stop signal to the creatures. Thereby in one
phase only the creatures in conflict are prevented from moving.

The moving condition mi,t describes whether the creature i can move or not:

mi,t :=
{

true when p′i,t ∈ F ∧ ∀j∈I

(
(i = j) ∨ (p′i,t �= pj,t ∧ p′i,t �= p′j,t)

)

false otherwise

Parallel Hardware Architecture to Simulate Movable Creatures 421

Depending on the moving condition the next position at time t+ 1 is

pi,t+1 :=
{
ṗi,t if mi,t = true
pi,t if mi,t = false .

Simultaneously with a possible move, the creature may change its state si,t and
its direction ri,t according to the next state function f and the output function
g (turn right or left) which both are stored in the “brain” of the creature, i. e.
in a memory table.

si,t+1 ← f(si,t,mi,t)

ri,t+1 ← (ri,t + g(si,t,mi,t)) mod 4

A state machine is formed by connecting the memory with a state register
s and a direction register r as shown in figure 1a. The output actions of the
creature are
moving condition = false:
R = turn right if the creature can’t move, coded by “0”
L = turn left if the creature can’t move, coded by “1”

moving condition = true:
Rm =move and turn right, if the creature can move, coded by “0”
Lm =move and turn right, if the creature can move, coded by “1”

Note that the state machine belongs to the creature and also has to move if
the creature moves. A move of a creature in the CA model can be accomplished
by copying the creature’s state to the front cell and deleting the creature on its
current position.

s’

1
2
0
4
5
3
3
1
5
0
4
2

L
L
L
R
R
R

Lm
Rm
Lm
Rm
Lm
Rm

s
r
v(r,d)
m
L/R
Lm/Rm

control state
direction
new direction
creature can move
turn left/right if (m=0)
turn L/R and move if (m=1)

3

20

1

4

5

Lm

(b)

R

RR

Rm

L
L

Rm

L

Lm

Rm

Lm

d
r

r

r

r

if = 1 then

else
 := − 1 (turn left)

 := + 1 (turn right)

m
(a)

00
01
02
03
04
05
10
11
12
13
14
15

T
ab

le
N

ot
F

re
e

T
ab

le
F

re
e

v

rs

MEALY Control Machine MOORE
Action Machine

d

Fig. 1. (a) Table driven control machine and action machine; (b) corresponding 6-state
algorithm G

A creature is implemented with a control machine (MEALY automaton) and
an action machine (MOORE automaton) which is controlled by the control ma-
chine (fig. 1a). The behavior of the action machine is predefined and fixed. The

422 M. Halbach and R. Hoffmann

state of the action machine is the direction r. The action machine reacts on the
control signal d. If d = 1 the creature turns to the right (r := r + 1), otherwise
to the left (r := r − 1).

The behavior of the control machine (also called algorithm for short in this
context) is variable and can be configured by loading a state transition table.
The control state is called s and the number of different states is n. Input to
the state table is the control state s and the grant signal. Output of the state
table is the control signal d and the next state s′. Note that the union of the
control machine with the action machine results in a MOORE automaton. An
algorithm is defined by the contents of the table. We are coding an algorithm by
concatenating the contents to a string line by line, e. g.
1L2L0L4R5R3R-3Lm1Rm5Lm0Rm4Lm2Rm // string representation
= 1L2L0L4R5R3R-3L1R5L0R4L2R // simplified string representation

The state table can be represented more clearly as a state graph (fig. 1b).
If the state machine uses n states, we call such an algorithm n-state algorithm.
The number ofM of all algorithms which can be coded by a table oriented state
machine is

M = (#s×#y)(#s×#x)

where n = #s is the number of states, #x is the number of different input
states and #y is the number of different output actions. Note that M increases
dramatically, especially with #s, which makes it very difficult or even impossible
to check the quality of all algorithms in reasonable time for #s > 6 with #x =
#y = 2.

In preceding investigation [8], [10] we could discover the best 6-state algo-
rithms for one creature. Using hardware support (FPGA technology) a large set
of relevant algorithms was selected for five initial configurations by hardware
enumeration, simulation and evaluation. From this set the best algorithms were
selected during a software evaluation process applying 21 additional configura-
tions.

The 10 best algorithms with respect to (1) success, (2) coverage and (3) speed
are the following:
1. G: 1L2L0L4R5R3R-3L1R5L0R4L2R 6. E: 1R2L0R4L5L3L-3R4R5R0L1L2R
2. B: 1R2R0R4L5L3L-3R1L5R0L4R2L 7. F: 1R2L0L4R5R3R-3L4L5L0R1L2R
3. C: 1R2R0R4L5L3L-3R4R2L0L1L5R 8. H: 1L2L3R4L2R0L-2L4L0R3L5L4R
4. A: 0R2R3R4L5L1L-1R5R4R0L2L3L 9. I: 1L2L3L4L2R0L-2L4L0R3R5L4R
5. D: 1R2R3R1L5L1L-1R0L2L4R3L1L 10. J: 1R2R3R0R4L5L-4R5R3L2L0L1L

3 Alternative Architectures

The following variants have been considered

1. Uniform: classical uniform cellular automata,
2. Augmented A: The environment is augmented with parts of the creatures

state and additional logic,
3. Augmented B: The environment is augmented with an index and addi-

tional logic,

Parallel Hardware Architecture to Simulate Movable Creatures 423

4. Separated 1: separate creatures (complex rule) attached to the environ-
ment,

5. Separated 2: separate creatures with multiple memories as environment.

The variants 1 to 4 have already been discussed in [4] in more detail. In the
uniform variant, the cell are the union of all types (creature, obstacle, empty).
Therefore they are relatively complex. A type field is used to describe the actual
usage of the cell. In the separated variant, the creatures are stored as individuals
which can read the environment. In the augmented variants the environment is
augmented with additional information such as creature’s index (identification
number), creature’s direction or index (own position) of the environment cell, as
can be seen in figure 2 for instance.

In the Uniform Architecture each cell has the same capabilities (attributes
and rules). Only parts of all the capabilities are used in every generation de-
pending on the actual type of the cells. It is possible to say that the cells are
polymorphic.

The capabilities that must be combined in such an uniform cell are

– h: environment attribute – obstacle (true/false)
– c: type selection – creature is on the cell (true/false)
– s: control state of the creature
– r: direction of the creature
– ST: state table defining the creature’s behavior
– CD: collision detection logic which generates a move signal m

The attributes c, s and r have to be variables. The environment attribute h
shall be implemented as a variable (register or memory bit) in order to be able
to change the environment during the simulation.

A state table ST or an equivalent logic defines the behavior of the creatures.
It shall be variable, meaning that it should consist of registers which contents
may be changed dynamically (e. g. in an optimization procedure). Optionally
additional information for statistics (e. g. if the cell was already visited) may be
stored in each cell. The next state (s′) and next direction (r′) of the uniform cell
are given by the following formulas

ṁw := cw ∧ (rw ≡ w + 2 mod 4) for w ∈ D

ṁ := ∃w1∈Dṁ
w1 ∧ ¬∃w2∈D,w2 	=w1ṁ

w2

ṡ :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

snorth if cnorth ∧ rnorth ≡ south

seast if ceast ∧ reast ≡ west

ssouth if csouth ∧ rsouth ≡ north

swest if cwest ∧ rwest ≡ east

s′ =

⎧
⎨

⎩

f(s, false) if c ∧ ḣ
f(ṡ, true) if ¬c ∧ ṁ
any otherwise

424 M. Halbach and R. Hoffmann

r′ =

⎧
⎨

⎩

r + g(s, false) mod 4 if c ∧ ḣ
ṙ + g(ṡ, true) mod 4 if ¬c ∧ ṁ
any otherwise

with the same definition for ṙ as for ṡ.
The CD logic for collision detection generates the signal m (move) which

decides whether the creature can move or not. This signal move becomes false if
(1) the front cell is an obstacle, (2) a creature is placed on the front cell, (3) two
or more creatures want to move to the same front cell if the front cell is free.

Each creature can check the first and second condition by testing the front
cell. The testing of the third condition is more complicated: First, the front cell
checks if there are more than one creature in the neighborhood, which want
to move to it (conflict). Second, the conflict situation is send back to all the
creatures, which have caused the conflict.

In the implementation of Augmented A Variant, the cells of the field
consist of so called augmented cells which are the union of the environment h,
the direction r of a creature and the index ci of the creature which is active on
that cell. The state of the augmented cells is (h, ci, r). The creature index ci is
stored decoded, which means that for each creature an active bit is reserved. If
such an active bit is set, automatically a connection is routed to the appropriate
creature via a bus system. Each creature drives an output bus di (one bit wide:
turn left/right as output from the state machine) and listens to an input bus
(one bit wide: move yes/no).

Each active augmented cell which is occupied by a creature i sends a request
to its front cell defined by ri. The front cell computes the move signal mi by
checking all the conditions that were mentioned above for the uniform variant.
The move condition is then sent to the appropriate creature. After inspecting
the state table, the creature returns di (turn left/right). If the creature cannot
move, the augmented cell will change its direction accordingly. In the case, the
creature can move to the front cell and copies the active bit from the augmented
cell and the new direction from the bus.

In Augmented B Variant, the implementation of the environment cells are
augmented only with an index (own position of the cell). The index is used
to connect automatically the appropriate creature to the environment cell. A
creature sends its current position pi via a bus to all cells. If a dedicated cell
detects its own position on that bus, it connects to it. In conjunction the direction
ri of that creature is also connected to that cell, and a backward connection mi

is established. This is illustrated in figure 2. The environment cell is augmented
with special logic in order to compute the move signal, which is send back via a
bus to the appropriate creature.

An interesting feature is the conflict detection. An active cell (environment cell
connected to a creature) asks the front cell (the neighbor in the current direction
ri), if there might be a conflict. The front cell checks if its neighbors may cause
conflicts and returns the required information. The active cell then sends the
required move signal back to the creature. By this technique, the creatures can
perceive indirectly that conflicting creatures are two cells ahead or right/left in

Parallel Hardware Architecture to Simulate Movable Creatures 425

...

��
��
��
��

...

...

h
psr psr

p1, r1 m1 p2, r2 m2

pi, ri, mi
h

20 1

4 53

h h

hh

Fig. 2. Augmented, Variant B – mixture of Variant A and Multiplexer with enumerated
area cells

front. Using the logic of a front cell during the computation of the next generation
(asynchronously) the neighborhood of a creature can be indirectly increased. The
hardware implementation causes no problem and asynchronous oscillation does
not occur, because the logic of the front cell uses only local inputs.

Separated Architecture 1: Another way is to separate the environment and
the creature, such that the changing state of the creatures is separated and
therefore minimized, see figure 3. The advantage is that complex rules for the
creatures need not to be replicated in the cells, which would result in a poor
utilization of the hardware.

...

��
��
��
�� ...

...
Collision Detection

...

...

psr psr

hhh

h hh

p2p1

ṗ1

m1

¬hṗ1 ¬hṗ2

m2

hp̂

ṗ2

Fig. 3. Each creature is connected the environment, the collision detection logic is
placed between the creatures (Separated Architecture 1)

Each creature has to be able to read the status of the environment cell (ob-
stacle or not) from the current front position. This can be achieved in hardware
by the use of a multiplexer. A technical problem arises when the number of cells
exceeds a certain limit with our current FPGA technology. When exceeding the
limit, the hardware needs too many resources (wires and cascaded multiplex-
ers) or the time delay will be too large. Therefore, the multiplexer technique is
limited to a small field.

Another problem arises with the detection of several creatures that are in
conflict. There must be a central logic that detects and resolves the possible

426 M. Halbach and R. Hoffmann

conflicts. This logic becomes very complex when the number of creatures is
increasing. For a creature i this conflict exists if pi ≡ pj ∨ pi ≡ ṗj gets true
for any j with i �= j ∈ I. Unfortunately the complexity of the logic increases
quadratically with the number of creatures. Therefore this architecture is limited
to a certain number of creatures.

Comparison of the Architectures 1 to 4: The architectures were synthesized
and configured for the Altera FPGA Cyclone EP1C20F324C7 using the Quartus
II tools. The most relevant parameters are the size of the field, the number of
control states of the state machine and the number of creatures. The resources
are counted in the number of needed logic elements for that FPGA. The results
of the syntheses are shown in figure 4. The maximum clock rate depends on
the architecture, the field size and the number of creatures. The highest reached
clock rate was 81 MHz, the lowest was 40 MHz.

The comparison of the architectures show that the architecture “Separated 1”
needs the least resources. Therefore we concentrated in optimizing the architec-
ture for bigger field sizes and more than 8 creatures. This architecture is called
“Separated architecture 2” and is described in the following paragraph.

1 2 3 4 5 6 7 8

8000

7000

6000

5000

4000

3000

2000

1000

Uniform

Separated 1

Augmented A

Augmented B

8 x 8 cells

creatures

Lo
gi

c
E

le
m

en
ts

Separated 2

Fig. 4. Resources needed for a FPGA implementation

Separated Architecture 2: This architecture separates the simple environ-
ment cells from the complex creature cells like in the “Separated Architecture
1”. In order to increase the field size and the number of creatures embedded
memory banks of the FPGA are used instead of registers. In addition a signal is
generated by the hardware which becomes true when all cells have been visited.

The hardware design (figure 5) consists of the following units

– n creatures
– collision detection logic
– obstacle detection unit
– success observer unit

Parallel Hardware Architecture to Simulate Movable Creatures 427

Each creature consists of a control state machine and an action machine defin-
ing the individual behavior. Input to the control machine is the move signal m
(creature can move) which becomes false if an obstacle (signal o) or a conflict
(signal c) is detected: mi = ¬(oi∨ ci). The output signals of the creature are the
current position p and the front position ṗ.

The central collision logic is connected to all creatures. It computes for each
creature the collision signal ci depending on all other positions and all front
positions. This logic becomes quadratically more complex with the number of
creatures. It could be synthesized for 16 creatures in our prototype FPGA im-
plementation.

The obstacle detection unit indicates obstacles by the signal oi for each crea-
ture. This signal becomes true if the front position of the creature is an obstacle.
This information is hold in a look-up table. Dual port memories are used which
are efficiently supported by the FPGA technology. Each pair of two creatures
shares one dual port memory. Altogether n

2 dual port memories with the capacity
of one bit per cell are needed.

The success observer unit implements a cyclic hardware process (watchdog
process) which runs in parallel to the hardware simulation process. This unit
generates a signal success, if all cells have been visited in a predefined time
interval. In principle a register bit field can be used to store the information
“cell visited”. The problem is that each creature has to be connected to all
the register bits through multiplexers. Such an implementation would require
too many hardware resources. Therefore another approach was favored: The
information “visited” is stored in memories. Each pair of two creatures shares
one memory. First the creature with the odd index writes its position into the
memory and afterwords the second creature with the even index. Thus two
phases are needed to store the information.

Dual port memories are used in the implementation. The write port is con-
figured for datawidth = 1 and address = ṗ. The read port is configured wider
in order to parallelize the evaluation of the success signal (all cells visited). The
read port is configured for the datawidth = 16 which implies that the read
address can be shortened by 4 bits.

The observer process needs 256 clock cycles to check the whole field of 4 096
cells. In one clock cycle 16 cells are checked in parallel. For that purpose all
outputs of the “visited” RAMs are OR-ed together. The result is AND-reduced
and than AND-ed with the result from the previous clock cycle. A small logic
with one flipflop is used for the AND-ing among the cycles.

There are two operational modes: fuzzy mode and precise mode. In the fuzzy
mode the success signal is delayed with respect to the simulation because the
checking process is slower than the simulation process. When the simulation
is stopped by the success signal, the generation counter may be already higher
(gmax+δ, 0 ≤ δ ≤ 256

3) than the exact number gmax of generations needed to visit
all cells. For a general performance estimation the fuzziness is unimportant. If the

428 M. Halbach and R. Hoffmann

Fig. 5. Data Flow and Units of the Separated Architecture 2

exact generation gmax is needed for a precise performance evaluation, the precise
mode can be chosen. In this mode the next simulation of the next generation is
delayed until the success observer process has finished checking all cells.

Parallel Hardware Architecture to Simulate Movable Creatures 429

The hardware simulation of one generation is performed in three phases.

1. phase A:
– obstacle detection memory cycle 1,
– collision detection logic cycle 1,
– write position of odd creatures into Visited-RAMs cycle 1

2. phase B:
– obstacle detection memory cycle 2,
– collision detection logic cycle 2,
– write position of even creatures into Visited-RAMs cycle 1

3. phase C:
– updating the creatures’ states (control, direction, position)

In the fuzzy mode each phase needs one clock cycle and the watchdog counter
is incremented in each phase. In the precise mode phase B is delayed for 255
clock cycles in order to allow the watchdog counter to scan the whole information
stored in the Visited-RAMs.

The Separated Architecture 2 was synthesized for the Altera Cyclone EP1C20-
F324C7 FPGA using the Quartus II software. The needed resources and clock
frequency are given in table 1.

Table 1. Synthesis results with time for one generation of 4 096 cells (used area size
is 35 × 35), including time for software simulation

n creatures clock rate logic elements memory bits time SW time

precise mode:
1 167.00 MHz 301 8 192 1 539 ns 112 μs
4 180.73 MHz 692 16 384 1 422 ns 298 μs
8 160.10 MHz 1 622 32 768 1 605 ns 616 μs
16 144.32 MHz 4 691 65 536 1 781 ns 1 355 μs
32 71.34 MHz 16 849 131 072 3 603 ns 2 625 μs

fuzzy mode:
1 181.79 MHz 303 8 192 16 ns
4 174.61 MHz 744 16 384 17 ns
8 162.65 MHz 1 630 32 768 18 ns
16 145.62 MHz 4 730 65 536 21 ns
32 75.68 MHz 17 046 131 072 40 ns

In order to rate the FPGA implementation a functional equivalent software
simulation was implemented optimally in C++. The platform is a PC with
Pentium 4, 3.20 GHz, running with Microsoft Windows XP and Cygwin gcc
version 3.4.4.

It is an impressive result of the comparison that the hardware simulation is
many thousand times faster than the software simulation (see figure 6). Even
if the hardware is in the precise mode, the speedup is in the range 21 to 1 081
(fuzzy mode: 1 870 to 55 369), depending on the number of creatures (1 to 64).

430 M. Halbach and R. Hoffmann

1 µs

10 µs

100 µs

1.000 µs

10.000 µs

1 4 8 16 32 64 Creatures

Software

Hardware

Fig. 6. Time for calculating one generation of 4 096 cells, separated architecture 2,
precise mode

The hardware platform is used to test the performance for many different
obstacle environments (robustness) and for different creature algorithms. From
another investigation [8] and [10] we have already learned that a given task can
be performed with minimal cost using the appropriate algorithm and a certain
amount of collaborating creatures.

4 Conclusion

For the creatures exploration problem as an example for moving objects (hard-
ware agents) in the CA we have designed and evaluated five different hardware
architectures in order to speed up the simulation. The most promising architec-
ture is “Separated Architecture 2”. This architecture consists of creature mod-
ules, a central collision logic, an obstacle detection logic and a success observer.
This architecture can compute a new generation of 4 096 cells with 32 creatures
within 3 clock cycles in the fuzzy mode and in 257 clock cycles in the precise
mode. The architecture was synthesized using Verilog for the ALTERA Cyclone
Device. 84 % of the available logic cells and 44 % of the embedded memory bits
were used for 4 096 cells and 32 creatures. The maximal reachable clock rate is
71.34 MHz. Compared to software simulation in C++ on a PC a speedup in the
rage of many thousands was reached. The platform will be used for exhaustive
simulations and evaluations in order to find out how a task for collaborating
creatures can be accomplished with lowest cost.

References

1. Halbach, M., Heenes, W., Hoffmann, R., Tisje, J.: Optimizing the Behavior of
a Moving Creature in Software and in Hardware. In: Sloot, P.M.A., Chopard,
B., Hoekstra, A.G. (eds.) ACRI 2004. LNCS, vol. 3305, pp. 841–850. Springer,
Heidelberg (2004)

2. Hoffmann, R., Heenes, W., Halbach, M.: Implementation of the Massively Par-
allel Model GCA. In: Parallel Computing in Electrical Engineering (PARELEC),
Parallel System Architectures (September 2004)

Parallel Hardware Architecture to Simulate Movable Creatures 431

3. Halbach, M., Hoffmann, R.: Implementing Cellular Automata in FPGA Logic. In:
International Parallel & Distributed Processing Symposium (IPDPS), Workshop
on Massively Parallel Processing (WMPP), IEEE Computer Society, Los Alamitos
(2004)

4. Halbach, M., Hoffmann, R.: Minimising the Hardware Resources for a Cellular
Automaton with Moving Creatures. In: Karl, W., Becker, J., Gropietsch, K.E.,
Hochberger, C., Maehle, E. (eds.) ARCS’06. 19th International Conference on Ar-
chitecture of Computing Systems, Workshop Proceedings. Lecture Notes in Infor-
matics (LNI). vol. P-81, pp. 323–332. Frankfurt, Germany (March 2006)

5. Mesot, B., Sanchez, E., Pena, C.A., Perez-Uribe, A.: SOS++: Finding Smart Be-
haviors Using Learning and Evolution. In: Standish, Abbass, Bedau. (eds.) Artifi-
cial Life VIII, p. 264. MIT Press, Cambridge (2002)

6. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means
of Natural Selection. MIT Pres, Cambridge (1992)

7. Halbach, M., Hoffmann, R.: Optimal Behavior of a Moving Creature in the Cellular
Automata Model. In: Malyshkin, V. (ed.) PaCT 2005. LNCS, vol. 3606, pp. 129–
140. Springer, Heidelberg (2005)

8. Halbach, M., Hoffmann, R., Both, L.: Optimal 6-State Algorithms for the Behavior
of Several Moving Creatures. In: El Yacoubi, S., Chopard, B., Bandini, S. (eds.)
ACRI 2006. LNCS, vol. 4173, pp. 571–581. Springer, Heidelberg (2006)

9. Hochberger, C.: CDL – Eine Sprache für die Zellularverarbeitung auf verschiedenen
Zielplattformen. PhD thesis, TU Darmstadt, Darmstädter Dissertation D17 (1998)

10. Hoffmann, R., Halbach, M.: Are several creatures more efficient than a single one?
In: El Yacoubi, S., Chopard, B., Bandini, S. (eds.) ACRI 2006. LNCS, vol. 4173,
pp. 707–711. Workshop Crowds and Cellular Automata (C&CA) at ACRI 2006.
Springer, Heidelberg (2006)

Comparison of Evolving Uniform, Non-uniform

Cellular Automaton, and Genetic Programming
for Centroid Detection with Hardware Agents

Marcus Komann, Andreas Mainka, and Dietmar Fey

Institute of Computer Science, University of Jena
Ernst-Abbe-Platz 2, 07743 Jena, Germany

marcus.komann@web.de, dietmar.fey@uni-jena.de

Abstract. Current industrial applications require fast and robust im-
age processing in systems with low size and power dissipation. One of the
main tasks in industrial vision is fast detection of centroids of objects.
This paper compares three different approaches for finding geometric al-
gorithms for centroid detection which are appropriate for a fine-grained
parallel hardware architecture in an embedded vision chip. The algo-
rithms shall comprise emergent capabilities and high problem-specific
functionality without requiring large amounts of states or memory. For
that problem, we consider uniform and non-uniform cellular automata
(CA) as well as Genetic Programming. Due to the inherent complexity of
the problem, an evolutionary approach is applied. The appropriateness
of these approaches for centroid detection is discussed.

1 Introduction

Fast, robust, and reliable image processing with small embedded vision chips is
a sophisticated task in industrial environments. Opposing requirements of high
speed along with low size of the complete vision system, which has to integrate
image capturing and processing in one intelligent CMOS camera chip, further
complicate the design process. This makes the use of massively-parallel System-
on-Chip architectures inevitable.

In order to simplify the design of future VLSI vision chips, we favor a fine-
grained parallel architecture based on cellular automaton (CA) [10,11]. In this
context, we already proposed the idea of so-called Marching Pixels in [4],[3].
Marching Pixels can be considered as a swarm of virtual hardware agents which
are directly integrated in the hardware of vision chips. Inside these chips, they
are crawling within a pixel field in order to fulfill tasks like the detection of
centroid position, area, and the rotation of pre-known objects. The pixels of the
input image are implemented in a large array of simple processor elements (PEs)
which are working together synchronously. Each image pixel is attached to one
PE in the ideal case. The so-called Marching Pixels start their march e.g. from
the edges of an object, i.e. from a PE which hosts an edge pixel, towards the
object’s interior while collecting specific data. The behavior of Marching Pixels

V. Malyshkin (Ed.): PaCT 2007, LNCS 4671, pp. 432–441, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Comparison of Evolving Uniform, Non-uniform Cellular Automaton 433

can be modeled as a CA which is specialised for vision chips. The advantage of
using such virtual hardware agents is a gain of robustness due to their emergent
capabilities and in particular the exploitable high degree of parallelism. For ex-
ample, multiple objects are investigated by different swarms of hardware agents
simultaneously.

We have already found several solutions for Marching Pixels’ behavior in
order to detect convex and concave formed objects in images using manually
designed CAs [6],[5]. Depending on the complexity of the objects’ shapes, the
propagation of each Marching Pixel requires a state machine consisting of eight
to twelve states. Usually, it holds that the higher the number of states is the
higher is the chip area occupied by each PE and, thus, the larger is the whole
chip die. Reducing the number of states makes it possible to install larger pixel
resolutions on the same die or allows reducing the vision chip’s size and power
dissipation. In this paper, we therefore investigate if it is possible to decrease the
number of required states we found with hand-made designs by means of evolving
[2] corresponding CA rules. We apply that investigation to both uniform and
non-uniform CAs as well as to an approach with Genetic Programming. All
these approaches are compared and evaluated for our purpose of the design of a
control algorithm for Marching Pixels hardware agents.

The remainder of the paper is structured as follows. In Sections 2 and 3,
we describe the approaches of finding parallel image processing algorithms for
centroid detection by evolving uniform and non-uniform cellular automata. We
discuss their strengths and weaknesses and the general success of that approach.
In Section 4, we present results achieved by considering Genetic Programming
which is somehow similar to classic evolution of CAs but further allows modelling
arithmetic operations and memory. Finally, we finish the paper with conclusions
in Section 5.

2 Evolving Uniform Rules

We start with a binary image where the background is white and objects are
black. Given this input image, the goal is to create an output image containing
exactly one distinguished black pixel per object by modelling the image with a
CA and executing specific CA rules on it. The distinguished pixel (resp. its CA
cell, this is interchangeable from now on) shall correspond to the centroid pixel
and shall contain a special state in the output image (resp. CA). All other pixels
shall have the value of the background. Due to the discreteness of a pixel image,
a deviation of up to one pixel is seen as a success.

2.1 Encoding the Rule Table

Expecting the reader to be familiar with basic concepts of CA and evolutionary
algorithms, we only describe details of the implementation. State transition of
the single cells is realised in form of direct encoding of the transition function
(the ”rules”) in a look-up table. Because it is not known in advance how many

434 M. Komann, A. Mainka, and D. Fey

and which rules are required, encoding of the complete rule table is necessary.
The size of the rule table, measured by its number of entries s, depends on
the state set Q and the applied neighborhood N . The size of the rule table
grows exponentially in dependence of number of states and neighborhood, so
minimising these values is worthwhile.

s = |Q||N |

2.2 Details of the Evolutionary Algorithm and the Applied Fitness
Function

Creation of the rule tables of the cellular automaton can be done in two different
ways. The first one is manual engineering using plausibility considerations. It is
not dicussed here. The second one is exploiting the capabilities of evolutionary
algorithms (EA). Looking at the size of the search space, which has zzr

possible
rule tables with z = |Q| and r = |N |, the use of evolutionary algorithms seems
feasible because this size is already large for small numbers of states and simple
neighborhoods.

The evolutionary algorithm we use belongs to the class of elitarian genetic
algorithms. The complete rule table is encoded as binary strings and starts
with random initial values. The half of the population for the next generation is
selected out of the 50% best evaluated individuals according to their fitness. The
rest of the population is formed with the usual selection, crossover and mutation
operations applied to these fittest individuals. Fitness calculation is obviously a
neuralgic part of every evolutionary algorithm. It is the connection between the
EA and the problem on one hand and the decider about the quality of found
solutions on the other.

Our fitness function consists of two major parts. The first part is responsible
for determination of the amount of wrong pixels, resp. states, in the output
image after one of the CA algorithms belonging to the population was applied.
They are determined by comparison with the ideal output image. For one pixel
holds:

Qfalse(oij , tij) =
{

1 (tij = 0 ∧ oij �= 0) ∨ (tij �= 0 ∧ oij = 0)
0 otherwise

with o being the resulting image of the CA calculation (cells have state zero
for background and state one for centroids), with t being the desired output
image containing the centroid pixel, for 1 ≤ i ≤ n, 1 ≤ j ≤ m. The pixels of the
respective images are denoted by oij , tij , 1 ≤ i ≤ n, 1 ≤ j ≤ m. The dimension
of the images is n,m. This leads to

ffalse =
n∑

i=1

m∑

j=1

Qfalse(oij , tij)

for the amount of detected wrong pixels in the complete output image after this
specific CA computation.

Comparison of Evolving Uniform, Non-uniform Cellular Automaton 435

A critical case arises when all pixels of the output image are white (all cells
are in state zero) meaning they belong to the background. This leads to a very
small failure in the above function although it is severely wrong semantically to
have no meaningful pixels after the computation. Because of this, a control flag
bCenterFound and a penalty term nm are introduced in order to take care of
that possibility. The control flag is set simply if the centroid pixel has the correct
value and the penalty is used if all pixels have state zero. We then have

f1 =
{
nm ,¬bCenterFound ∧ ffalse = 1
ffalse , otherwise

for the first part of the fitness function.
The second part of the fitness function takes positions of wrongly calculated

pixels into account. These are pixels of value other than zero. It is of advantage
if these pixels settle around the real centroid pixel making it possible for them
to be moved to the centroid pixel in later steps. We therefore need a distance
measure for the second part of the fitness function, e.g Euclidean, Manhattan
or Chequerboard. We favor Euclidean distance because diagonal distances are
weighed a little worse than vertical and horizontal ones. This accommodates
the von-Neumann neighborhood in the CA which we prefer in order to limit
interconnects in the aspired real vision chip.

dist(oij , tgxgy) =

{√

(i− gx)2 + (j − gy)2 oij �= tij
0 otherwise

with 1 ≤ i ≤ n, 1 ≤ j ≤ m. Values gx and gy refer to the coordinates of the
centroid. Summing these distances up over all pixels results in the second part
of the fitness function:

f2 =
n∑

i=1

m∑

j=1

dist(oij , tij) .

The final fitness function f , which is going to be minimised, is the sum of
both parts f1 and f2:

f = f1 + f2 .

2.3 Results for the Uniform Case

We now show the evolution of a concrete rule table for a specific application.
Given 10 example images of tools and their dedicated output images (see Fig-
ure 1), we use a discretised version of the tools images using a size of 16× 16 in
order to limit computing times, a population size of 300, and a maximal state
number of 3. Thus, the size of the rule table equals 243. The applied CA has
von-Neumann neighborhood and boundary values defined as zero (equals back-
ground). 6163 generations were needed to find the final rules which solve the

436 M. Komann, A. Mainka, and D. Fey

Fig. 1. Left: Simple input images of tools; Right: Calculated output images (Grey
pixels represent the objects and are not present in the original output image. They can
be seen here just for orientation).

problem. The resulting CA rules are able to detect the centroid of any tool in
just 12 steps with the rule table seen in Table 1. This number would of course
rise if larger object sizes were given.

A major drawback is the unrobustness of the resulting algorithm. Finding the
centroids of other, unlearned objects is nearly not possible. This is no problem
in industrial vision systems because, there, mostly pre-known objects have to be
detected. However, also for learned objects, minor defects in the input image or
at the edges of the objects cause severe detection failures. Apart from that, also
rotation of the objects sometimes creates errors. The algorithm is indeed able to
detect the centroids of objects as learned from the original input images but this
weakness against smallest deviations makes it inapplicable to real environments
where disturbances simply happen.

Table 1. Evolved rule table with 243 entries for centroid detection of tools. The number
of the entry corresponds to the order (center north west south east); each component
∈ {0, 1, 2}.

0 1 1 0 0 0 0 1 1 0 0 0 0 0 1 1 1 0 0 0 0 1 1 0 1 0 1 0 0 1 2 1 0 1 1 1 0 2 0 1 2 0 0 1 0 0
0 1 2 0 0 0 1 2 0 0 0 1 1 0 1 0 1 1 0 2 1 2 2 2 2 0 1 0 0 0 2 0 0 2 1 0 0 0 0 0 1 2 2 2 1 1
2 0 0 0 2 2 0 1 1 0 1 1 1 0 0 1 0 1 0 1 0 1 2 0 0 1 2 1 0 2 1 1 0 2 0 0 0 1 0 2 2 1 2 0 0 0
2 1 1 1 0 0 0 0 0 2 0 1 2 1 1 1 1 1 1 2 2 1 0 1 0 2 0 0 0 0 2 0 1 0 1 0 2 1 0 0 0 0 2 0 1 0
2 0 0 1 0 0 2 0 2 1 0 1 2 1 0 0 1 1 1 2 0 1 0 2 2 1 2 1 1 0 1 1 2 1 0 0 0 0 1 0 0 0 0 2 0 0

2 1 0 0 0 0 1 0 1 2 1 2 1

3 Extension to Non-uniformity

3.1 Short Introduction of Non-uniformism and Related Work

Whereas all cells use the same rule table in a uniform CA, each cell or group of
cells may have a different transition function in a non-uniform CA. Sipper intro-
duced that kind of CAs [8] and their strengths if being evolved [9]. He showed

Comparison of Evolving Uniform, Non-uniform Cellular Automaton 437

that it is possible to realise universal computability with a non-uniform CA need-
ing only two states whereas uniform CAs require at least three states to achieve
the same. Furthermore, he proved that, for some global tasks, a non-uniform CA
is more efficient than a uniform CA concerning the number of required states
and the success rate of correct cell states in the CA after computation. These
tasks were CA-global, e.g. the density problem in which all cells of a CA shall
have the same state in the end as the majority of all cells had initially. An-
other example is the ordering problem in which all initial 1 and 0 states of a
1-dimensional toroidal two-state CA with neighborhood radius of one shall be
shifted to opposite sides of the CA in the end. These tasks have a similar global
character like our problem of reducing the number of states required for geomet-
ric algorithms, e.g. the centroid detection. In another work, non-uniform CAs
and evolution have been successfully used for the deduction of a classifier system
for car plate detection [1]. Therefore, we also try to evolve non-uniform CAs in
addition to uniform CAs.

As for uniform CAs, each rule table is encoded as a binary string. Of course,
the possibility of cells having an own table increases the size of the search space
dramatically. With M being the amount of cells, z the number of states, and r
the number of neighbor cells we now have to search in

(
zzr)M

possible automata.
The fitness function has also to be adapted and is now calculated separately for
every single cell only in its local neighborhood. This makes it easier or maybe
even possible at all to solve problems with local characteristics.

In detail, fitness is calculated as the ratio of correctly recognised cells to all
cells for all applied input images after an iteration. Then, the fitness of each cell is
compared to its neighbored cells. If no neighbor is better, nothing is done. If one
neighbor is fitter, the current cell’s rule table is substituted by that cell’s table
and mutated with a certain possibility. If more neighbors have a higher fitness,
their tables are crossed and used for the current cell. Before we applied this so-
called coevolution scheme to our problem of centroid detection, we carried out
some pre-investigations in order to find out if non-uniform CAs are appropriate
for our problem. For the mentioned density problem, it showed [8] that a co-
evolved non-uniform CA has an image success rate of at least 93% whereas the
absolute peak performance of a uniform CA is 83% for the same dimension (1D
CA with 149 cells, |Q|=2, |N |=1).

3.2 Investigating Non-uniform CAs in Detail

Starting with the above mentioned ordering problem, we used an automaton

with 32 states and 33 steps resulting in a search space of size
(
223

)32

= 25632

whereas the corresponding uniform CA has 256 possible tables.
The best possible fitness for the uniform case lies approx. at just 0.71. Com-

pared to the optimal fitness of 1, this means that the problem can not be solved
that way. The non-uniform CA with the same attributes has a medium fitness
value of 0.9377. But this value has to be handled with care concerning our task
of centroid detection because it just signalises the amount of correct pixels. If

438 M. Komann, A. Mainka, and D. Fey

the location of single pixels is more important than others, like in the case of
centroid detection, this might be misleading. Testing the procedure with the
ordering problem, we only got 7 correctly detected objects out of a set of 50
although the fitness function showed a value of 0.93% correct pixels per image.
The ordering was executed correctly in every case but the exact number of zeros
and ones was wrong in most cases.

Furthermore, we investigated the possibility of finding boundary boxes. A
boundary box is simply the smallest possible axis-parallel rectangle which com-
pletely encloses an object. We tried to find a non-uniform CA with two states
by teaching 16 patterns, allowing maximal 35 steps. Table 2 shows the result. It
can be seen that only 8 different rule tables were used in cells of the CA which
differ only in one to three bits hinting that they semantically do not differ at all.
To prove this deduction, we executed the same experiment with 100 example
patterns. The result of that experiment was that all cells use the same rule 0,
now changing the non-uniform CA to a uniform one.

Table 2. Rule table of a non-uniform CA with 16 example patterns

Rule table number Rule table as binary string

0 01010111011111110111011111011111
1 01010111011111110111111111011111
2 01010111011111000111111111011111
3 01110111011111110111111111011111
4 01010111011111110111111111111111
5 01010111011111110111011111111111
6 01010110011111110111011111111111
7 01010110011111110111011111011111

Observations made in this section hint that using non-uniform CAs might help
for some kind of problems. Another observation we made is that it is difficult to
solve translation-invariant problems with this approach. The automata always
developed towards a uniform CA in that case. We assume that, for completely
translation-invariant problems, non-uniform CAs will outperform uniform CAs
only if markers mounted on the objects are used to center the object pixels
before a non-uniform CA is applied. E.g., the detection of car plates as shown
in [1] falls in that class because the signs and the single letters can be centred
in advance to CA computation.

4 A Third Approach: Genetic Programming

Since the results based on evolving CA rules were not completely satisfying
we moved to a different approach allowing a higher degree of abstraction. This
approach uses Genetic Programming (GP) and was intoduced in [7]. In GP, solu-
tions are represented in form of trees containing computer programs. These small
programs replace the rules of the cells of a CA and expand the possibilities by

Comparison of Evolving Uniform, Non-uniform Cellular Automaton 439

also modelling memory and arithmetic operations. Of course, the genetic oper-
ators like mutation and crossing have to be adjusted to this new representation.
The crossing operator gets two trees as parents where one node respectively is
randomly chosen. The subtrees under these nodes are then exchanged creating
two new individuals. This approach reveals high dynamics since it can make the
new trees simpler or more complex. Mutation is done very similar. One node is
randomly chosen and substituted by a completely new one.

The applied evolutionary algorithm differs only slightly from a genetic algo-
rithm [7]. After filling the initial population with random programs, the fitness
of each program is determined by applying it to the problem. Then again, se-
lection, replication, mutation, and crossing are exhibited creating a new set of
individuals which are again evaluated. This is done until any exit criterion is
reached.

In order to find centroids in images, an approach is used where virtual agents
or ants which are able to carry out simple operations move along a pixel field.
The goal is now to use several of these agents collectively in order to reach the
goal in an emergent way. The most simple form of solution for the centroid prob-
lem is the collecting of all object pixels while the coordinates of the visited pixels
are accumulated. After all pixels have been visited, the accumulated values are
divided by the number of accumulated pixels and the centroid of arbitrary ob-
jects is found. We first started with a program for one agent. The best programs,
measured in shortness of program length, let the hardware agents move along
a spiral starting from the outer edge pixels towards the interior of the object.
These programs determine the centroid exactly.

In order to further speed up the detection process, we evolved programs with
two hardware agents which are a priori forced by their instruction set to move
around the edge pixels. We also let two agents start from random positions
looking into opposite directions. The price for that speed-up is that the object
must not contain large holes in order to be detected correctly. The functionality
of the evolved agent consists of elementary actions like e.g. turn left, turn right,
step forward, and noop, contained in the set T , and simple functions, contained
in the set F . The function prog2 gets two arguments as input which are applied
one after another. The conditional function if pixel ahead executes the first
argument in case a pixel is ahead and argument two otherwise while function
if agent ahead does the same if an agent is ahead.

F = {prog2, if pixel ahead, if agent ahead}
T = {turn left, turn right, step forward, noop}

We operate on an image where an edge detection has been applied before in a
pre-processing step. Figure 2 left shows the best evolved program for the fitness
function displayed in the equation below, in which w0, w1 refer to adjustable
weights that represent the priorities. Our empiric studies showed that w0 =
150, w1 = 15 are appropriate values. Agents refers to the number of used agents,
pixel − found to unvisited pixels, and program size to the size of the evolved
program. Aim of the evolution is to minimise f . The evolved program steers two

440 M. Komann, A. Mainka, and D. Fey

agents to traverse the edges and to unify into one agent in the end. There, only
one agent survives. The dying agent must of course first transmit its information
of counted pixels to the surviving one. The agents again have to accumulate
the pixel positions they visit during their march. These pixels are then marked
to prevent them from being counted twice. The surviving agent divides the
accumulated value by the number of visited pixels in the end. Figure 2 right
shows the propagation of two agents which started their march in the upper left
corner.

f = w0 · (w1 · agents+ (pixel − found)) + program size (1)

Fig. 2. Left, Evolved program; right, example propagation of two hardware agents

5 Conclusions

In this paper, we compared three different opportunities for the evolution of
data-parallel geometric algorithms capable of detecting centroids of objects in
images. The work is motivated by an existing hardware architecture designed
by hand and the desire for algorithms which require smaller amounts of states
in order to reduce chip area. For that goal, we evolved uniform as well as non-
uniform CAs and used Genetic Programming.

By applying different example patterns, we found out that both CA types can
be used to develop algorithms for object detection but not without problems.
Both CA approaches had difficulties of delivering robust algorithms which are
capable of finding the centroids also in slightly noisy images and none of them
was able to detect unlearned objects.

Comparing uniformity and non-uniformity, the strength of the non-uniform
approach lies in problems where local information in the images can be fixed,
e.g. detection of letters on a centred car plate. If locality is not given, i.e. if the
objects’ positions in the image are not known in advance, the non-uniform CA
converges towards uniformity. Then, both approaches lead to the same algorith-
mic rules for specific problems and non-uniform CAs lose their advantage.

The main problem of evolving CAs is the forced limitation to a small number
of states because otherwise a dramatic increase in search space and thus in time
to find an optimal rule set is caused. E.g., evolving CAs with five states was

Comparison of Evolving Uniform, Non-uniform Cellular Automaton 441

not possible for us in reasonable time. Future work should comprise using more
states and evolving more sophisticated CAs with several objects on large clusters
or computing grids easing this drawback.

The third presented approach Genetic Programming exploits the useage of
memory and simple arithmetic operations. At the moment, it seems to be the
best choice to evolve the functionality for hardware agents implemented in arrays
of processor elements. With GP, we were able to evolve simple programs which
found the centroids with high robustness. The evolved agents always found the
centroid correctly and fast. The prize to pay for this higher effectivity of course
is a different requirement for the functional cells in the array which must have
the capabilites to execute these evolved little programs.

References

1. Adorni, G., Bergenti, F., Cagnoni, S.: A cellular-programming approach to pat-
tern classification. In: Banzhaf, W., Poli, R., Schoenauer, M., Fogarty, T.C. (eds.)
EuroGP 1998. LNCS, vol. 1391, pp. 142–150. Springer, Heidelberg (1998)

2. Baeck, T.: Evolutionary algorithms in theory and practice: evolution strategies,
evolutionary programming, genetic algorithms. Oxford Univ. Press, New York
(1996)

3. Fey, D., Schmidt, D.: Marching-pixels: a new organic computing paradigm for
smart sensor processor arrays. In: Proceedings of the 2nd conference on Computing
Frontiers CF’05, pp. 1–9. ACM Press, New York (2005)

4. Fey, D., Schmidt, D.: Marching pixels: A new organic computing principle for smart
cmos camera chips. In: Proc. Workshop on Self-Organization and Emergence –
Organic Computing and its Neighboring Disciplines, LNI, pp. 123–130 (2005)

5. Komann, M., Fey, D.: Marching pixels - using organic computing principles in
embedded parallel hardware. In: International Conference on Parallel Computing
in Electrical Engineering (PARELEC06), pp. 369–373 (2006)

6. Komann, M., Fey, D.: Realising emergent image pre-processing tasks in cellular-
automaton-alike massively parallel hardware. Int. Journ. of Parallel, Emergent and
Distributed Systems 22, 79–89 (2007)

7. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means
of Natural Selection (Complex Adaptive Systems). MIT Press, Cambridge (1992)

8. Sipper, M.: Evolution of parallel cellular machines: the cellular programming ap-
proach. Springer, Heidelberg (1997)

9. Sipper, M., Tomassini, M.: Computation in artificially evolved, non-uniform cellular
automata. Theor. Comput. Sci. 217(1), 81–98 (1999)

10. Neumann, J.v.: Theory of Self-Reproducing Automata. University of Illinois Press,
Urbana (1966)

11. Wolfram, S.: A new kind of science. Wolfram Media, Champaign, IL, USA (2002)

Associative Version of Italiano’s Decremental

Algorithm for the Transitive Closure Problem

Anna Nepomniaschaya

Institute of Computational Mathematics and Mathematical Geophysics,
Siberian Division of the Russian Academy of Sciences,

pr. Lavrentieva, 6, Novosibirsk, 630090, Russia
anep@ssd.sscc.ru

Abstract. We propose a natural implementation of Italiano’s algorithm
for updating the transitive closure of directed graphs after deletion of an
edge on a model of associative (content addressable) parallel systems
with vertical processing (the STAR–machine). The associative version of
Italiano’s decremental algorithm is given as procedure DeleteArc, whose
correctness is proved and time complexity is evaluated. We compare im-
plementations of Italiano’s decremental algorithm and its associative ver-
sion and enumerate the main advantages of the associative version.

1 Introduction

The dynamic graph algorithms maintain some property of a changing graph
more efficiently than recomputation of the entire graph with a static algorithm
after every change. Typical changes include insertions or deletions of vertices or
edges. An algorithm is called fully dynamic if the update operations include both
insertions and deletions of edges or vertices, and it is called partially dynamic if
only one type of an update, either insertions or deletions, is allowed. A partially
dynamic algorithm is called incremental if it supports only insertions, while it
is called decremental if it supports only deletions.

The transitive closure (or reachability) problem in a directed graph G with n
vertices andm edges consists in finding whether there is a directed path between
any two vertices in G. In the fully dynamic transitive closure problem, a directed
graph is updated under an intermixed sequence of edge insertions, edge deletions,
and the following two types of queries: a Boolean query for vertices i and j that
returns yes if there is a path from i to j and no otherwise, and a path query
that returns an actual path from i to j if it exists.

We focus on decremental algorithms for the transitive closure problem. The
first decremental algorithm for the transitive closure was given by Ibaraki and
Katoh [4]. Their algorithm takes O(n2) time for a deletion. Italiano [6] and
La Poutré and Leeuwen [9] improved this estimation to O(m) worst-case time
per a deletion on a directed acyclic graph (DAG). In [10], Yellin proposed a
decremental algorithm which requires O(dm∗) time for m deletions on a DAG,
where d is the maximum outdegree of the initial graph G and m∗ is the number

V. Malyshkin (Ed.): PaCT 2007, LNCS 4671, pp. 442–452, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Associative Version of Italiano’s Decremental Algorithm 443

of edges in the initial transitive closure of G. In [2], Frigioni et al. proposed a
variant of Italiano’s algorithms [5, 6], called Ital-Gen, whose decremental part
applies to a general graph and any sequence of edge deletions takes O(m2) worst-
case time. All of these algorithms perform a Boolean query in O(1) time. The
decremental algorithm by La Poutré and Leeuwen [9] does not support a path
query but the other above–mentioned algorithms perform a path query in time
proportional to the length of a path. In [3], Henzinger and King presented a
randomized decremental transitive closure algorithm for general directed graphs,
which takes O(nlog2n) amortized time per update and O(n/ logn) time per a
Boolean query.

In this paper we propose the new data structure that allows us to implement
in a natural way Italiano’s decremental algorithm on the associative (content ad-
dressable) parallel processors, which are mainly oriented to solving non–numerical
problems. To this end, we employ the STAR–machine [7] that simulates the run of
associative parallel systems of the SIMD type with bit–serial (vertical) processing.
Following Foster [1], time complexity of an algorithm is measured by counting all
elementary operations of the STAR–machine (its microsteps) performed in the
worst case. It is assumed that each elementary operation takes one unit of time.
The associative version of Italiano’s decremental algorithm is given as procedure
DeleteArc whose correctness is proved. We show that on the STAR–machine this
procedure takesO(n log n) time per a deletion. We also obtain that the associative
algorithm performs a Boolean and a path queries in the same time as Italiano’s
decremental algorithm. Finally, we compare implementations of Italiano’s decre-
mental algorithm and its associative version and enumerate the main advantages
of the associative version.

2 A Model of Associative Parallel Machine

Here, we propose a brief description of our model. It is defined as an abstract
STAR–machine of the SIMD type with the vertical data processing [7]. It consists
of the following components:

– a sequential control unit (CU), where programs and scalar constants are
stored;

– an associative processing unit consisting of p single–bit processing elements
(PEs);

– a matrix memory for the associative processing unit.

The CU passes an instruction to all PEs in one unit of time. All active PEs
execute it in parallel, while inactive PEs do not perform it. Activation of a PE
depends on data.

The input binary data are loaded in the memory in the form of two–dimensio-
nal tables, in which each data item occupies an individual row, and it is updated
by a dedicated processing element. The rows are numbered from top to bottom
and the columns – from left to right. Both a row and a column can easily be
accessed. Some tables may be loaded in the memory.

444 A. Nepomniaschaya

An associative processing unit is represented as h vertical registers, each con-
sisting of p bits. Vertical registers can be regarded as a one-column array. The
bit columns of the tabular data are stored in the registers that perform the
necessary Boolean operations.

Its run is described by means of the language STAR being an extension of
Pascal. Let us briefly consider the STAR constructions needed for the paper. To
simulate the data processing in the matrix memory, we use data types word, slice,
and table. Constants for the types slice and word are represented as a sequence
of symbols of a set {0, 1} enclosed within single quotation marks. The types slice
and word are used for the bit column access and the bit row access, respectively,
and the type table is used for defining the tabular data. Assume that any variable
of the type slice consists of p components which belong to {0, 1}. For simplicity,
let us call slice any variable of the type slice.

Now we present some elementary operations and a predicate for slices.
Let X , Y be variables of the type slice and i be a variable of the type integer.

We use the following operations:

SET(Y) sets all components of Y to ′1′;
CLR(Y) sets all components of Y to ′0′;
Y (i) selects the i-th component of Y ;
FND(Y) returns the number i of the first (the uppermost) ′1′ of Y , i ≥ 0;
STEP(Y) returns the same result as FND(Y) and then resets the first ′1′

found to ′0′.

In the usual way, we introduce the bitwise Boolean operations: X andY ,
X or Y ,not Y , X xor Y .

The predicate SOME(Y) results in true if and only if there is at least a single
component ′1′ in the slice Y .1

Note that the predicate and all operations for the type slice are also performed
for the type word. We will also employ the bitwise Boolean operations between a
variable w of the type word and a variable Y of the type slice, where the number
of bits in w coincides with the number of bits in Y .

Let T be a variable of the type table. We employ the following elementary
operations:

ROW(i, T) returns the i-th row of the matrix T ;
COL(i, T) returns its i-th column.

Note that the STAR statements are defined in the same manner as for Pascal.
We will use them later for presenting our procedures.

We will employ the basic procedure MATCH(T,X, v, Z) [8] that uses the
given global slice X to select by ′1′ positions of rows which will be processed. It
defines in parallel the positions of those rows of a given matrix T which coincide
with a given pattern v. It returns a slice Z, where Z(i) =′ 1′ if and only if
ROW(i, T) = v and X(i) =′ 1′. In [8], we show that this procedure takes O(k)
time, where k is the number of bit columns in the matrix T .

1 For simplicity, the notation Y �= Θ denotes that the predicate SOME(Y) results in
true.

Associative Version of Italiano’s Decremental Algorithm 445

3 Preliminaries

Let G = (V,E) be a directed graph (digraph) with a set of vertices V and a
set of directed edges (arcs) E. We assume that V = {1, 2, . . . , n}, |V | = n, and
|E| = m.

An arc e from i to j is denoted by e = (i, j), where the vertex i is head of
e (or father) and the vertex j is its tail (or son). Also, if (i, j) ∈ E, then j is
called to be adjacent to i.

A sequence of arcs e1, e2, . . . , ek is a path from the head of e1 to the tail of ek
if the tail of ei is the head of ei+1 for 1 ≤ i ≤ k − 1.

A vertex v is reachable from u if there is a path from u to v (u− v path). In
such a case, u is called ancestor of v, and v is called descendant of u.

The transitive closure of a digraph G = (V,E) is a digraph G∗ = (V,E∗) such
that an arc (u, v) ∈ E∗ if and only if v is reachable from u in G.

A spanning tree Tu is a connected acyclic subgraph of G with the root vertex
u that cointains all the descendants of u.

An adjacency matrix Adj = [aij] of a digraph G is an n× n Boolean matrix,
where aij = 1 if and only if there is an arc (i, j) in the set E.

4 Italiano’s Decremental Algorithm for the Transitive
Closure

We first recall the data structure proposed by Italiano to support the efficient
deletion of arcs in a digraph and the Boolean and path queries.

The transitive closure of a graphG is represented by associating to each vertex
u ∈ V a set Desc[u] of all descendants of u in G. Any Desc[u] is organized as a
spanning tree rooted at the vertex u. In addition, an n × n matrix of pointers
Index is used for fast access to vertices in the trees. It is defined as follows.
Index[i, j] points to the vertex j in the tree Desc[i] if j ∈ Desc[i] and it is Null
otherwise.

Let an arc (i, j) be deleted from G. If (i, j) does not belong to any spanning
tree, then the data structure does not change. Otherwise, this arc is deleted from
all spanning trees in which it appears. Let (i, j) belong to Desc[u]. Then Desc[u]
is updated as follows. After deleting the arc (i, j) from Desc[u] it splits into two
subtrees. To obtain a new tree, it is necessary to check whether there is such
a vertex z in Desc[u] that (z, j) ∈ E and the corresponding u − j path avoids
the vertex i. If such a vertex z exists, then it is called a hook for j. In this case,
the arc (i, j) is replaced by the arc (z, j), which joins two subtrees and Desc[u]
does not change. Otherwise, the vertex j along with all its outgoing edges are
deleted from Desc[u], and the seach for a hook for each son of j is recursively
performed.

A Boolean query for vertices i and j is performed in O(1) time by checking
Index[i, j]. If every vertex in each spanning tree is provided with an additional
pointer to the parent, then a path query is carried out by means of a bottom-up
traversal in Desc[i] from j to the root i and it takes O(l) time, where l is the
length of i− j path.

446 A. Nepomniaschaya

5 An Associative Version of Italiano’s Decremental
Algorithm

In the STAR–machine memory, a graph is represented as association of matrices
Left and Right, where every arc (u, v) occupies an individual row, and u ∈ Left
and v ∈ Right.

To design the associative version of Italiano’s algorithm, we will use the fol-
lowing data structure:

– an association of matrices Left and Right and a global slice X , where posi-
tions of arcs belonging to G are marked with ′1′;

– an n× logn matrix Code, whose every i-th row saves the binary represen-
tation of the vertex i;

– an m× n Boolean matrix Trans, whose every i-th column saves by ′1′ the
positions of arcs belonging to the spanning tree Ti;

– an n × n Boolean matrix Nodes, whose every i-th column saves by ′1′ all
vertices that belong to the spanning tree Ti;

– an n× n Boolean matrix Adj, whose every i-th column saves by ′1′ all the
sons of the vertex i.

Let us enumerate the following two properties of the matrices Trans and Adj.

Property 1. Every i-th row of the matrix Trans saves by ′1′ the roots of trees
that include the arc written in the i-th row of the graph representation.

Property 2. Every i-th row of the matrix Adj saves by ′1′ the heads of arcs
entering the vertex i.

We first propose the associative parallel algorithm for updating a spanning
tree after deleting an arc.

Let an arc (i, j) be deleted from the spanning tree Tp, the graph representation
and the matrix Adj. The associative parallel algorithm uses a slice A1 to save
the sons of a deleted arc tail and a slice A to save all descendants of j that have
not been updated yet. Initially, the slice A consists of zeros.

The algorithm carries out the following steps.

Step 1. Save the j-th row of the matrix Adj by means of a variable, say u1.
Step 2. Save the p-th column of the matrix Nodes using a slice, say A2.
Step 3. Perform the statement u := u1 andA2. Note that positions of vertices

that can be used as a hook for j are marked with ′1′ in the variable u.

The following two cases are possible.

Case 1. u �= Θ. Then determine the position r of the leftmost bit ′1′ in the row
u. Further determine the position of the arc (r, j) in the graph representation
and include it in the p-th column of the matrix Trans. Check whether there is
a descendant of j that has not been updated yet in the slice A. If A = Θ, go to
the exit. Otherwise, go to Step 4.

Case 2. u = Θ. Then determine the positions of arcs outgoing from j in the
tree Tp and delete them from the p-th column of the matrix Trans. After that,

Associative Version of Italiano’s Decremental Algorithm 447

delete the vertex j from the p-th column of the matrix Nodes. Further, by means
of a slice, say A1, save the sons of the deleted arc tail in the tree Tp. Finally,
include these vertices into the slice A.

Step 4. While SOME(A) results true, determine the current descendant t of j
that corresponds to the uppermost bit ′1′ in the slice A and replace this bit by
′0′. Then go to Step 1 to determine a hook for t in the tree Tp.

On the STAR–machine, this algorithm is implemented as procedure Hook.
The associative parallel algorithm for the dynamic updating of the transi-

tive closure of a directed acyclic graph after deleting an arc (i, j) performs the
following steps.

Step 1. Determine the position k of the arc (i, j) in the association of matrices
Left and Right.

Step 2. Save the k-th row of the matrix Trans by means of a variable, say v.
Step 3. Delete the arc (i, j) from the matrices Adj, Trans, and the graph

representation.
Step 4. While SOME(v) results true, determine the position p of the leftmost

bit ′1′ in v and replace this bit by ′0′. Then maintain the spanning tree Tp using
the associative parallel algorithm for finding a hook.

On the STAR–machine, this algorithm is realized as procedure DeleteArc.

6 Implementation of the Associative Version of Italiano’s
Decremental Algorithm on the STAR-Machine

In this Section, we present the procedures Hook and DeleteArc and prove their
correctness. We first consider the procedure Hook that maintains a spanning tree
Tp after deleting an arc (i, j). It returns a slice A for the matrix Nodes and the
updated p-th column in matrices Trans and Nodes. Initially A = Θ.

procedure Hook(Left,Right: table; Code: table; Adj: table;
C: slice(Code); X: slice(Left); j,p: integer;
var A: slice(Nodes); var Trans: table; var Nodes: table);

/* The arc (i, j) has been deleted from the given graph. */
var Z,Z1,Z2: slice(Left);
A1,A2: slice(Nodes);
C1: slice(Code);
w1,w2: word(Code);
u,u1: word(Adj);
i1,r,t: integer;
label 1,2;

1. Begin Z:=COL(p,Trans);
2. w2:=ROW(j,Code);
3. u1:=ROW(j,Adj);
/* The word u1 saves by ′1′ the heads of arcs entering j. */
4. A2:=COL(p,Nodes);

448 A. Nepomniaschaya

/* All vertices from Tp are marked with ′1′ in the slice A2. */
5. u:=u1 and A2;
/* The word u saves by ′1′ the vertices that may be used
as a hook for j. */

6. if SOME(u) then
/* There is a hook for the vertex j. */
7. begin r:=FND(u); w1:=ROW(r,Code);
8. MATCH(Left,X,w1,Z1); MATCH(Right,Z1,w2,Z2);
9. i1:=FND(Z2); Z(i1):=’1’;

10. COL(p,Trans):=Z;
/* We include the arc (r, j) into the tree Tp. */

11. if SOME(A) then goto 1 else goto 2;
12. end else
/* There is no a hook for the vertex j. */

13. begin MATCH(Left,Z,w2,Z1);
/* In the slice Z1, we save positions of arcs outgoing
from the vertex j in the tree Tp. */

14. Z:=Z and (not Z1); COL(p,Trans):=Z;
/* We delete positions of arcs outgoing from j in Tp. */

15. A2(j):=’0’; COL(p,Nodes):=A2; CLR(A1);
/* We delete j from the p-th column of the matrix Nodes. */

16. while SOME(Z1) do
17. begin i1:=STEP(Z1); w1:=ROW(i1,Right);
18. MATCH(Code,C,w1,C1);
19. t:=FND(C1); A1(t):=’1’;
/* In the slice A1, we save a son of the deleted arc tail. */

20. end;
21. A:=A or A1;
/* In the slice A, we save vertices that will be updated. */

22. 1: while SOME(A) do
23. begin t:=STEP(A);
/* Here, t is the descendant of the vertex j. */

24. Hook(Left,Right,Code,Adj,C,X,t,p,A,Trans,Nodes);
25. end;
26. end;
27. 2: End;

Theorem 1. Let a directed acyclic graph G be given as association of matrices
Left and Right and its transitive closure be given as matrix Trans. Let matrices
Code, Adj, and Nodes be also given. Let an arc (i, j) be deleted from the graph
representation, the matrix Adj, and the p-th column of the matrix Trans. Then
after performing the procedure Hook, the updated spanning tree Tp is written into
the p-th column of the matrix Trans and the updated set of its vertices is written
into the p-th column of the matrix Nodes.

Proof (Sketch). We will prove this by induction on the number of vertices l which
are deleted from Tp during its maintenance.

Associative Version of Italiano’s Decremental Algorithm 449

Basis is checked for l ≤ 1, that is, no more than one vertex is deleted from Tp

during its maintenance. After performing lines 1–4, the slice Z saves the p-th
column of the matrix Trans, where the position of the arc (i, j) is marked with
′0′, the variable w2 saves the binary code of the deleted arc tail, the variable
u1 saves the heads arcs entering j, and the slice A2 saves the vertices of the
spanning tree Tp. After performing line 5, the variable u saves the vertices of Tp

that can be used as a hook for j.
The following two cases are possible.

Case 1. u �= Θ. Then after performing line 7 we determine the binary code of
the leftmost hook r for j in the row u. After performing lines 8–10, we determine
the position of the arc (r, j) in the graph representation and include it into the
spanning tree Tp. Since initially A = Θ, we run to the procedure end after
performing line 11. In addition, the p-th column of the matrix Nodes does not
change.

Case 2. u = Θ. Then after performing lines 13–14, we determine positions
of arcs outgoing from j in Tp and delete them from the p-th column of the
matrix Trans. Further we delete the vertex j from the p-th column of the matrix
Nodes and set zeros in the slice A1 (line 15). After performing the cycle wlile
SOME(Z1) do (lines 16–20), we determine all sons of j in Tp and accumulate
them in the slice A1. After performing line 21, we include these vertices into the
slice A. While A �= Θ, we select the current son t of j and perform the procedure
Hook (lines 22–25). Since a single arc is deleted from Tp, there is a hook for every
son of the vertex j in Tp. We determine such a hook as described in Case 1. As
soon as A = Θ, we go to the procedure end.

Step of induction. Let the assertion be true when no more than l vertices are
deleted from Tp during its maintenance. We will prove this for l + 1 vertices.

By the inductive assumption, after deleting l vertices from Tp the updated
spanning tree is written into the p-th column of the matrix Trans and the
updated set of vertices is written into the p-th column of the matrix Nodes. Let
q be the (l+1)-th vertex being deleted from Tp. Then we reason by analogy with
Case 2 of the basis but with the difference that after performing lines 13–21, the
slice A saves the sons of q along with other descendants of j that have not been
updated yet in Tp. Since q is the last deleted vertex, we determine a hook for
every descendant of j as described in Case 1. #$
Let us consider the procedure DeleteArc that maintains the transitive closure
after deleting the arc (i, j) from the graph G. It returns the global slice X for
the graph representation and the updated matrices Adj, Trans, and Nodes.

procedure DeleteArc(Left,Right:table; Code:table; i,j: integer;
var X: slice(Left); var Adj,Nodes:table; var Trans:table);

var Y,Z: slice(Left);
A,A1: slice(Nodes);
C: slice(Code);
w1,w2: word(Code);
v,v1: word(Trans);

450 A. Nepomniaschaya

k,p: integer;
1. Begin CLR(v1); CLR(A); SET(C);
2. w1:=ROW(i,Code); w2:=ROW(j,Code);
3. MATCH(Left,X,w1,Y); MATCH(Right,Y,w2,Z);
4. k:=FND(Z);
/* The arc (i, j) is written in the k-th row of the graph
representation. */

5. v:=ROW(k,Trans);
/* The word v saves the k-th row of the matrix Trans. */
6. A1:=COL(i,Adj); A1(j):=’0’; COL(i,Adj):=A1;
7. X(k):=’0’;
8. ROW(k,Trans):=v1;
/* We delete the arc (i, j) from the matrices Adj and Trans
and from the graph representation. */

9. while SOME(v) do
10. begin p:=STEP(v);
11. Hook(Left,Right,Code,Adj,C,X,j,p,A,Trans,Nodes);
12. end;
13. End;

Theorem 2. Let a directed acyclic graph G be given as association of matrices Left
and Right and its transitive closure be given as matrix Trans. Let the matrices
Code, Adj, and Nodes be also given. Let the arc (i, j) be deleted from G. Then
after performing the procedure DeleteArc, this arc is deleted from the matrix Adj
and all spanning trees in which it appears. Moreover, the updated spanning trees
are written in the corresponding columns of matrices Trans and Nodes.

Proof (Sketch). We prove this by induction on the number of spanning trees l in
the matrix Trans, where the arc (i, j) appears.

Basis is checked for l = 1. After performing lines 1–4, we first initialize the slice
A for the procedure Hook and the variable v1 for the matrix Trans. Then we
determine the k-th row of the graph representation, where the arc (i, j) is stored.
After performing lines 5–8, we first save the k-th row of the matrix Trans by
means of the variable v. Then we delete the arc (i, j) from matrices Trans, Adj,
and the graph representation. After performing lines 9–12, we determine the
single spanning tree Tp that includes the arc (i, j) and update it by means of the
procedure Hook.

Step of induction. Let the assertion be true when no more than l spanning
trees include the arc (i, j). We prove this for the case when l+ 1 spanning trees
include this arc. By the inductive assumption after selecting the first l spanning
trees, whose roots are marked with ′1′ in v, we write the updated trees into
the corresponding columns of matrices Trans and Nodes. We can apply the
procedure Hook to the spanning tree whose root corresponds to the leftmost bit
′1′ in v in view of initializing the slice A in the procedure DeleteArc. Since A = Θ
after updating any spanning tree by means of the procedure Hook, we can apply
it to other l − 1 spanning trees whose roots are marked with ′1′ in v. After

Associative Version of Italiano’s Decremental Algorithm 451

updating the l-th spanning tree, we select the root of the (l + 1)-th spanning
tree in which the arc (i, j) appears and update it by means of the procedure
Hook. #$
Now we evaluate time complexity of the procedure DeleteArc. To this end, we
have to determine the total number of vertices being updated after deleting an
arc from the transitive closure. In view of performing the procedure Hook, at
most all vertices of a subtree rooted at the tail of the deleted arc are updated.
Therefore the procedure DeleteArc takes O(n log n) time per a deletion, where
the factor logn appears due to the use of the basic procedure MATCH.

One can check that space complexity of the procedure DeleteArc is O(mn).
On the STAR–machine, a Boolean query for the vertices i and j is carried out

in O(1) time by checking the j-th bit of the i-th column in the matrix Nodes.
A path query is performed by means of a bottom-up traversal from j to i in the
i-th spanning tree, located in the i-th column of the matrix Trans, using the
procedure MATCH. It takes O(l logn) time, where l is the length of the path.

Let us compare implementations of Italiano’s decremental algorithm and its
associative version:

– for every vertex i, Italiano’s algorithm maintains a set Desc[i] which coin-
tains all descendants of i. The associative version maintains the arcs from Ti

whose positions are selected by ′1′ in the i-th column of the matrix Trans;
– Italiano’s algorithm maintains a matrix Index, where Index[i, j] points to

the vertex j in the tree Desc[i]. The associative version maintains the Boolean
matrix Nodes, where every i-th column saves the positions of vertices from Ti;

– for every vertex j, Italiano’s algorithm maintains a list of vertices ln(j) =
{i ∈ V / (i, j) ∈ E}. The associative version maintains the j-th row of the matrix
Adj, where heads of arcs entering j are marked with ′1′;

– for every vertex j, Italiano’s algorithm uses an additional pointer to its
parent. The associative version determines the parent of any vertex by means of
the basic procedure MATCH;

– to improve the efficiency of finding a hook, Italiano’s algorithm associates to
each vertex j in each Desc[u] a bookeeping pointer that points to the first vertex
in ln(j), which has not been scanned yet. The associative version immediately
determines a hook for j in a given tree Tp.

7 Conclusions

We have proposed the new data structure used for a natural and efficient imple-
mentation of Italiano’s decremental algorithm on the STAR–machine having no
less than m PEs. Note that this data structure can be also used for designing an
associative version of Italiano’s incremental algorithm for the transitive closure
[5]. The associative version of Italiano’s decremental algorithm is represented
as procedure DeleteArc whose correctness is proved. We have obtained that this
procedure takes O(n log n) time per a deletion assuming that each microstep of
the STAR–machine takes one unit of time and its space complexity is O(mn)
bits. We have also compared the implementations of Italiano’s decremental

452 A. Nepomniaschaya

algorithm and its associative version and enumerate the main advantages of
the associative version.

We are planning to design an associative version of the Ital–Gen algorithm
proposed by Frigioni et al. [2] that generalizes Italiano’s algorithms [5, 6].

References

1. Foster, C.C.: Content Addressable Parallel Processors. Van Nostrand Reinhold
Company, New York (1976)

2. Frigioni, D., Miller, T., Nanni, U., Pasqualone, G., Schaefer, G., Zaroliagis, C.: An
Experimental Study of Dynamic Algorithms for Directed Graphs. In: Bilardi, G.,
Pietracaprina, A., Italiano, G.F., Pucci, G. (eds.) ESA 1998. LNCS, vol. 1461, pp.
368–380. Springer, Heidelberg (1998)

3. Henzinger, M.R., King, V.: Fully Dynamic Biconnectivity and Transitive Closure.
In: Proc. 36th IEEE Symposium on Foundations of Computer Science (FOCS’95),
pp. 664–672 (1995)

4. Ibaraki, T., Katoh, N.: On-Line Computation of Transitive Closure for Graphs.
Information Processing Letters 16, 95–97 (1983)

5. Italiano, G.F.: Amortized Efficiency of a Path Retrieval Data Structure. Theore-
tical Computer Science 48(2-3), 273–281 (1986)

6. Italiano, G.F.: Finding Paths and Deleting Edges in Directed Acyclic Graphs.
Information Processing Letters 28, 5–11 (1988)

7. Nepomniaschaya, A.S.: Language STAR for Associative and Parallel Computation
with Vertical Data Processing. In: Mirenkov, N. (ed.) Proc. of the Intern. Conf.
Parallel Computing Technologies, pp. 258–265. World Scientific, Singapore (1991)

8. Nepomniaschaya, A.S., Dvoskina, M.A.: A Simple Implementation of Dijkstra’s
Shortest Path Algorithm on Associative Parallel Processors. In: Fundamenta In-
formaticae, 43th edn., pp. 227–243. IOS Press, Amsterdam (2000)

9. La Poutré, J.A., van Leeuwen, J.: Maintenance of Transitive Closure and Transitive
Reduction of Graphs. In: Göttler, H., Schneider, H.-J. (eds.) WG 1987. LNCS,
vol. 314, pp. 106–120. Springer, Heidelberg (1988)

10. Yellin, D.M.: Speeding up Dynamic Transitive Closure for Bounded Degree Graphs.
Acta Informatica 30(4), 369–384 (1993)

Support for Fine-Grained Synchronization

in Shared-Memory Multiprocessors

Vladimir Vlassov1, Oscar Sierra Merino1,
Csaba Andras Moritz2, and Konstantin Popov3

1 Royal Institute of Technology (KTH), Stockholm, Sweden
2 University of Massachusetts (UMASS), Amherst, MA, U.S.A.

3 Swedish Institute of Computer Science (SICS), Stockholm, Sweden

Abstract. It has been already verified that hardware-supported fine-
grain synchronization provides a significant performance improvement
over coarse-grained synchronization mechanisms, such as barriers. Sup-
port for fine-grain synchronization on individual data items becomes no-
tably important in order to efficiently exploit thread-level parallelism
available on multi-threading and multi-core processors. Fine-grained syn-
chronization can be achieved using the full/empty tagged shared memory.
We define the complete set of synchronizing memory instructions as well
as the architecture of the full/empty tagged shared memory that pro-
vides support for these operations. We develop a snoopy cache coherency
protocol for an SMP with the centralized full/empty tagged memory.

1 Introduction

There are two general types of synchronization that guarantee correctness of ex-
ecution in shared-memory programming model: mutual exclusion and condition
synchronization. With mutual exclusion, only one process (thread) may execute
its critical session at a time, whereas with condition synchronization a process
may be suspended until some certain condition is met. There exist several syn-
chronization mechanisms that allow to achieve mutual exclusion or condition
synchronization, such as locks and barriers.

Barriers are an example of synchronization that ensure the correctness of a
producer-consumer behavior. They are coarse-grain in the sense that all pro-
cesses participating in a barrier have to wait at a common point, even though
the data a waiting process truly depends on can be already available.

The main advantage of fine-grain synchronization arises from the fact that
synchronization is provided at data-level [6]. As a consequence, false data de-
pendencies and unnecessary delays caused by the coarse-grained synchronization
can be avoided. Communication overhead due to global barriers is also avoided,
because each process communicates only with the processes it depends on. Thus,
the serialization of program execution is notably reduced and more parallelism
can be exploited, in particular for large number of processors. While the overhead
of fine-grain synchronization remains constant, that of a coarse-grain operation
typically increases with the number of processors.

V. Malyshkin (Ed.): PaCT 2007, LNCS 4671, pp. 453–467, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

454 V. Vlassov et al.

Fine-grain synchronization is most commonly provided by three different
mechanisms [28]: (a) language-level support for expressing data-level synchro-
nization operations, (b) full/empty bits storing the synchronization state of each
memory word, and (c) processor operations on full/empty bits. Write-once I-
structures [4] and M-structures [5] support fine-grain synchronization in data
arrays. As another example, J-structures provide consumer-producer style of
synchronization, while L-structures guarantee mutual exclusion access to a data
element [1]. Both data types associate a state bit with each element of an array.

Synchronization failures can be handled by polling the memory location until
the synchronization condition is met, or by blocking the thread and returning
the control at a later stage. The latter scheme requires more support as it is nec-
essary to save and restore context information. A combination of both is another
option, polling first for a given period and then blocking the thread. The waiting
algorithm may depend on the type of synchronization being executed [16].

Most research regarding multiprocessors show that fine-grain synchronization
is a valuable alternative for improving the performance of many applications.
Hardware support can be worthwhile for fine-grain synchronization [14].

The challenge of programming multiprocessors turned to mainstream [22] with
the proliferation of multi-threaded [23] and multi-core [20] processors caused, in
turn, by difficulties with increasing processor frequencies [13] and diminishing
returns from ever more complex processor architectures [21]. The study [25]
reveals that existing applications possess inherent parallelism that cannot be
fully exploited on practical superscalar architectures but on multi-core processors
with 8-16 cores. The amount of available parallelism is measured by analysing
data dependencies between program statements. Fine-grained synchronization
mechanisms can allow to fully exploit the available data-flow parallelism. At the
same time, the main memory becomes relatively less expensive reducing the cost
of overhead of storing full/empty bits.

Multi-core chips possess high-bandwidth, low-latency interconnects which can
be exploited also for efficient implementation of full/empty bit-based fine-grained
synchronization. A cache design that implements synchronization primitives
would relieve the processor from the need to access the main memory, which
we believe would substantially improve the efficiency of synchronization.

In this paper we present a snoopy cache coherency protocol that supports
full/empty bit-based fine-grained synchronization. We took the MESI protocol
and extended it with additional states and state transitions that allow the cache
to differentiate between “full” and “empty” states of synchronization bits. We
also show how threads blocked due to wrong state of synchronization bits can
be handled similarly to threads waiting for cache miss processing.

In [18] we presented a directory-based cache coherency protocol support-
ing full/empty bit-based fine-grained synchronization, and its simulation-based
evaluation. The evaluation demonstrated significant performance and scalability
benefits of the fine-grained synchronization over the coarse-grained one. Evalu-
ation of our bus-based cache coherency protocol is still a pending work.

Support for Fine-Grained Synchronization 455

2 Related Work

The MIT Alewife machine is a cache-coherent shared memory multiproces-
sor [1] with non-uniform memory access (NUMA). Although it is implemented
with an efficient message-passing mechanism, it provides an abstraction of a
global shared memory to programmers. Each node contain a communication
and memory management unit (CMMU) which deals with cache coherency and
synchronization protocols. Cache coherency is achieved through LimitLESS, a
software extended directory-based protocol. The home node of a memory line is
responsible for the coordination of all coherence operations for that line.

Support for fine-grain synchronization in Alewife includes full/empty bits for
each 32-bit data word and fast userlevel messages. Colored load and store in-
structions are used to access synchronization bits. The alternate space indicator
(ASI) distinguishes each of these instructions. Full/empty bits are stored in the
bottom four bits of the coherency directory entry (at the memory) and as an
extra field in the cache tags (at the cache), so they do not affect DRAM archi-
tecture nor network data widths. The Alewife architecture also defines language
extensions to support both J- and L-structures.

The aim is that a successful synchronization operation does not incur much
overhead with respect to a normal load or store. In the ideal case, the cost of
both types of operations is expected to be the same. This is possible because
full/empty bits can be accessed simultaneously with the data they refer to. The
cost of a failed synchronization operation depends much on the specific hardware
support for synchronization. The overhead of software-supported synchroniza-
tion operations is expected to be much higher than their hardware counterparts.
However, Alewife minimizes this by rapidly switching between threads on a failed
synchronization attempt or a cache miss, requiring the use of lockup-free caches.

Handling failed synchronization operations in software has the advantage of
being less complex in terms of hardware and more flexible. The basis of Alewife
support for fine-grain synchronization is that, as synchronization operations are
most probably successful, overhead due to such failures is not expected to notably
reduce overall system performance.

Support for fine-grained synchronization in cache coherency protocols has also
been suggested for message-passing architectures, such as Tera [2], StarT-
NG [3], and Eldorado [8]. For instance, StarT-NG is a high-performance message
passing architecture in which each node consists of a commercial symmetric
multiprocessor (SMP) that can be configured with up to 3 processors, which are
connected to the main memory by a data crossbar. A low-latency high-bandwidth
network interconnects every node in the system.

Handling of Coherence in StarT-NG are fully implemented in software and
is therefore very flexible. In [27] a cache coherency protocol with support for
fine-grained synchronization using I-structures is introduced. According to the
results of that study, performance improvements in an integrated coherence pro-
tocol are two-fold. First, the write-once behavior of I-structures allows writes to
be performed without the exclusive ownership of the respective cache line. Once
a write has been carried out, stale data in other caches is identified because its

456 V. Vlassov et al.

full/empty bit is unset. In a directory-based protocol, a synchronized load in a
remote location will find the full/empty bit unset and forward the request to the
proper node. Another advantage of a coherence protocol integrated with fine-
grain synchronization is the efficiency in the management of pending requests
by reducing the number of transactions needed to perform some particular op-
erations. As an example, a synchronized load in traditional coherence protocols
usually requires the requesting node to obtain the exclusive ownership of the
affected block in order to set the full/empty bit to the empty state.

Several authors proposed mechanisms for hardware support of coarse-
grained synchronization, such as QOLB(QOSB) (“queue on lock(sync) bit”)
[9,12] and lock box [24].

The hardware transactional memory is a non-blocking synchronization
mechanism [11,10,17,19] that aims to replace the lock-based synchronization.
A transaction is a sequence of memory operations executed by a single thread,
which is guaranteed to be atomic and serializable. Transactional memory sys-
tems provide a simple programming model, but require also extensive hardware
support. LogTM [19] detects also transaction execution conflicts at the cache
level, yielding better performance.

3 Synchronizing Memory Operations

Synchronization operations require tagged memory, in which each location is
associated to a state bit in addition to a value stored in the location. The state
bit is known as full/empty (FE) bit, and it controls the behavior of synchronized
loads and stores. For example, a set FE-bit indicates that the corresponding
memory reference has been written by a successful synchronized store. On the
contrary, an unset FE-bit means either that the memory location has never been
written since it was initialized or that a synchronized load has read it.

The full/empty-tagged memory, shortly FE-memory, is the memory in which
each word has a FE-bit associated with it. In general, the FE-memory can be
composed of two parts: (1) the data memory which holds data, and (2) the
state memory which holds FE-bits. A memory operation on the FE-memory can
access either of these parts or both. The joint diagram depicted in Figure 1 shows
possible combinations of read (Rd) or write (Wr) operations that access the data
memory with operations set-to-Empty (E) and set-to-Full (F) that access the
state part of the memory. Combined operations such as Rd&E (read and set to
Empty) and Wr&F (write and set to Full) are atomic.

A categorization of the different synchronizing memory operations as proposed
earlier [26] is depicted in Figure 2. The simplest type of operations includes un-
conditional (ordinary) load and store, setting and resetting the full/ empty bit
or a combination of these. As they do not depend on the previous value of the
full/empty bit, unconditional operations always succeed. Conditional operations
depend on the value of the full/empty state bit to successfully complete. A con-
ditional read, for instance, is only performed if the state bit of the location being
accessed it set. The complimentary applies for a conditional write. Conditional

Support for Fine-Grained Synchronization 457

Fig. 1. Memory Operations Fig. 2. Categories of the FE-
Memory Operations

Fig. 3. Opcode
Notation

memory operations can be either waiting or non-waiting. In the former case, the
operation remains pending in the memory until the state miss is resolved. This
introduces non-deterministic latencies in the execution of synchronizing memory
operations. Lastly, conditional non-waiting operations can be either faulting or
non-faulting. While the latter do not treat the miss as an error, faulting opera-
tions fire a trap on a state miss and either retry the operation immediately or
switch to another context.

All memory operations, regardless of the classification made in Figure 2, can
be further catalogued into altering and non-altering operations. While the former
modify the full/empty bit after a successful synchronizing event, the latter do
not touch this bit in any case. According to this distinction, ordinary memory
operations fall into the unconditional non-altering category. Figure 3 explains
our memory opcode notation.

4 Memory Architecture

In a multiprocessor system providing fine-grain synchronization, each shared
memory word is tagged with a full/empty bit that indicates the synchronization
state of the referred memory location. Assuming that a memory word is 32-bit
long, this implies an overhead of just 3%. Although many variations exist when
implementing this in hardware, the structure of shared memory is conceptually
as shown in Figure 4.

Each shared memory location (a word) has three logical parts, namely:

– The shared data itself.
– State bits associated with the location. The full/empty bit is placed within

the state bits. This bit is set to 1 if the corresponding memory location
has already been written by a processor and thus contains valid data. If
the architecture has cache support other state bits such as the dirty bit may
exist. The dirty bit is set if the memory location is not up-to-date, indicating
that it has been modified in a remote node.

458 V. Vlassov et al.

Fig. 4. Memory Operations Fig. 5. Categories of the FE-Memory Opera-
tions

– The list of pending memory requests. Synchronization misses fired by con-
ditional waiting memory operations are placed in this list. When an appro-
priate synchronizing operation is performed, the relevant pending requests
stored in this list are resumed. If the architecture has cache support, the
list of pending memory requests also stores ordinary cache misses. The dif-
ference between both types of misses is that synchronization misses store
additional information, such as the accessed slot index in the corresponding
cache block.

When a memory word is cached, its full/empty bit must also be stored at
the cache side as an extra field in the cache tag, allowing checking the synchro-
nization state in the same step as the cache lookup. A structure for a cache
supporting fine-grain synchronization proposed in this report is depicted in Fig-
ure 5. The coherence protocol has two logical parts, one for the data and another
for the synchronization bit.

Our design assumes that the smallest synchronizing element is a word. As a
cache line is usually longer, it may contain multiple elements, including both
synchronized and ordinary words. A tag for a cache line includes the full/empty
bits for all the words that are stored in that line even though some of the FE-bits
can be not in use. Note that while a dirty bit refers to a complete cache line, a
full/empty bit refers to a single word in a cache line.

In the proposed architecture, lists of pending requests (unresolved synchro-
nization misses) are maintained in hardware at the cache level, more concretely
in the miss status holding registers (MSHR) [15]. In order to store synchroniza-
tion misses in these registers, two more fields have to be added containing the
slot’s index accessed by the operation and the specific variant of synchronized
operation that will be performed.

5 Cache Coherence with Support for Fine-Grain
Synchronization

Caches in multiprocessors must ensure that modifications to data that is resident
in a cache are seen in the rest of the nodes that share a copy of the data. This

Support for Fine-Grained Synchronization 459

can be achieved in several ways, which may depend on the particular system
architecture. In bus-based system cache coherence can be implemented by a
snooping mechanism, where each cache is continuously monitoring the system
bus and updating its state according to the relevant transactions seen on the bus.
On the contrary, mesh network-based multiprocessors use a directory structure
to ensure cache coherence. In these systems, each location in the shared memory
is associated with a directory entry that keeps track of the caches that have
a copy of the referred location. Both, snoopy and directory-based mechanisms
can be further classified into write-invalidate and write-update protocols. In the
former case, when a processors writes shared data in its cache, all other copies,
if any, are set as invalid. Update protocols change copies in all caches to the new
value instead of marking them as invalid.

The performance of multiprocessor systems is partially limited by cache misses
and node interconnection traffic. Consequently, cache coherence mechanisms play
an important role in solving the problems associated with shared data. Another
performance issue is the overhead imposed by synchronizing data operations.
In the case of systems that provide fine-grain synchronization, this overhead is
due to the fact that synchronization is implemented as a separate layer over
the cache coherence protocol. Indeed, bandwidth demand can be reduced if no
data is sent in a synchronization miss. This behavior requires the integration
of cache coherence and fine-grain synchronization mechanisms. However, both
mechanisms are conceptually independent.

In the proposed architecture, failing synchronizing events are resolved in hard-
ware. The cache controller deals not only with coherency misses, but also with
full/empty state misses. Synchronization is thus integrated with cache coherency
operations, as opposed to e.g. Alewife where which the synchronization protocol
is implemented separately from the cache coherency system.

This approach can be extended to the processor registers by adding a full/
empty tag to them. This would allow an efficient execution of synchronization
operations from simultaneous threads on the registers. However, additional mod-
ifications are needed in the processor architecture to implement this feature.

6 Fine-Grain Synchronization with a Snoopy Cache
Coherency Protocol

Our cache coherency protocol is based on the MESI – four-state write-invalidate
protocol for a write-back cache with the following state semantics [7]:

– Modified (M) – this cache has the only valid copy of the block; the location
in main memory is invalid.

– Exclusive clean (E) – this is the only cache with a copy of the block; the
main memory is up-to-date. A signal S is available to the controller in order
to determine on a BusRd if any other cache currently holds the data.

460 V. Vlassov et al.

Fig. 6. State Diagram for the MESI Protocol

– Shared (S) – the block is present in an unmodified state in this cache, main
memory is up-to-date and zero or more caches may also have a shared copy.

– Invalid (I) – the block does not have valid data.

The state diagram corresponding to the MESI protocol without fine-grain
synchronization support is shown in Figure 6. In the figure, we use the nota-
tion A/B, where A indicates an observed event and B is an event generated
as a consequence of A [7]. Dashed lines show state transitions due to observed
bus transactions, while continuous lines indicate state transitions due to local
processor actions. Finally, the notation Flush’ means that data is supplied only
by the corresponding cache. Note that this diagram does not consider transient
states used for bus acquisition.

We extended the MESI protocol such that the full/empty state of the accessed
word is explicitly indicated by splitting each state of the original MESI protocol
into two states: one where FE-bit is Full and another where FE-bit is Empty.
The modified protocol is called FE-MESI protocol; it is sketched in Figure 9.
The transactions not shown in this figure are not relevant for the corresponding
state and do not cause any transition in the receiving node. See [18] for the
detailed description of state transition rules and some examples.

For simplicity yet without loosing generality, the description here considers
only two types of FE-memory operations issued by the processor: waiting non-
altering read (PrWNRd) and waiting altering write (PrWAWr). As an implemen-
tation option, the altering read operation can be achieved by issuing non-altering
read in combination with an operation that clears the full/empty bit without
retrieving data, i.e. sets FE-bit to Empty. This operation can be named un-
conditional altering clear, or PrUACl according to the nomenclature previously
described. PrUACl operates on a full/empty bit without accessing or altering
the associated data.

Support for Fine-Grained Synchronization 461

Fig. 7. Simplified State Diagram for the FE-MESI Protocol

Clearing of full/empty bits is necessary in order to reuse synchronized memory
locations (see [14] for the detailed description). While a PrUARd could be used
for this end, the PrUACl instruction completes faster, as it alters the full/empty
bit without actually reading data from the corresponding location.

Using the operations PrWNRd (waiting non-altering reads), PrWAWr (wait-
ing altering write) and PrUACl (unconditional altering clear), one can implement
I-structures (write-once variables) and M-structures (reusable I-structures).

Waiting operations constitute the most complex sort of synchronizing oper-
ations, as they require additional hardware in order to manage deferred lists
and resume pending synchronization requests. The behaviour of other types of
memory operations is a simplified version of waiting operations. Most of the
transitions depicted in Figure 9 are identical in the rest of the cases, with excep-
tion of the behaviour when a synchronization miss is detected. Instead of being
added to the list of pending requests, other variants of missing operations either
fire an exception or are silently discarded. Two additional bus transactions are
needed in order to integrate fine-grain synchronization into the MESI protocol:

BusSWr. A node has performed an altering waiting write. The effect of this
operation in observing nodes is to set the full/empty bit of the referring
memory location and resume the relevant pending requests.

BusSCl. A node has performed an altering read or an unconditional clear opera-
tion. The effect of this operation in observing nodes is to clear the full/empty
bit of the referring memory location, thus making it reusable.

We introduce a new signal C in order to determine whether a synchronized
operation misses. This bus signal will be called shared-word signal, as it indicates

462 V. Vlassov et al.

whether any other node is sharing the referring word. The shared-word signal can
be implemented as a wired-OR controller line, which is asserted by each cache
that holds a copy of the relevant word with the full/empty bit set. According to
this notation, a waiting read request written in the form PrWNRd(C) success-
fully performs, while an event of the form PrWNRd(C) causes a synchronization
miss. Note also that, as each cache line may contain several synchronized data
words, it is necessary to specify the specific word to which the synchronized
operation is to be performed. Consequently, a negated synchronization signal
(C) causes a requesting read to be appended to the list of pending operations
whereas a requesting write to be performed successfully. If the synchronization
signal is otherwise asserted (C), then a synchronized read is completed success-
fully whereas a requesting write is suspended.

In addition to the shared-word signal already introduced, three more wired-
OR signals are required for the protocol to operate correctly, as described in
[7]. The first signal (named S) is asserted if any processor different than the
requesting processor has a copy of the cache line. The second signal is asserted if
any cache has the block in a dirty state. This signal modifies the meaning of the
former in the sense that an existing copy of a cache line has been modified and
then all the copies in other nodes are invalid. A third signal is necessary in order
to indicate whether all the caches have completed their snoop, that means, if it
is reliable to read the value of the first two signals.

Figure 7 shows a more compact state transition specification in which infor-
mation about the full/empty state of the accessed word is implicit. Instead, the
value of the C line or the full/empty bit is specified as a required condition
between parentheses. Figure 9 and Figure 7 do not consider neither transient
states needed for bus acquisition nor the effects due to real signal delays.

Correspondence between processor instructions and bus transactions.
When a processing node issues a memory operation, the cache of the node inter-
prets the request and, in case of a miss, it later translates the operation into one
or more bus transactions. The correspondence between the different processor
instructions and the memory requests seen on the bus is shown in Figure 8. Un-
conditional non-altering read and write requests generate ordinary read and write
transactions on the bus. On the contrary, an unconditional altering read requires
a BusRd transaction followed by a BusSCl transaction. Effectively, apart from
retrieving the data from the corresponding memory location, a PrUARd request
also clears the full/empty state bit of the referring location. This is performed
by BusSCl, which does not access nor modifies the data but only the full/empty
bit. It is important to observe that an unconditional altering read cannot be per-
formed by just a BusSCl transaction, as it just alters the full/empty bit without
retrieving any data. The last unconditional operation, PrUAWr, generates a spe-
cific bus transaction, namely BusAWr, which unconditionally sets the full/empty
bit after writing the corresponding data to the accessed memory location.

The behavior of all conditional memory operations depends on the value of the
shared-word bus signal. A conditional non-altering read generates an ordinary
read bus transaction after checking whether the shared-bus signal is asserted.

Support for Fine-Grained Synchronization 463

Request from processor Bus transaction issued on a miss

PrUNRd BusRd (ordinary read)
PrUNWr BusWr (ordinary write)
PrUARd BusRd & BusSCl
PrUAWr BusAWr
PrSNRd BusRd(C)
PrSNWr BusWr(C)
PrSARd BusRd(C) & BusSCl
PrSAWr BusSWr(C)

Fig. 8. Correspondence Between Processor Instructions and Memory Requests

A conditional altering read generates a BusSCl transaction in addition to the
ordinary read transaction. Finally, a conditional altering write causes a BusSWr
transaction to be initiated on the bus. This transaction sets the full/empty bit
after writing the data to the referred memory location.

Note that all synchronized operations generate the same bus transactions
regardless of their particular type (waiting, non-faulting or faulting). The differ-
ence resides in the behavior when a synchronization miss is detected and not in
the bus transactions issued as a consequence of the request.

Management of pending requests
Each processing node keeps a local deferred list. This list holds both ordinary
presence misses and synchronization misses. It is possible also for both types of
misses to happen for a single access. In this case, not only the accessed line is
not present in the cache, but also the synchronization state is not met at the
remote location where the copy of the word is held. After a relevant full/empty
bit change is detected, any operation that matches a required synchronization
state is resumed at the appropriate processing node.

Certain requests can be merged together, in particular – non-altering pending
read requests with incoming read requests (see [18] for the detailed rules).

Apart from coalescing of requests, it is also crucial to specify how resuming of
pending requests is done. As explained at the beginning of this section, coherence
of full/empty state bits is ensured by proper bus transactions, to be precise,
BusSWr and BusSCl. This means that all caches that have pending requests for
a given memory location will know when the synchronization condition is met
by snooping into the bus and waiting for a BusSWr or a BusSCl transaction.
When such transaction is noticed, a comparator checks if there is an entry in
any MSHR matching the received bus transaction. In this case, action is taken
so as to resume the pending request.

Due to this feature, it is possible for a cache to have pending requests for a
memory location that is not cached or is cached in an invalid state. The location
will be brought again into the cache when the synchronization miss is resolved.
The ability of replacing cache lines that have pending requests allows efficient
management and resuming of pending requests with minimum risk of saturating
the cache hierarchy.

464 V. Vlassov et al.

Fig. 9. State Diagram for the FE-MESI Protocol

Imagine a scenario when nodes A, B and C have pending requests to a location
(X) in their MSHR. While nodes A and B have invalid copies in their caches,
node C has the exclusive ownership of the referred location, whose full/empty
state bit is unset. After node C successfully performs a conditional altering write
to location X, this event is notified on the bus by a BusSWr transaction. This
transaction informs nodes A and B that they can resume the pending request to
location X, which happens to be a conditional altering read. As a consequence,
only one of these nodes will be able to successfully issue the operation at this

Support for Fine-Grained Synchronization 465

point. This is imposed by bus order. For instance, if node B gets the bus own-
ership before node A, the pending request from the former will be resumed and
the operation at node A will stay pending in the MSHR.

7 Conclusions

Fine-grain synchronization is a valuable mechanism for speeding up the execu-
tion of parallel algorithms by avoiding false data dependencies and unnecessary
process waiting. However, the implementation of fine-grain synchronization in-
troduces additional complexity in both hardware and software.

A novel architecture with support for fine-grain synchronization at the cache
coherence level is introduced. We propose a model that can be efficiently im-
plemented in modern multiprocessors. The hardware overhead required by this
architecture is not expected to be excessive.

We propose a cache coherence protocol with support for fine-grain synchro-
nization for bus-based multiprocessors. Our proposal includes the rules for man-
agement and resuming pending requests, which is a key issue for the correct
operation of the presented architecture. We believe our protocol can be used in
multi-core multiprocessors.

Acknowledgments

This work was supported in part by a research grant from the Swedish Founda-
tion for International Cooperation in Research and Higher Education (STINT),
Sweden, and in part by by a research grant from the National Science Foundation
(NSF), USA. We would like to thank Diganta Roychowdhury and Raksit Ashok,
former students at the Electrical and Computer Engineering Department at the
University of Massachusetts Amherst (UMASS); and the former members of the
MIT Alewife Project Donald Yeung and Matthew Frank for providing excellent
advises and comments.

References

1. Agarwal, et al.: The MIT Alewife machine: architecture and performance. In: ISCA
’95: Proceedings of the 22nd Annual International Symposium on Computer Ar-
chitecture, Margherita Ligure, Italy, pp. 2–13. ACM Press, New York (1995)

2. Alverson, et al.: The Tera computer system. In: ICS ’90: Proceedings of the 4th

International Conference on Supercomputing, Amsterdam, The Netherlands, pp.
1–6. ACM Press, New York (1990)

3. Ang, B., Arvind, Chiou, D.: StarT the Next Generation: Integrating global caches
and dataflow architecture. In: Advanced Topics in Dataflow Computing and Mul-
tithreading, IEEE Press, New York (1995)

4. Arvind, R.N., Pingali, K.: I-structures: data structures for parallel computing.
ACM Transactions on Programming Languages and Systems (TOPLAS) 11(4),
598–632 (1989)

466 V. Vlassov et al.

5. Barth, P., Nikhil, R., Arvind.: M-structures: extending a parallel, non-strict, func-
tional language with state. In: Proceedings of the 5th ACM Conference on Func-
tional Programming Languages and Computer Architecture, Cambridge, MA, U.S,
pp. 538–568. Springer, Heidelberg (1991)

6. Chen, D.-K., Su, H.-M., Yew, P.-C.: The impact of synchronization and granularity
on parallel systems. In: ISCA ’90: Proceedings of the 17th Annual International
Symposium on Computer Architecture, Seattle, Washington, pp. 239–248. ACM
Press, New York (1990)

7. Culler, D.E., Singh, J.P., Gupta, A.: Parallel Computer Architecture. Morgan
Kaufmann, Seattle (1997)

8. Feo, J., Harper, D., Kahan, S., Konecny, P.: ELDORADO. In: CF ’05: Proceedings
of the 2nd Conference on Computing Frontiers, Ischia, Italy, pp. 28–34. ACM Press,
New York (2005)

9. Goodman, J., Vernon, M., Woest, P.: Efficient synchronization primitives for large-
scale cache-coherent multiprocessors. In: ASPLOS-III: Proceedings of the 3rd Inter-
national Conference on Architectural Support for Programming Languages and Op-
erating Systems, Boston, Massachusetts, pp. 64–75. ACM Press, New York (1989)

10. Hammond, et al.: Transactional memory coherence and consistency. In: Proceed-
ings of the 31st Annual International Symposium on Computer Architecture, p.
102. IEEE Computer Society, Los Alamitos (2004)

11. Herlihy, M., Moss, J.: Transactional memory: architectural support for lock-free
data structures. In: Proceedings of the 20th Annual International Symposium on
Computer Architecture, San Diego, California, pp. 289–300. ACM Press, New York
(1993)

12. Kägi, A., Burger, D., Goodman, J.: Efficient synchronization: Let them eat QOLB.
In: Proceedings of the 24th Annual International Symposium on Computer Archi-
tecture, Denver, Colorado, pp. 170–180. ACM Press, New York (1997)

13. Kim, N., Austin, T., Blaauw, D., Mudge, T., Flautner, K., Hu, J., Irwin, M.,
Kandemir, M., Narayanan, V.: Leakage current: Moore’s Law meets static power.
IEEE Computer 36(12), 68–75 (2003)

14. Kranz, D., Lim, B.H., Agarwal, A., Yeung, D.: Low-cost support for fine-grain
synchronization in multiprocessors. In: Multithreaded Computer Architecture: A
Summary of the State of the Art, pp. 139–166. Kluwer Academic Publishers, Boston
(1994)

15. Kroft, D.: Lockup-free instruction fetch/prefetch cache organization. In: ISCA ’98:
25 years of the International Symposia on Computer Architecture (selected papers),
Barcelona, Spain, pp. 195–201. ACM Press, New York (1998)

16. Lim, B.-H., Agarwal, A.: Reactive synchronization algorithms for multiprocessors.
In: ASPLOS-VI: Proceedings of the 6th International Conference on Architectural
Support for Programming Languages and Operating Systems, San Jose, CA, U.S,
pp. 25–35. ACM Press, New York (1994)

17. McDonald, A., Chung, J., Carlstrom, B., Minh, C., Chafi, H., Kozyrakis, C.,
Olukotun, K.: Architectural semantics for practical transactional memory. ACM
SIGARCH Computer Architecture News 34(2), 53–65 (2006)

18. Merino, O.S., Vlassov, V., Moritz, C.A.: Performance implication of fine-grained
synchronization in multiprocessors. Technical Report TRITAIMITLECS R 02:02,
Department of Microelectronics and Information Technology (IMIT) Royal Insti-
tute of Technology (KTH), Stockholm, Sweden (2002)

19. Moore, K., Bobba, J., Moravan, M., Hill, M., Wood, D.: LogTM: Log-based trans-
actional memory. In: Proceedings of the 12th International Symposium on High-
Performance Computer Architecture, pp. 254–265 (February 2006)

Support for Fine-Grained Synchronization 467

20. Olukotun, K., Nayfeh, B., Hammond, L., Wilson, K., Chang, K.: The case for a
single-chip multiprocessor. In: ASPLOS-VII: Proceedings of the 7th International
Conference on Architectural Support for Programming Languages and Operating
Systems, Cambridge, Massachusetts, pp. 2–11. ACM Press, New York (1996)

21. Ronen, R., Mendelson, A., Lai, K., Lu, S.-L., Pollack, F., Shen, J.P.: Coming
challenges in microarchitecture and architecture. Proceedings of the IEEE 89(3),
325–340 (2001)

22. Sutter, H.: The free lunch is over: A fundamental turn toward concurrency in
software. Dr. Dobb’s Journal 30(3) (March 2005)

23. Tullsen, D., Eggers, S., Levy, H.: Simultaneous multithreading: Maximizing on-chip
parallelism. In: The 22th Annual International Symposium on Computer Architec-
ture, Santa Margherita Ligure, Italy, pp. 392–403. ACM Press, New York (1995)

24. Tullsen, D., Lo, J., Eggers, S., Levy, H.: Supporting fine-grained synchronization
on a simultaneous multithreading processor. In: HPCA ’99: Proceedings of the 5th
International Symposium on High Performance Computer Architecture, pp. 54–58.
IEEE Computer Society, Los Alamitos (1999)

25. Vachharajani, N., Iyer, M., Ashok, C., Vachharajani, M., August, D., Connors,
D.: Chip multi-processor scalability for single-threaded applications. SIGARCH
Computer Architecture News 33(4), 44–53 (2005)

26. Vlassov, V., Moritz, C.A.: Efficient fine grained synchronization support using
full/empty tagged shared memory and cache coherency. Technical Report TRITA-
IT-R 00:04, Deptartment of Teleinformatics, Royal Institute of Technology (KTH)
(December 2000)

27. Xiaowei, S.: Implementing global cache coherence in *T-NG. Master’s thesis, De-
partment of Electrical Engineering and Computer Science, MIT (May 1995)

28. Yeung, D., Agarwal, A.: Experience with fine-grain synchronization in MIMD ma-
chines for preconditioned conjugate gradient. In: PPOPP ’93: Proceedings of the
4th ACM SIGPLAN Symposium on Principles and Practice of Parallel Program-
ming, San Diego, CA, U.S, pp. 187–192. ACM Press, New York (1993)

Self-organised Criticality in a Model of the Rat

Somatosensory Cortex

Grzegorz M. Wojcik1, Wieslaw A. Kaminski1, and Piotr Matejanka2

1 Institute of Computer Science
Maria Curie-Sklodowska University

pl. Marii Curie-Sklodowskiej 5, 20-031-Lublin, Poland
gmwojcik@gmail.com

2 Motorola Polska Electronics
ul. Wadowicka 6, 30-415 Krakow, Poland

Abstract. Large Hodgkin-Huxley (HH) neural networks were examined
and the structures discussed in this article simulated a part of the rat
somatosensory cortex. We used a modular architecture of the network
divided into layers and sub-regions. Because of a high degree of com-
plexity effective parallelisation of algorithms was required. The results of
parallel simulations were presented. An occurrence of the self-organised
criticality (SOC) was demonstrated. Most notably, in large biological
neural networks consisting of artificial HH neurons, the SOC was shown
to manifest itself in the frequency of its appearance as a function of
the size of spike potential avalanches generated within such nets. These
two parameters followed the power law characteristic of other systems
exhibiting the SOC behaviour.

1 Introduction

In physics, a critical point is a point at which a system changes radically its
behaviour or structure. Self-organised critical phenomena is exhibited by driven
systems which reach a critical state by their intrinsic dynamics, independently of
a value of any control parameter. An archetype of a self-organised critical system
is a sand pile. The sand is slowly dropped onto a surface, forming a pile. As the
pile grows, avalanches occur which carry the sand from the top to the bottom of
the pile. At least in model systems, the slope of the pile becomes independent
of the rate at which the system is driven by dropping sand. This exemplifies
(self-organised) critical slope [16].

One of the oldest numerical models describing the sand-pile problem is pre-
sented i.e., in [1],[3],[6]. In this model, a one-dimensional pile of sand comprising
a system of columns is considered. Grains of sand are contained in the afore-
mentioned columns. The dynamics of the system is defined by a collection of
equations describing the effect of a one-grain addition. After a proper number of
grains have been added to the appropriate columns, a critical inclination of the
sand pile occurs that causes disorder and relaxation of the whole system. This
disorder is referred to as an avalanche.

V. Malyshkin (Ed.): PaCT 2007, LNCS 4671, pp. 468–476, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Self-organised Criticality in a Model of the Rat Somatosensory Cortex 469

Critical states of a system are signalled by a power-law distribution in some
observable. In the case of sand-piles, one can measure the size distribution of the
avalanches. A frequency of an avalanche appearing in the system is a function
of its size and can be expressed by the power law [1]:

D(S) ∼ S−k, (1)

where k stands for a characteristic number for a given system.
In particular, systems exhibiting behaviour predicted by the SOC model have

attracted widespread attention [4],[5],[8],[10],[11],[12]. Earthquakes, forest fires,
biological evolution, to name just a few, have all been successfully modelled this
way [1]. The aim of the research discussed in this contribution was to investigate
if the SOC occurs in large and biologically realistic neural networks modelling
the mammalian somatosensory cortex. There are experiments confirming the
existence of frequency tuning and adaptation to stimulus statistics in neurons
of the rat somatosensory cortex [7]. Finding the SOC in the model will allow us
to design a new series of experiments with a large number of neurons leading to
a discovery of a new class of neurodynamic phenomena are taking place in real
brains.

Computer-based models and simulations of microcircuits consisting of numer-
ically complicated HH neurons [9] are power consuming. However, the simulation
time can be shortened by using cluster-based parallelised computing. All the sim-
ulations discussed in this paper were conducted in a parallel version of GENESIS
compiled for the MPI environment [14]. The choice of the GENESIS simulator
allowed us to use many processors (for parallelisation effectiveness, the time of
a typical run and other details see Appendix A). Remarkably, in this article we
demonstrate that in large HH neural networks, critical relaxation phenomena
also occur and we show that the size and frequency of the spike potentials ap-
pearing in such networks follow the power law. Consequently, the system can be
represented by the SOC model and the occurrence of the SOC depends on the
number of synaptic connections present in the simulated part of the discussed
brain.

2 Model and Method of Parallelisation

The somatosensory pathways bring sensory information from the periphery into
the brain, e.g., from a rat’s whisker to the somatosensory cortex. Information
from the snout passes along the trigeminal nerve, projecting to the trigeminal
complex in the brainstem, which sends projections to the medial ventral poste-
rior nucleus of the thalamus (VPm). Each whisker has a representative physical
structure in the brain, forming 2-D maps of the whisker pad throughout the
pathway. In the cortex, these structures are known as barrels. They are formed
from clusters of stellate cortical neurons, with the cell bodies arranged in a
ring and dendrites filling the middle ”hole”. The dendrites form synapses with
multiple axons rising from the VPm [15].

470 G.M. Wojcik, W.A. Kaminski, and P. Matejanka

The neurons used in the simulations were built according to a slightly modified
version of the HH model [9] and are relatively simple (for detail, see Appendix
B). The modification was arranged in the model of the neuron in order to avoid
a rapid synchronisation of the whole simulated system. An additional parameter
responsible for the probability of exocitosis was added for each synaptic con-
nection in post-synaptic neuron. The change required a simple modification of
original GENESIS code. Changed version of GENESIS, compiled for Linux and
MPI, can be downloaded from [14].

The subsequently constructed net consisted of 2025 of the above-mentioned
neurons that were placed on a square-shaped 2-D grid with 45 rows and 45
columns. A pair of numbers ranging from 0 to 44 identified each neuron. All the
cells were divided into 22 groups, called layers, numbered from 1 to 22. Com-
munication between neurons was established based on the following principles
- the input signal from each neuron from the m-th layer was transported to all
the cells from layers: m+ 1,m+ 2,m+ 3, ...,m+Ns, where Ns was the integer
number, not greater than the number of layers (see Fig. 1). Note that such a
structure (2-D with dense ”neural rings”) imitates the structure of rat cortical
barrels. Such a structure can be easily parallelised, so we decided to simulate the

22

22

0

0

44

44

ZONE 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Fig. 1. The scheme of the simulated network. Layers are highlighted by the thick lines.
Stimulating neuron is marked with the black square. The coordinates of the neurons
are marked on the top and the left side of the scheme. In each zone there are 3 columns
of neurons as marked at the bottom. The choice of columns belonging to particular
zones is arbitrary.

Self-organised Criticality in a Model of the Rat Somatosensory Cortex 471

problem on 15 processors. We divided the network into 15 zones. In each zone
the same number of neurons were simulated. The zones were named from 1 to
15 and the way in which they were arranged is presented in Fig.1. Such a choice
allowed us to run simulations in optimal way, without the barriers being timed
out. The complexity of the system increases rapidly with Ns, so does the time
of simulation. A good parallelisation of the model not only shortens its simula-
tion time, but most often makes it executable at all. That is why parallelisation
techniques are in such demand for HH systems with large number of synapses.

Synaptic connections are characterised by three parameters: weight w, time
delay τ , and the probability p of transporting the signal, which corresponded
to the mentioned probability for the occurrence of exocitosis. The probability
p is set to a constant and was the same for all the synapses (p = 0.5).Values
of two other parameters depend on the position of both the pre-synaptic and
post-synaptic neuron. For each pair of neurons, one of which is in the m-th layer
and the other belongs to the n-th layer, the parameters w and τ are chosen
according to following rules:

w =
w0

|m− n| , (2)

τ = 10−4|m− n| [s], (3)

where w0 is a positive constant (in our simulations w0 = 2). The system was
stimulated by the neuron N [23, 23] that is the main receptor of activities from
the outside of the net (i.e., a glass capillary stimulating the whisker [7] or an
electrode transmitting some random stimulus directly into the cortex). As a
result, the receptor was producing a periodic spike potential with a frequency
of about 80 Hz. In addition, the net is characterised by the parameter T that
corresponds to the system’s working time (usually, in our simulations usually
T = 15 s).

3 Simulations and Results

During the simulation, all the data necessary to calculate the time of spike po-
tential occurrence for each neuron were collected. The stimulus was transported
to all the cells through the connections in agreement with their architecture. The
activity of the whole neural network was examined. In this case by avalanche
we understand the group of neurons that are active in the same and small in-
terval of time (i.e., ti = 1 ms). The algorithm used to compute the number of
avalanches was implemented in C++ and its main idea was to analyse typical
text files containing the time and value of membrane potential in search for the
spiking neurons in the same time.

For a system with a small number of connections (Ns < 6), the power law
cannot precisely describe the number of spike-potential avalanche appearances
as a function of its size (Fig. 2). In the case of a net with a small number
of connections, a different behaviour in the range of small size avalanches was
observed and a clear deviation from the power law for small size avalanches could

472 G.M. Wojcik, W.A. Kaminski, and P. Matejanka

1

10

100

1000

1 10 100 1000

D
(s

)

s - Size of Avalanche

Fig. 2. Frequency D(s) as a function the size of avalanche for Ns = 1 and T = 15 s

1

10

100

1000

1 10 100 1000

D
(s

)

s - Size of Avalanche

Fig. 3. Frequency D(s) as a function of the size of avalanche for Ns = 3 and T = 15 s

be noted (Fig. 3). Presumably, it is the result of the correlation of spike potentials
occurring on neurons that are situated near the centre of the net. Their work is
both highly regular and synchronised with the central neuron receiving impulses
from the outside. Despite this, a quite good agreement with the above-mentioned
law could be observed that improves as the number of connections in the system
increases (Ns = 6). A very clear transitional area could be distinguished that
disappears as the net becomes more complex (Fig. 4).

Supposedly, the avalanches of a very large size do not obey the power law, ei-
ther (Figs. 5,6). In this case, however, it can be easily rationalised as the avalanches
appear very rarely (no more than several times during the entire simulation). Con-
sequently, an agreement with the law of the SOC should not be expected there.
We also suggest that with an increased degree of complexity and longer working
time of the system, the law Eq. (1) would be obeyed more closely.

Self-organised Criticality in a Model of the Rat Somatosensory Cortex 473

1

10

100

1000

1 10 100 1000

D
(s

)

s - Size of Avalanche

Fig. 4. Frequency D(s) as a function of the size of avalanche for Ns = 6 and T = 15 s

1

10

100

1000

1 10 100 1000

D
(s

)

s - Size of Avalanche

Fig. 5. Frequency D(s) as a function of the size of avalanche for Ns = 9 and T = 15 s

1

10

100

1000

1 10 100 1000

D
(s

)

s - Size of Avalanche

Fig. 6. Frequency D(s) as a function of the size of avalanche for Ns = 12 and T = 15 s

474 G.M. Wojcik, W.A. Kaminski, and P. Matejanka

4 Conclusions

In this paper we report results of rat somatosensory cortex simulations. The
modular structure of the cortex makes possible the application of good paralleli-
sation as the particular zones can be simulated on separate nodes. Our model is
scalable and we can easily increase the number of neurons in each zone which
lets us run simulations consisting of even more than 256 thousand HH neurons
on the local cluster. This helps us build more realistic models of a mammalian
cortex. Most of the discussed simulations were conducted on the local cluster.
The cluster is part of the CLUSTERIX grid project [13]. With access to 800 pro-
cessors and by increasing the number of simulated zones and neurons, a structure
consisting of several millions of neural cells simulated in a similar way can be
imagined.

Initially we simulated about 2000 of the HH neurons. Some biologically-
inspired topology was arranged and results proved that processes pertinent to
complex systems characterised by a critical state take place. In particular, such
systems follow a simple, empirical power principle that is known from other
phenomena in Nature. Nevertheless, in the planned experiments we are going
to investigate theoretically the biological reasons for such a behaviour. A good
theoretical and experimental understanding of self-organisation of brain micro-
circuits may result in new field of computational neuroscience research.

Acknowledgements

This work has been supported by the Polish State Committee for Scientific Re-
search under the grant number N519 017 32/2120. The initial stage of paralleli-
sation has been performed within the HPC-EUROPA Project (RII3-CT-2003-
506079), with the support of the European Community - Research Infrastructure
Action within the FP6 Structuring the European Research Area Programme.
The author (GMW) would like to thank the EPCC and HPC-Europa organisa-
tion, especially his hosts: Prof. L. Smith, Dr. B. P. Graham and Dr. M. Hennig
of Stirling University, Scotland.

References

1. Bak, P.: How nature works: The Science of Self-Organised Criticality. Copernicus
Press, New York (1996)

2. Bower, J.M., Beeman, D.: The Book of GENESIS - Exploring Realistic Neural
Models with the GEneral NEural SImulation System. Telos, New York (1995)

3. Jensen, H.J.: Self Organizing Criticality. Cambridge University Press, Cambridge
(1998)

4. Aegerter, C.M., Gnther, R., Wijngaarden, R.J.: Avalanche dynamics, surface
roughening, and self-organized criticality: Experiments on a three-dimensional pile
of rice Phys. Rev. E 67 (2003) 051306

5. Bak, P., Christensen, K., Danon, L., Scanlon, T.: Unified Scaling Law for Earth-
quakes Phys. Rev. Lett. 88 (2002) 178501

Self-organised Criticality in a Model of the Rat Somatosensory Cortex 475

6. Bak, P., Tang, C., Wisenfeld, K.: Self-organized criticality: An explanation of the
1/f noise Phys. Rev. Lett. 59, 381–384 (1987)

7. Garcia-Lazaro, J.A., Ho, S.S.M., Nair, A., Schnupp, J.W.H: Adaptation to Stimu-
lus in Rat Somatosensory Cortex. FENS Abstr. 3, A109.4 (2006)

8. Lubeck, S.: Crossover phenomenon in self-organized critical sandpile models Phys.
Rev. E 62, 6149–6154 (2000)

9. Hodgkin, A.L., Huxley, A.F.: A Quantitative Description of Membrane Current and
its Application to Conduction and Excitation in nerve. J. Physiol. 117, 500–544
(1952)

10. Paczuski, M., Bassler, K.E.: Theoretical results for sandpile models of self-
organized criticality with multiple topplings Phys. Rev. E. E 62, 5347–5352 (2000)

11. Pastor-Satorras, R., Vespignani, A.: Corrections to scaling in the forest-fire model
Phys. Rev. E 61, 4854–4859 (2000)

12. Yang, X., Du, S., Ma, J.: Do Earthquakes Exhibit Self-Organized Criticality? Phys.
Rev. Lett. 92 (2004) 228501

13. CLUSTERIX - The National Cluster of Linux Systems:
http://www.clusterix.pcz.pl

14. The GENESIS compiled for Linux MPI: http://complex.umcs.lublin.pl/
gmwojcik/modgenesis4mpi.tgz

15. The Rat Somatosensory Pathway: http://www.bris.ac.uk/Depts/Synaptic/
info/pathway/somatosensory.htm

16. A definition of an SOC: http://www.wikipedia.org

Appendix A: Details of the Hardware and Software
Environment of the Simulations

The local cluster used for all the simulations was built of 13 machines including
one special machine - the so-called ”access node”. Each SMP machine had two
64-bit 1.4 GHz Itanium2 IA64 processors with 4 GB of RAM memory. The
cluster works under control of Debian Linux Sarge (v. 3.1) and 2.6.8-1 kernel
version. The model is simulated in GEneral NEural SImulation System GENESIS
v.2.2.1 with its MPI extension. A gcc compiler was used for the general system
configuration. The compilation of GENESIS for Linux MPI required some tuning
of its code and can be found in [14].

The length of a typical run for Ns = 1 and T = 15 s was about 12000 s.
(3.3 hours) when the problem was parallelised for 15 nodes. Some benchmarking
was done for the parallelisation. For the discussed simulations the speedup of
2.8 if compared to 3-processor run was obtained. At the first sight it is not
very optimistic, however, for networks with Ns > 6 simulation on one SPARC
400 MHz node takes longer than three weeks.

Appendix B: Properties of HH Neurons

Our model consisted of multicompartmental neurons with two dendrite compart-
ments, a soma and an axon. The dendrites contained a synaptically activated
channel and the soma had voltage activated HH sodium and potassium channels.

http://www.clusterix.pcz.pl
http://complex.umcs.lublin.pl/gmwojcik/modgenesis4mpi.tgz
http://complex.umcs.lublin.pl/gmwojcik/modgenesis4mpi.tgz
http://www.bris.ac.uk/Depts/Synaptic/info/pathway/somatosensory.htm
http://www.bris.ac.uk/Depts/Synaptic/info/pathway/somatosensory.htm
http://www.wikipedia.org

476 G.M. Wojcik, W.A. Kaminski, and P. Matejanka

The behaviour of each compartment was equivalent to the behaviour of some
electrical circuit [2]. Thus, each circuit was characterised by a typical for GEN-
ESIS group of parameters set as follows: resistances Ra = 0.3 Ω, Rm = 0.33 Ω,
capacity Cm = 0.01 F, and potential Em = 0.07 V. For the soma compartment
Ek = 0.0594 V and for the dendrite Ek = 0.07 V. Conductance for each type of
ionic channels was chosen to be: GK = 360 Ω−1 and GNa = 1200 Ω−1. These
parameters originated from neurophysiological experiments [2] and were chosen
to make the model biologically more realistic. The soma had a circular shape
with the diameter of 30 μm, dendrites and axon were cable-like with the length
of 100 μm. All the other parameters were chosen as suggested by GENESIS au-
thors to simulate the behaviour of the biological-like neurons [2]. More details
concerning the HH model can be found elsewhere [2], [9].

Control of Fuzzy Cellular Automata: The Case

of Rule 90

Samira El Yacoubi1 and Angelo B. Mingarelli2

1 MEPS/ASD - University of Perpignan
52, Paul Alduy Avenue, 66860 Perpignan, Cedex, France

yacoubi@univ-perp.fr
http://www.univ-perp.fr/see/rch/cef/index.html

2 School of Mathematics and Statistics, Carleton University,
Ottawa, Canada, K1S 5B6

amingare@math.carleton.ca
http://www.math.carleton.ca/∼amingare/

Abstract. This paper is dedicated to the study of fuzzy rule 90 in rela-
tion with control theory. The dynamics and global evolution of fuzzy rules
have been recently investigated and some interesting results have been
obtained in [10,15,16]. The long term evolution of all 256 one-dimensional
fuzzy cellular automata (FCA) has been determined using an analytical
approach. We are interested in this paper in the FCA state at a given
time and ask whether it can coincide with a desired state by controlling
only the initial condition. We investigate two initial states consisting of
a single control value u on a background of zeros and one seed adjacent
to the controlled site in a background of zeros.

Keywords and Phrases: control, fuzzy, cellular automata, Rule 90.

1 Introduction

Control theory is the area of application-oriented mathematics that deals with
the basic principles underlying the analysis and design of control systems. It
states that systems behavior is caused by a response to an outside stimulus and
may be influenced so as to achieve a desired goal.

A wide literature has been devoted to the control of dynamical continuous
(discrete) time systems in both finite and infinite dimensional cases, [2,5,13,14].
These systems have been studied in terms of inputs and outputs using classical
approaches based on ordinary/partial differential equations or integral equations.
However, the complexity of real world systems leads to serious difficulties both
in control theory and in the model implementation.

New approaches based on cellular automata (CA) and their variants are pre-
sented as a good alternative. They constitute very promising tools for describing
complex natural systems in terms of local interactions between a large number
of identical components.

CA in their classical form are autonomous systems. An appropriate way to
introduce control in these models to make them more useful in systems theory

V. Malyshkin (Ed.): PaCT 2007, LNCS 4671, pp. 477–486, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

478 S. El Yacoubi and A.B. Mingarelli

has been given in [6]. Some concepts related to the control theory (regional
controllability, identification, spreadability) has been studied mainly in the case
of additive CA [7,8,9]. However, the problem of obtaining analytical results is
still posed.

We investigate in this paper the case of fuzzy CA as a real-valued version of
CA which seems to provide best results regarding the control problems. Fuzzy
CAs are an attempt to perform the reverse process; i.e., to start from a CA and
“fuzzify” the disjunctive normal form which describes its rule [3]. Introduced to
study the impact that state-discretization has on the behavior of these systems,
they have been used to investigate the result of perturbations (e.g. noisy sources,
computation errors, mutations, etc.) on the evolution of Boolean CA [11]. In this
sense, this continuous-state CA model is a particular case of coupled map lattices
(CML) [1].

For the control issue, one consider a system on a time interval [0, T] and
ask whether some particular target state is reachable starting from a specific
initial condition. Its defined on a background of zeros and consisting first, of an
unknown single value (the control value) and then on a single seed adjacent to
a controlled site.

We specifically study rule 90 because of its symmetry, additivity and some
intricate features.

2 Basic Definitions

2.1 Cellular Automata Approach

A cellular automaton is a collection of cells arranged on a graph. All cells share
the same local space (i.e., the set of values cells range in), the same neighborhood
structure (i.e., the cells to which a cell is connected), and the same local func-
tion (i.e., the function defining the effect of neighbors on each cell, also called
transition function or rule). The global evolution is defined by the synchronous
update of all values according to the local function applied to the neighborhood
of each cell. A configuration of the automaton is a state of all lattice cells [19].

Furthermore, CA were one of the first parallel computing abstract mod-
els. Conceived by John von Neumann [17] in the 1950’s to investigate self-
reproduction, CA have been mainly used for studying parallel computing meth-
ods and the formal properties to model systems.

Given a linear bi-infinite lattice of cells, the local Boolean space {0, 1}, the
neighborhood structure 〈 left neighbor, itself, right neighbor 〉, and a local rule
g : {0, 1}3 −→ {0, 1}, the global dynamics of an elementary CA is defined by:

f : {0, 1}Z −→ {0, 1}Z

∀i ∈ Z, f(x)i = g(xi−1, xi, xi+1).

The local rule is defined by the 8 possible local configurations a cell can detect
in its direct neighborhood:

(000, 001, 010, 011, 100, 101, 110, 111)→ (r0, · · · , r7),

Control of Fuzzy Cellular Automata: The Case of Rule 90 479

where each triplet represents a local configuration of the left neighbor, the cell
itself, and the right neighbor. In general, the value

∑
i=0:7 2iri is used as the

name of the rule. The local rule of any Boolean CA is canonically expressed as
a disjunctive normal form:

g(x1, x2, x3) = ∨i|ri=1 ∧j=1:3 x
dij

j

where dij is the j-th digit, from left to right, of the binary expression of i, and
x0 (resp. x1) stands for ¬x (resp. x).

2.2 Fuzzy Cellular Automata

The initial string now consists of a set of fuzzy states, that is a collection of
arbitrary but fixed real numbers in the closed interval [0, 1]. Inherent in this
procedure is the fact that fuzzification allows one to move from the discrete
(boolean) to the continuous (fuzzy) by extending the domain of definition of the
rule. We describe such a method of fuzzifying a rule herewith, the source of which
is in [3]. Our fuzzification is somewhat natural as we will see next. Throughout,
we adopt the terminology from Flocchini et al, [10].

Definition 1. In this paper a CFMS CA, or “fuzzy” CA for brevity, is obtained
by fuzzification of the local function of a given boolean CA as follows: In the
DNF we redefine for real numbers a, b ∈ [0, 1], the quantities (a∨b) to be (a+ b),
(a∧b) to be (ab), and (¬a) to be (1−a). In other words, a∨b = a+b, a∧b = a ·b,
and ¬a = 1 − a, where + and “·” are ordinary addition and multiplication of
real numbers.

Example 1. Since 90 = 21 + 23 + 24 + 26 we see that the rule number, 90 =
∑7

i=0 ri 2i, forces ri = 1 only for i = 1, 3, 4, 6. Use of the disjunctive normal form
expression above gives us

g90(x1, x2, x3) = ∨i|ri=1 ∧3
j=1 x

dij

j ,

= (xd11
1 ∧ xd12

2 ∧ xd13
3) ∨ (xd31

1 ∧ xd32
2 ∧ xd33

3) ∨ (xd41
1 ∧ xd42

2 ∧ xd43
3)

∨(xd61
1 ∧ xd62

2 ∧ xd63
j),

= (x0
1 ∧ x0

2 ∧ x1
3) ∨ (x0

1 ∧ x1
2 ∧ x1

3) ∨ (x1
1 ∧ x0

2 ∧ x0
3) ∨ (x1

1 ∧ x1
2 ∧ x0

3),

= (¬x1 ∧ ¬x2 ∧ x3) ∨ (¬x1 ∧ x2 ∧ x3) ∨ (x1 ∧ ¬x2 ∧ ¬x3) ∨
∨(x1 ∧ x2 ∧ ¬x3) (1)

= (1 − x1)(1 − x2)x3 + (1 − x1)x2x3 + x1(1 − x2)(1 − x3) +

x1x2(1 − x3),

= x1 + x3 − 2x1x3. (2)

Note that in “fuzzifying” the DNF (1), we replaced ¬x by 1−x, x∨y by x+y,
and x∧ y in (1) by their product, xy, so as to find the fuzzy form (or rule) given
by (1) or equivalently (2), in accordance with the fuzzification process defined
above. In this case, the local rule maps the triples of zeros and ones as follows:

000, 001, 010, 011, 100, 101, 110, 111→ 0, 0, 1, 1, 1, 0, 1, 0.

480 S. El Yacoubi and A.B. Mingarelli

Thus, (boolean) rule 90 is given by (1) above while fuzzy rule 90, given by (2),
may be written as

g90(x, y, z) = x+ z − 2xz,

for any value of (x, y, z) ∈ [0, 1]3.

3 Control of Fuzzy Rule 90

3.1 The Case of a Single Controlled Cell in Zero Backgrounds

CA have been extensively used as a modelling tool to approximate nonlinear
discrete and continuous dynamical systems in a wide range of applications.

However the inverse problem of determining the CA that satisfies some spec-
ified constraints has received little attention. An interesting inverse problem is
to find an appropriate CA rule capable of steering a given system from an initial
state to a desired configuration during a time horizon T . If the rule has the
form : st+1 = Fu(st, ut), the problem is usually referred to as the controllability
problem, consists in finding a control u = (u0, u1, · · · , uT−1) in an appropriate
control space such that, for some T ≥ 0,

s(T) = Sd

where Sd is a desired state, given in a suitable space of reachable states.
An example of a controllability problem with CA models has been considered

in a previous work [7], but only from a numerical point of view. The approach
used is based on genetic programming techniques in the case of additive CA.
The results obtained are quite promising and stimulate further research in this
direction.

Controllability is related to the possibility of forcing the system into a partic-
ular state by using an appropriate control signal. In this work we consider the
case where the signal is applied only at t = 0 so as to influence only the initial
state in order to achieve a desired state at time T .

In this analysis all cells but one are initially set to 0. For example, starting
from a single value a = 1

8 in a zero background, the space-time diagram is
represented in Table 1. Generally speaking we note that, for any a ∈ [0, 1], we
have g(x, •, a) = g(a, •, x) = a+ x(1− 2a). We give the following definitions :

Definition 2. The spatio-temporal diagram (or space-time diagram) from an
initial configuration x0 is the double sequence (xt

i) where i, t ∈ N, t denotes time
steps, and i denotes cell indices.

Definition 3. The light cone from a cell xt
i is the set {xt+p

j | p ≥ 0 and j ∈
{i− p, · · · , i+ p}}.

In [10] the authors proved the following interesting result (Proposition 1 below)
which we will make use of in various parts in the sequel. Let

f(t, i) =
(
t

t+i
2

)

, where
(
a
b

)

=
a!

b!(a− b)! .

Control of Fuzzy Cellular Automata: The Case of Rule 90 481

Table 1. Evolution from 1
8 in a zero background

Local states
Time · · · −3 −2 −1 0 1 2 3 · · ·

0 · · · 0 0 0 1
8 0 0 0 · · ·

1 · · · 0 0 1
8 0 1

8 0 0 · · ·
2 · · · 0 1

8 0 7
32 0 1

8 0 · · ·
3 · · · 1

8 0 37
128 0 7

32 0 1
8 · · ·

4 · · · 0 175
512 0 . . . 0 175

512 0 · · ·
...

...

Proposition 1. The spatio-temporal diagram from a single value a ∈ [0, 1] in a
zero background is given explicitly by: ∀t ∈ N,

xt
i =

{
1
2 (1− (1 − 2a)f(t,i)) if t+ i is even and i ∈ {−t, · · · , t}
0 otherwise

We motivate our result with the following question: Given a cell i, t and a
desired value A ∈ (0, 1], can one find a real control u which acts at t = 0
such that the light-cone from u has the property that xt

i = A?

Theorem 1. Given a cell i, t, with i ∈ {−t, · · · , t}, and cell value A, there exists
a control u ∈ [0, 1] such that, in a homogeneous background of zeros, we have
that xt

i = A. Such a control is given explicitly as follows:

– If 0 ≤ A ≤ 1/2, and t+ i is even, we choose u = (1− (1− 2A)1/f(t,i))/2,
– If 1/2 ≤ A ≤ 1, t+ i is even and f(t, i) is odd, we can choose u = (1+(2A−

1)1/f(t,i))/2,
– If either f(t, i) is even or t+ i is odd then no such control exists.

Proof: For 0 ≤ A ≤ 1/2 and t + i an even number, xt
i = (1 − (1 − 2u)f(t,i))/2

by Proposition 1. By assumption, 1 − 2A ≥ 0 and xt
i = A, thus 1 − 2u =

(1 − 2A)1/f(t,i) and the first claim follows. For 1/2 ≤ A ≤ 1 and t + i even, we
note that (2A− 1)f(t,i) = −(1− 2A)f(t,i) since f is odd. Thus, as before, we can
choose u as u = (1 + (2A − 1)1/f(t,i))/2. The last claim follows since u cannot
be real if f(t, i) is even and A = 0 if t+ i is odd, each of which is excluded from
the discussion.

3.2 Case of a Controlled Cell with a Single Seed in a Zero
Background

We consider the case where the initial string consists of two cells, one of which
is the control, in a background of zeros. The discussion is now complicated by
the fact that at each cell value xt

i the value A is generally a polynomial of high
degree in u. Thus, the finding of a control requires showing that the polynomial
equation xt

i = A has a real root u ∈ (0, 1].

482 S. El Yacoubi and A.B. Mingarelli

The procedure involves as a basis the technique described in detail in [15]. In
this case we define the initial point x0

0 = u as the unknown control variable, and
x0

1 = a where a ∈ (0, 1) is fixed but otherwise arbitrary. All other entries in the
initial string are set initially to zero. Now consider the left diagonals L−

k : these
are the sequences defined by {xj+k

−j }∞j=0. Thus, in Table 1 the main left diagonal
L−

0 consists of the sequence {1/8, 1/8, . . .}, the diagonal L−
2 forms the sequence

{7/32, 37/128, 175/512, . . .} and so on. As is shown in [10] and more generally in
[15] in the two-seed case we are considering here, these left-diagonal sequences
all converge to 1/2, that is, for each k ≥ 0, the sequence xj+k

−j → 1/2 as j →∞.
We consider the earlier problem of determining given a cell i, t and a desired

value A ∈ (0, 1], whether one can find a real control u such that the light-cone
from u has the property that xt

i = A? To set the framework for the discussion
that follows we consider the Table below, Table 2, where only the evolution to
the left of the initial cell is displayed.

Table 2. Evolution from a controlled cell and one seed in a zero background

· · · −3 −2 −1 0 1

0 · · · 0 0 0 u a
1 · · · 0 0 u a 0
2 · · · 0 u a 2u − 2u2 · · ·
3 · · · u a 4u3 − 6u2 + 3u 4a3 − 6a2 + 3a · · ·
4 · · · a 4u − 12u2 + 16u3 − 8u4 · · · · · · · · ·
...

...

To begin with we determine whether elements A in the second left diagonal
(the one beginning with 2u − 2u2) can be reached by means of a real control
u ∈ (0, 1). The first such result follows:

Lemma 1. Consider the cell value xj+2
−j where j ≥ 0 is arbitrary but fixed.

Then there is a control u such that the light cone from u contains the cell value
xj+2
−j = A if either j + 2 is even and A ∈ [0, 1/2] or j + 2 is odd and A ∈ [0, 1].

In fact, the controls can be chosen as follows:

u =

⎧
⎨

⎩

1
2 (1± (1− 2A)1/(j+2))/2 if j + 2 is even and A ∈ [0, 1/2]

1
2 (1− (1− 2A)1/(j+2))/2 if j + 2 is odd and A ∈ [0, 1]

Finally, xj+2
−j = A is not reachable by a real control if j+ 2 is even and A > 1/2.

Proof: Let j = 0. Now, x2
0 = A = 2u−2u2 has the roots u = (1+(1−2A)(1/2))/2

and u = (1−(1−2A)(1/2))/2, both real and less than 1 (u is real only if A ≤ 1/2).
Thus, if A ∈ [0, 1/2], either root is a possible control and no real control exists
if A > 1/2.

Control of Fuzzy Cellular Automata: The Case of Rule 90 483

The case j = 1: In this case, x3
−1 = 3u − 6u2 + 4u3 and we note that, for any

A ∈ [0, 1/2], a direct calculation shows that 3u− 6u2 + 4u3 = A admits the root
u = (1 − (1 − 2A)1/3)/2, with u ∈ [0, 1/2]. For A ∈ [1/2, 1] the root is given by
the same value, since we take into account the relation that (1−(1−2A)1/3)/2 =
(1 + (2A− 1)1/3)/2. In either case, our u ∈ [0, 1].

The case j ≥ 2: We observe that, by definition, x4
−2(u) = u+ (1− 2u)x3

−1(u),
where the explicit dependence of x3

−1 and the left side on u is noted. Since
x3
−1((1 − (1 − 2A)1/3)/2) = A holds for every appropriate value of A, it follows

that x3
−1(u) = ((2u− 1)3 + 1)/2. It follows that

x4
−2(u) = u+ (1− 2u)x3

−1(u)
= u+ (1− 2u)((2u− 1)3 + 1)/2
= 1/2− (2u− 1)4/2,

and so x4
−2(u) = A as well for u = (1− (1 − 2A)1/4)/2 and A ≤ 1/2. Note that

the rest of the argument can now proceed by induction on the (left) column
number j.

This said, let xj+2
−j (u) = u + (1 − 2u)xj+1

−j+1(u), where xj+1
−j+1(u) = A for

u = (1− (1−2A)1/(j+1))/2 for j = 0, 1, 2, . . . , k−1. Then, as before, xj+1
−j+1(u) =

(1 − (1 − 2u)j+1)/2 for j = 0, 1, 2, . . . , k − 1. As before, we now see that for
j = k − 1,

xk+1
−k+1(u) = u+ (1− 2u)xk

−k+2(u)

= u+ (1− 2u)(1− (1− 2u)k)/2
= (1− (1− 2u)k+1)/2,

which is our statement for j = k. Therefore, for any j (even or odd)

xj+2
−j (u) = (1 − (1− 2u)j+2)/2

From this we see that xj+2
−j = A for u = (1− (1− 2A)1/(j+2))/2. The remaining

case where j + 2 is even and there is the additional control u = (1 + (1 −
2A)1/(j+2))/2 is similar and so is omitted. This concludes the proof of the lemma.

Lemma 2. Consider the fourth diagonal, L4, consisting of cells of the form
xj+3
−j where j ≥ 0 is arbitrary but fixed. Then there is NO real control u such

that xj+3
−j = A unless A = (1− (1− 2a)j+3)/2.

Proof: An easy induction argument shows that, for any initial seeds u, a, xj+3
−j =

(1− (1− 2a)j+3)/2. The result follows.

In order to handle the general case we need to relate the degree of the general
polynomial in u in the i, j-cell to the cell itself and its value. We observe that
whenever k is odd, then xj+k

−j consists of powers of a only, that is, the polynomial
is independent of u, in which case a result similar to the one in Lemma 2 above
holds.

484 S. El Yacoubi and A.B. Mingarelli

Theorem 2. Cells of the form xj+k
−j , where k > 0 is odd and j ≥ 0 is arbitrary

but fixed, are independent of u. So, generally, there is no real control u such that
xj+k
−j = A unless A takes on a specific a-value also dependent upon k.

Proof: Consider for example, the case k = 3, that is, xj+3
−j with j = 0. Since

x3
0 = a + x2

1 − 2ax2
1 and x2

1 = 2a − 2a2, it follows that x3
0 is a function of a

alone. Next, by definition, for j = 1, x4
−1 = a + x3

1 − 2ax3
1 and since x3

1 is a
function of a alone as we have shown then so is x4

−1. The general result, that
xj+3
−j is independent of a, now follows by a straightforward induction argument on

the column number. Next, a moment’s notice shows us that a similar induction
argument also gives us that for k odd, xk

0 is independent of u (since the cell values
xk−1
−1 , xk−1

1 are independent of u). Once it is known that xk
0 is independent of

u it follows using an argument similar to the case where k = 3 that xj+k
−j is

independent of u.

To determine some of these exceptional A-values we note that by the proof of
Lemma 2, xj+3

−j = (1− (1− 2a)δ(j,3))/2, for every j ≥ 0 where

δ(j, 3) = j + 3.

In addition, x5
0 = (1− (1− 2a)9)/2, x6

−1 = (1− (1− 2a)14)/2, etc. Generally, one
can show by induction that xj+5

−j = (1− (1 − 2a)δ(j,5))/2, where

δ(j, 5) = 8 + 3j + (j + 1)(j + 2)/2,

for every j ≥ 0. Expressions are more complicated for xj+k
−j with k ≥ 7, but they

are of the form xj+k
−j = (1 − (1 − 2a)δ(j,k))/2, where δ is given by solving the

recurrence relation δ(j, 7)− δ(j − 1, 7) = δ(j + 1, 5). Solving this gives

δ(j, 7) = 9 j + 25 + (j + 1) (j + 2) (j + 3) /6 + 2 (j + 1) (j + 2)

for every j ≥ 0.Generally, δ(j, k) for odd k ≥ 9, k = 2m+1, involves a polynomial
of degree m arising from linear combinations of various binomial coefficients. It
can be found recursively using the methods adopted above.

Remark 1. Insight into the method for obtaining the degree of xj+k
−j where k ≥ 0

is even can be extracted from the case where k = 2 above; for simplicity we write
down the result for k = 4 below. Once again, the number of controls depends
on various parity considerations, but whenever k is even there is always at least
one control for any cell value A ∈ [0, 1/2].

Lemma 3. For the left diagonal xj+4
−j where j ≥ 0 is arbitrary but fixed, there

is at least one control u such that the light cone from u contains the cell value
xj+4
−j = A. The control can be chosen as

u = 1/2− (1− 2A)1/δ(j,4)/2

Control of Fuzzy Cellular Automata: The Case of Rule 90 485

when A ∈ [0, 1/2] and

δ(j, 4) = 4 + 2j + (j + 1)(j + 2)/2 =
(
k + 4

4
2

)

− 1,

so that δ and d agree for even k.

Thus, the only cases where some form of controllability may arise are those in
which k > 0 is even. In these cases where k is even, we have that for any j ≥ 0,

deg xj+k
−j =

(
j + k

k
2

)

− 1 = δ(j, k).

4 Concluding Remarks

The work presented in this paper is related to the most general problem of
control theory using Cellular Automata models. We attempted to solve it in
a special yet more complicated case where the control acts only at the initial
state.

A current study considers the case of finding a control vector u = (u0, u1,
· · · , uT−1) which forces the system during the discrete time interval {0, 1, T −1}
at a localized cell in both zero background and a single seed on a zero background
cases. The space-time diagram is then of the form:

· · · −3 −2 −1 0 1

0 · · · 0 0 a u0

1 · · · 0 0 a u0 u1

2 · · · 0 a u0 . u2

· · ·
...

...
T − 1 · · · uT−1

T · · · A−3 A−2 A−1 A0 .

and the problem is to reach a state (· · · , 0, 0, xT
−T , · · · , xT

−1, x
T
0) which coincides

with a desired one A at time T .
Finally, regarding the results obtained in this paper, some transformations

and operations on the rules (which preserve qualitative and/or quantitative dy-
namic properties) could be used to extend the class of rules to which our method
applies. In fact, building homomorphisms between known and new systems, com-
posing known rules to obtain new ones, and combining individual properties to
get homomorphically global ones, the methods described in this paper can be
applied, with minor modifications, to the Fuzzy Rules 60, 102, 153, 165, and 195
where we find similar convergence and control properties.

486 S. El Yacoubi and A.B. Mingarelli

References

1. Bunimovich, L.A.: Coupled Map Lattices: one Step Forward and two Steps Back.
Physica D 86, 248–255 (1995)

2. Callier, F.M., Desoer, C.A.: Linear System Theory. Springer, Heidelberg (1991)
3. Cattaneo, G., Flocchini, P., Mauri, G., Santoro, N.: Cellular automata in fuzzy

backgrounds. Physica D 105, 105–120 (1997)
4. Culik II, K., Yu, S.: Undecidability of CA classification schemes. Complex Sys-

tems 2, 177–190 (1988)
5. Curtain, R.F., Zwart, H.: An introduction to Infinite-dimensional linear systems

theory. Springer, Heidelberg (1995)
6. El Yacoubi, S., El Jai, A.: Notes on control and observation in Cellular automata

models. WSEAS Transaction on Computers 2(4), 1086–1092 (2003)
7. El Yacoubi, S., El Ja, A., Ammor, N.: Regional controllability with cellular au-

tomata models. In: Bandini, S., Chopard, B., Tomassini, M. (eds.) ACRI 2002.
LNCS, vol. 2493, pp. 357–367. Springer, Heidelberg (2002)

8. El Yacoubi, S., El Jai, A.: Cellular Automata and Spreadability. Journal of Math-
ematical and Computer Modelling 36, 1059–1074 (2002)

9. El Yacoubi, S., Jacewicz, P.: A genetic programming approach to structural iden-
tification of cellular automata models. Journal Of Cellular Automata (to appear)

10. Flocchini, P., Geurts, F., Mingarelli, A., Santoro, N.: Convergence and aperiodicity
in fuzzy cellular automata: revisiting rule 90. Physica D 42, 20–28 (2000)

11. Flocchini, P., Santoro, N.: The chaotic evolution of information in the interaction
between knowledge and uncertainty. In: Stonier, R.J., Yu, X.H. (eds.) Complex
Systems: Mechanism of Adaptation, pp. 337–343. IOS Press, Amsterdam (1994)

12. Lasiecka, I., Triggiani, R.: Control Theory for Partial Differential Equations- Con-
tinuous and Approximation Theories. Cambridge University Press, Cambridge
(2000)

13. Lee, K.Y., Chow, S., Barr, R.O.: On the control of discrete-time distributed pa-
rameter systems. Siam J. Control 10(2) (1972)

14. Lions, J.L.: Contrôle optimal de systèmes gouvernés par des équations aux dérivées
partielles, Dunod et Gauthier- Villars, Paris (1968)

15. Mingarelli, A.B.: The global evolution of general fuzzy cellular automata. J. Cel-
lular Automata 1(2), 141–164 (2006)

16. Mingarelli, A.B., El Yacoubi, S.: On the decidability of the evolution of the fuzzy
cellular automata, FCA 184. In: Alexandrov, V.N., van Albada, G.D., Sloot,
P.M.A., Dongarra, J.J. (eds.) ICCS 2006. LNCS, vol. 3993, pp. 360–366. Springer,
Heidelberg (2006)

17. Von Neumann, J.: Theory of Self-Reproducing Automata. University of Illinois
Press, Urbana (1966)

18. Sontag, E.D.: Mathematical Control Theory: Deterministic Finite Dimensional Sys-
tems, 2nd edn. Springer, New York (1998)

19. Wolfram, S.: Cellular Automata and Complexity. Collected Papers. World Scien-
tific, Singapore (1994)

V. Malyshkin (Ed.): PaCT 2007, LNCS 4671, pp. 487–495, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Intensive Atmospheric Vortices Modeling Using High
Performance Cluster Systems

A.I. Avetisyan, V.V. Babkova, S.S. Gaissaryan, and A.Yu. Gubar

Institute for System Programming RAS
109004, Russia, Moscow, B. Kommunisticheskaya, 25

{arut,barbara,ssg}@ispras.ru, parkAG@yandex.ru
http://www.ispras.ru/groups/ctt/parjava.html

Abstract. The goal of the paper is development of a scalable parallel program
calculating the numerical solution of the system of equations modeling the
processes and origin conditions of intensive atmospheric vortices (IAV) in 3D
compressible atmosphere according to the theory of mesovortice turbulence by
Nikolaevskiy. Original system of non-linear equations, and its initial and
boundary conditions are discussed. The structure of a parallel program for high
performance cluster is developed. The problems concerning to optimization of
the program in order to increase its scalability are studied. In summary the
results of numerical computations are discussed.

1 Inroduction

Presently the parallel programming became conventional, and scientists have an
opportunity to verify their ideas and models concerned with large computational
expenses. In this paper we discuss a scalable parallel program calculating numerical
solution of non-linear system of equations, modeling the processes and origin
conditions of intensive atmospheric vortices (IAV) in 3D compressible atmosphere
according to the theory of mesovortice turbulence by Nikolaevskiy. The system of
equations was obtained in [1,2] and is a strongly non-linear system of the mixed type.
The program was developed in the Institute for System Programming RAS in
collaboration with the Institute of Physics of Earth RAS using ParJava environment
and is intended to be executed using high-performance clusters.

2 ParJava

Integrated ParJava Environment [3] was designed and implemented in ISP RAS and
is intended to support development and maintenance of data-parallel programs.
Assurance of program’s efficiency and scalability needs additional tuning of a
program to detect and remove possible bottlenecks preventing to achieve needed level
of its scalability. It is very useful to know program’s dynamic properties (profiles,
traces, slices, etc.) when it is tuned. However the analysis of the program’s dynamic
properties usually is coupled with necessity of numerous executions of a parallel
program on the target computing system (high-performance cluster).

488 A.I. Avetisyan et al.

The ParJava Environment provides an original mechanism of interpretation of a
parallel program allowing to obtain precise estimates of the parallel program’s
dynamic properties. The advantage of the interpretation vs. execution of a program is
that the former is made using instrumental computer (PC or Workstation) instead of
the target computing system (high-performance cluster). It essentially reduce the price
and precipitates the development and modifying of parallel applications. +

ParJava Integrated Environment is installed on ISP RAS cluster, as well as on
high-performance clusters in JSCC RAS and RCC MSU. ParJava Environment is
used in education process on system programming departments in MSU and MIPT.

One of advantages of ParJava Environment is that a parallel program developed
using this environment can be executed using an arbitrary scalable computing system
without any modifications or transformations preserving its scalability. It removes
many problems concerning the distribution of parallel programs.

3 Mathematical Model and Computational Implementation

With dry-adiabatic atmosphere hypothesis accepted [5], from the basic theory of
mesoscale turbulence [6], one can derive the following set of equations of motions of
the air, which are conservation laws for mass, impulse, moment of inertia and angular
momentum:

)(03 Div+aU
dt

ad
z−=

′
 (1)

i
ikjijk

jij
i

i
i

X

a
caagfAA

+U
X

Div
UfA=

dt

dU

∂
′∂−′+′⋅+

+
∂

∂+Δ

2
32

1

)2.01(4.0][ˆ

))((

δωε

ϕ
 , (2)

)(4
j

j X

J
JfA=

dt

dJ

∂
∂ϕ+Δ , (3)

][ˆ2)()(32433 JA
J

g
A

X

J

X

F
AA

J

f

X

F
FfA=

dt

dF
jiji

jj

i

j

i
ji

i ε−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
ω−

∂
∂

∂
∂++

∂
∂ϕ+Δ , (4)

where i, j = 1, 2, 3, the axis z = X3 is directed upwards; Ui is the wind velocity,

,
i

i

X

U
Div

∂
∂

=
2

2

iX∂
∂=Δ ; ,

i
i X

U
tdt

d

∂
∂+

∂
∂=)()/ln(00 zaa −ρρ= is the perturbation

of the air density logarithm,)1ln(
2

5
)(0 zza aγ−= ,

0TC

g

p
a =γ ,

1005
2

7 ≈= ap RC J/(kg K) is the specific heat capacity [5], T0 and ρ0 are the

temperature and the density at t = 0, z = 0, g is the gravity acceleration,

 Intensive Atmospheric Vortices Modeling Using High Performance Cluster Systems 489

0

)(
ω

ω+ω=ω= bkff , ω0 and bkω are initial and background mesovorticities, Aj are

initial values of coefficients of turbulent viscosity [1]; kkkF ω+Ω= is the total

vorticity,
i

j
kijk X

U

∂
∂

ε=Ω
2

1
 is the macrovorticity, ωk is the mesovorticity,

)4.01()1(
5

7
0

2 azTRc aa +⋅γ−⋅= is the square of the speed of the sound,

i

j

j

i
ijij X

U

X

U
eU

∂
∂

+
∂
∂== 2 ,

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
δ+

∂
∂+

∂
∂≡ zj

jj
j a

X

a
B

X

B
BA 03][ˆ ,][ˆ fAjj =ϕ . The

members o(a2) are neglected in (1)-(4).
In the co-ordinates (ϕ,, zr) with center at r = 0 (x,y = L/2), the initial conditions

are as follows:
))(()())(,(,)()(),(110000 rzRzfzRrfrRzfRrfUU uzurzuzur −σω=ω−σ=ϕ ,

()))(())(()(
)(

1 11

2

1
0 zRrJrzRzf

zR

r
JJJ bkuzbk −σ+−σ⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−= , where R0 < L/2 is

the radius of a “cloud” of mesovortices, 0U , 0ω , 0J are the initial amplitudes, σ(r) is

the Heaviside function,)
2

1exp(
2

)5.0()(01 H

z

H

z
JRJzR bkbk −⋅⋅−+= ,

2
0

0
0

)(
4),(

R

rRr
Rrfur

−
= ,

)/1ln(

)/1ln(
)(

rgh

rgh
uz zH

zz
zf

+
+

= , H is the area height. The other

components equal to zero.
The task (1)-(4) is set in the rectangular area D = {|x|, |y| < L; 0 < z < H}. The

boundary conditions for the wind and pressure correspond to a common model [7].
The MTN approach allows setting the turbulent stresses which all equal to zero with
the exception for the tangential stresses near the Earth calculated by the Shiffrinson
formulae [8].

The task (1)-(4) has been numerically solved by using a modified Runge-Kutta-
Adams scheme where the finite difference method for Eq. (1) is based on the leapfog
scheme with averaging over three half-levels in time [4]. The whole scheme is
hereafter referred to as the MRKAL scheme. This is a conditionally stable scheme of
the second order of accuracy both in space and time, with the criteria of stability
found to be close to those of explicit MacCormack schemes [4].

4 Parallel Algorithm

The program may be divided in two parts: loading and initialization of data and the
main cycle. Resulting data retention is made during the execution of the main cycle.
The program’s input information is kept in a text file and includes physical
parameters of the model and auxiliary data needed for the program, e.g., number of
outputs of significant results along a trace. Then the arrays are filled by initial data.

490 A.I. Avetisyan et al.

After the initialization the program keeps the zero level of the data and begins the
execution of its main loop. The function “Layer” is called four times during each
iteration, calculating the values of the main arrays in the loops with regard to X, Y,
and Z. If the current iteration needs data retention, the function “Eplus” is called three
times.

The loops were examined for admissibility of parallelization using distance test,
which showed the absence of dependencies between the array elements, being
processed in loops. This fact allowed to divide the arrays into blocks and distribute
the blocks obtained among the cluster’s processors. Since the chosen difference
scheme was “three-point” it is necessary for blocks to collide. The collision areas are
called shade sides, during calculation being necessary to pass the values of the shade
sides from the processors their values were calculated to the processors they are used.
For the three-point difference scheme each shade side has a width in one space layer.
During the current iteration only data obtained during previous iterations are used. It
allows updating shade sides only once for each layer, reducing overheads for data
transfer. It was stated that two-dimension partition is more effective than one-
dimension partition, so the two-dimension partition was used.

Significant results are preserved by each processor on its local hard disc as binary
arrays. After the termination of the computation the combination of all these results is
performed. Transfer of such amounts of data during the program execution would
cause strong mistiming on each step and would essentially increase the total time of
the program execution.

Besides, a breakpoint mechanism was implemented to support long-time
calculations. Only a few arrays and several parameters are preserved to provide the
opportunity of breaking calculation in order to continue it afterwards. At the next
startover these arrays and parameters are loaded and provide the restoring of the
whole context of the abortive task. Thus, in contrast to the standard breakpoint
mechanism, when the whole context of a task is preserved, we preserve only about
25% of the whole task’s memory, providing the essential economy of the disc space.
From the same reasons the arrays for visualization were thinned out, i.e. only each
second point was preserved. It had no influence on the quality of visualization,
however decreased the length of visualized data in eight times.

Calculations were performed on MVS1000M Cluster (Power 2,2 GHz processors,
Myrinet (2 Gbit/s)), in JSCC RAS. Each launching of a program needs to spend the
time needed not only to perform calculation, but also to wait the cluster become free
in a queue.

Since physicists needed many launchings of the program using various initial
values, the problem of determining of optimal number of processors for the program
using given size of the matrix was critical. Besides, the process of the tornado
modeling is iterative in nature, that means that the parallel version of the program is
constantly being modified, and the tornado modeling algorithm is often modified as
well. These changes cause the consequent changes in the parallel program, which may
cause the changes in its scalability properties and may change the optimal number of
processor nodes. Thus, regular determination of the scalability interval is needed.
Performing metering using the target computing system, being shared, would
essentially slow down our work. The task was solved using interpreter from ParJava
Environment [3].

 Intensive Atmospheric Vortices Modeling Using High Performance Cluster Systems 491

The interpreter allows predicting execution time of a parallel program using
instrumental computer. The interpreter uses the following initial data: (1) the model of
the parallel program, (2) byte-code of the program’s basic blocks, and (3) the estimate
of the execution time of each of the program’s basic blocks on the target computing
system. The estimate of the execution time of basic blocks is obtained by measuring
the duration of their execution on the target computing system. Since at that each
basic block is executed independently, the user must assign initial data providing their
correct execution. User puts the set of initial data in configuration file. in the case in
question was needed to set about 270 values of local variables and members of the
classes, to measure the execution time of all (more, than 1200) basic blocks.

It took just 1 hour of running on a single processor node to obtain the estimates for
all basic blocks. Note, that techniques used allows to take account the effects of
cache, and jit-compiler.

Since the interpreter uses hybrid techniques including elements of direct execution
the problem of lack of storage on instrumental computer was critical. Tornado
modeling requires several large arrays of data, that is impossible to place in the
instrumental computer’s storage. To gain the solution of the problem a transformation
of the model was performed. The transformation consisted in removing from the basic
blocks all the expressions values of which had no effect on control flow. First of all
the arrays holding velocity fields, values of turbulence, mesovortices, etc. were
removed.

Fig. 1. Comparison of predicted and actual speed-up of program. In case of processor number
more than 24 degradation of efficiency can be seen.

This allowed to change appreciably storage requirements reducing them to 2МB
per logical process, out of dependency on the size of the difference equation.

The interpreter allowed to obtain the estimates of program’s speed-up (Fig. 1)
which were precise enough: the error did not exceed 10%, and was 5% in average.

492 A.I. Avetisyan et al.

For parallel program execution huge computational capability are used (hundreds
of Gflps or more). Duration of program execution may achieve several days.
Interpretation of a model, representing entire program, on a PC, which capacity
comparable to just one node of a cluster, may take unacceptable amount of time. Two
kinds of program model transformations are the solution of this problem. The
meaning of the first one is that a resultant model contains control flow affected
calculations only. As far as basic block work time defined a priori, such a separation
of computations doesn’t affect on program work time estimation.

The second transformation, so called reduction, intends changing the interpretated
fragment of a program model on just one node, which uses already obtained program
work time estimation. The reduction allows avoiding alternating interpretation of all
the loops, essentially reducing interpreter overhead charges. In the limit these charges
shouldn’t depend on program input data.

The computation separation during our program interpretation allowed cutting
speed vectors array, density array and so on from the model. This led to 2 MB
memory requirements of every logical processor and made it possible to reduce most
of the cycle iterations.

The degradation of efficiency may be explained by several reasons. First of all, the
parallelization of the program hasn't done the most effective way. The version
presented is just a pilot version, where two-dimension partition were used. The
second, while number of processors is growing up and amount of calculation on one
processor is falling down, we still waste a time on message passing. So for any matrix
there will be some optimal number of processors, exceeding which degradation will
take place.

5 Results of Numerical Modeling of 3D Tornado

The task (1)-(4) is solved in cube with L = H = 1500 m, N varying from 70 to 200, U0

= 1.5 m/s, R0 = 300 m, zrgh = 0.1 m, A1 = 1000 m2/s; the dimensionless parameters of
mesoscale interaction close to those used in [1]: Sv = 0.5A2/A1= 0.01, Mv = A3/A1 = 1, Iv

= A4/A1 = 1, Пm = 0.25(Iv+Mv)(1+ωrel)Jrel = 750 ÷ 3000, Пv = Sv(1+ωrel) = 100 ÷ 300
(ωrel = ω0R0/U0; Jrel = Jrel /R0

2), Jbk/J0 = 0.05, ωbk/ω0 = 0.01, and with the “standard
atmosphere” thermodynamics used at the Earth surface [5]. Like in [1], under these
conditions, the meso-to-macro energy ratio (Emes/Emac)0 ~ ПmПv is greater than the
critical one, so a tornado arises: the wind energy Emac increases abruptly (at the
expense of the mesoenergy Emes) to reach some peak value proportional to ПmПv, and
then slowly fades out. Total energy E = Emac + Emes + Ein (Ein is the internal one)
always decreases because the whole system is closed while the subsystem of
macromotions of the wind is open since it interacts with the subsystem of mesoscale
motions. This is the reason of IAV arising in the MTN as a self-organization
phenomenon in open dissipative systems.

The particular features of tornado arising in 3D compressible dry-adiabatic
atmosphere are considered for a concrete computation with Пm = 750, Пv = 120.

Initially (at t0 = 0 s), zero vertical and radial wind velocities has been set, with only
a calm local cyclonic wind with the maximum speed of 1.5 m/s. Typical for tornado
vertical-radial circulation is formed in about a minute. At t5 = 51.7 s, the uprising
speed reaches 31 m/s at 600 m height, the maximum radial inflow (--Ur) is about 7

 Intensive Atmospheric Vortices Modeling Using High Performance Cluster Systems 493

m/s at 500 m height and 230 m distance from center (with those for outflow, +Ur ,
respectively, 5 m/s at 1200 m height and 330 m radius). On the whole, a typical
mushroom-like structure of tornado is formed in about a minute.

The 3D wind speed visualization (in VisAD library) at t16=165.4 s is shown in
Fig.2. The structure shown is permanent for few minutes, with the wind speed
maximum varying, for the time of modeling, within 43 ÷ 35 m/s, then, it slowly
decreases to 12 m/s in half an hour.

Fig. 2. 3D visualization of tornado at t16 = 165.4 s

Fig. 3. Hurricane in Montana, USA, 94- highway, Yellowstone River Valley. (Photo by A.V.
Panshin © 2005).

494 A.I. Avetisyan et al.

Such a behavior is common for small and medium tornados (with measured
intensiveness varying from T2 to T4): a rapid, within a minute, rose of the wind
energy up to 0.8 of its maximum value, with slowly fading afterwards.

A local hurricane (or a tornado of T3 intensity) is shown in Fig. 3. The photo has
been made in Montana, USA, in August of 2005. The phenomenon has been being
observed for some minutes.

Both in temporal and scaled parameters, the near resemblance to the parallel
computational results got with using the MTN task (1)-(4) is practically certain.

Note that such a phenomena can be rarely observed. A local hurricane (splashed
down waterspout) with similar parameters has been observed near Gosport,
Hampshire, England, 5.11.1999 [9]. When reaching the land, it quickly moves 750 m
inside the Hill Head village, near Gosport, then, “after lifting up to the air a dozen of
pigs”, it died out in an hour.

On the whole, the numerical results on 3D tornado modeling in the Mesovortice
Turbulence theory by Nikolaevsky (MTN) [6] describe the phenomena of tornado or
local hurricane origination due to accumulated energy of mesovortices, even under the
dry-adiabatic atmosphere hypothesis used in (1)-(4). As well as in a simplified model
studied in [1], the excess energy of mesovortices (Emes/Emac)0 ~ ПmПv > (Emes/Emac)cr ~
10000 leads to IAV origination. When using a sufficient number of spatially
distributed air velocity sensors and appropriate processing of the measurements, the
excess energy of mesovortices can be measured at weather stations, giving a possibility
for tornado and other local IAV forecast in a given region.

It is clear that once the dry-adiabatic atmosphere hypothesis accepted, it is
impossible to model the slow processes of mesovortice activity accumulation leading
to IAV arising. To make it possible, one should take into account the following
factors: the solar radiation (i.e. heating of the underlying surface), the air moisture and
pollution, sludging, the Earth’s rotation, the mass and energy exchange with global
vortices (i.e. hurricanes and tropуcal cyclones), changes in climate, geo-
electromagnetic effects, and so on [5]-[9].

6 Conclusion

The results were presented by the Institute of Physics of the Earth to
Hydrometeorological Center of Russia/ as well as on Methods of Aerophysical
Research 13th International Conference (ICMAR 2007).

Naturally, with all these factors get into consideration, the computational model
comes to be more complicated. However, these factors seem to have a small affect
upon the rapid process of tornado arising.

The main computational problems remain as follows: searching for the optimal
partition of parallel data processing through the nodes, intermediate data traffics, and
final processing for 1D ÷ 3D visualization.

The work has been supported by the RFBR, Project NN 05-01-00995 and 05-07-
90308, and by the Pr. RAS, Project N 13-6-1/06.

Acknowledgments. The authors are grateful to M.D. Kalugin for developing 3D
visualization and GUI, and to V.N. Nikolaevsky, V.A.Padaryan and S.A. Arsenyev
for useful critics, discussions and support.

 Intensive Atmospheric Vortices Modeling Using High Performance Cluster Systems 495

References

1. Arsenyev, S.A., Yu, G.A., Nikolaevskiy, V.N.: Self-Organization of Tornado and
Hurricanes in Atmospheric Currents with Meso-Scale Eddies. Doclady Earth
Science 396(4), 588–593 (2004)

2. Nikolaevskiy, V.N.: Vortexes and waves. M: Mir, pp. 266–335 (1984)
3. Ivannikov, V., Gaissaryan, S., Avetisyan, A., Padaryan, V.: Improving properties of a

parallel program in ParJava Environment. In: Dongarra, J.J., Laforenza, D., Orlando, S.
(eds.) Recent Advances in Parallel Virtual Machine and Message Passing Interface. LNCS,
vol. 2840, pp. 491–494. Springer, Heidelberg (2003)

4. Fletcher, C.A.J.: Computational Techniques for Fluid Dynamics. Springer, Heidelberg
(1991)

5. Hrgian, A.H.: Fizika Atmosfery (in Russian). M. Izd-vo MSU, 240 (1986)
6. Nikolaevskiy, V.N.: Angular Momentum in Geophysical Turbulence: Continuum. Spatial

Averaging Method. Kluwer (Springer), Dordrecht 245 (2003)
7. Khain, A.P., Sutyrin, G.G.: Tropical Cyclones and its Interaction with the Ocean (in

Russian). L. Gidrometeizdat, 272 (1983)
8. Emtsev, B.T.: Tekhnicheskaya Gidromekhanika (in Russian). M. Mashinostroeniye, 463

(1978)
9. Anthony, G.: Tornado With a Measured Intensity of T3 at Hill Head, Hampshire, 5.

J.Meteorol. 25(254), 361–367 (2000)

Dynamic Strategy of Placement of the Replicas

in Data Grid

Ghalem Belalem1 and Farouk Bouhraoua2

1 Dept. of Computer Science, Faculty of Sciences,
University of Oran - Es Senia, Oran, Algeria

Ghalem1dz@Yahoo.fr
2 Institute of Computer Science, Faculty of Science and Engineering,

University of Mostaganem, Algeria
farouk622000@yahoo.fr

Abstract. Grid computing is a type of parallel and distributed systems,
that is designed to provide pervasive and reliable access to data and com-
putational resources over wide are network. Data Grids connect a collect
of geographically distributed computers and storage resources located in
different parts of the world to facilitate sharing of data and resources.
These grids are concentrated on the reduction of the execution time of
the applications that require a great number of processing cycles by the
computer. In such environment, these advantages are not possible unless
by the use of the replication. This later is considered as an important
technique to reduce the cost of access to the data in grid. In this present
paper, we present our contribution to a cost model whose objective is to
reduce the cost of access to replicated data. These costs depend on many
factors like the bandwidth, data size, network latency and the number
of the read/ write operations.

Keywords: DataGrid,Replication,Dataplacement,Costmodel,CERN.

1 Introduction

Today, the utility of many internet services is limited by the availability rather
than the execution. The replication is the most used approach to offer the high-
est availability of data. The experiment on the distributed systems show that
the reproduction promotes high data availability, low bandwidth consumption,
increased fault tolerance and improved scalability [1]. The replication is the pro-
cess of creation and placement of the copies of entities software. The phase of
creation consists in reproducing the structure and the state of the replicated
entities, whereas the phase of placement consists in choosing the suitable slot of
this new duplication, according to the objectives of the replication. The repli-
cation cost is often linked to the deployment cost of the reproduction to the
dynamic creation cost of the reproduction and to the emplacement replication
costs towards the client. In our approach, the placement algorithm of the repli-
cas was designed by the cost model, formulated as an optimization problem that

V. Malyshkin (Ed.): PaCT 2007, LNCS 4671, pp. 496–506, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Dynamic Strategy of Placement of the Replicas in Data Grid 497

reduces at least the global cost of access to data, further to a focusing on the
influence of the read/ write operations on the replication cost (report: number
of readings, number of writings) in grids at a given moment. What will facilitate
us to take a decision for the creation or the moving of replicas to adequate sites
as well as their deleting. In order to evaluate this cost model, a simulator called
”GREP-SIM” was developed and implemented under a tree hierarchical topol-
ogy inspired from CERN data grid architecture (the European Organization for
Nuclear Research) [3]. The results show that the performances of the replications
depend strongly on the replicas emplacement, and the number of the read/write
operations effected on these replicas.

The remainder of the paper is organized as follows. In the second section we
presents an overview of some costs models for the data replications. The third
section will be reserved for our contribution in a cost model for replication in
data grids. Experimentation results of our model on tree topology are the object
of the fourth section. Finally, section five will be reserved for the conclusion and
some future works.

2 Related Works

The primary reason to use a cost model is the ability to take optimal decisions
for accessing to data replicas in the future use. The execution of such multidi-
mensional and complex optimizations in a centralized way is very difficult, since
the planning domain (attributes of resources) is very huge. The optimisation
service of grid must be scalable in items of the number of network nodes (tens,
hundreds, or even thousands) [4]. The grid is a dynamic environment where the
resources status can change without any warning. By employing a model, we
can exploit this dynamism to take decisions during the execution time of the
work. Recently, there has been a noteworthy interest for the proposition of cost
models in the grids environment.

The presented works in [5], in order to insure the efficient and rapid access
to enormous and largely distributed data, the authors suggest a set of services
and protocols of replication management, which offer higher data availability, a
low bandwidth consumption and a great faults tolerance. Replication decisions
have been taken according to cost model, which evaluate the data access cost and
execution gain. This model is function of many parameters just like the response
time, the bandwidth, and the reproduction costs accumulated by execution
time. To guarantee the scalability, the duplications are organized combining of
hierarchical and flat topologies. This suggested model based on Fat-Tree topol-
ogy [6], where the bandwidth increase leaves towards the root. Very interesting
results were produced by the simulator NS [7]. The cost model proposed in[8]
is well adapted to machines MIMD. However, it can’t be applied to machines
of SIMD type where the performances analysis in communication is more com-
plex, because of the difficulty of separating the calculus. This model is according
to routing time of a message between processors, initiation time (start up)
and bandwidth. This work has shown that routing time of a message and the

498 G. Belalem and F. Bouhraoua

initiation time have an important influence on the choice of processors intercon-
nection topology, data organisation, load balancing, the number of acceptable
synchronization and the messages size. For the suggested model CASEY in [9]
which concentrate on data placement problem. It depends on the sites number,
the read number effected by a site by a time unity called: read volume by site,
the cost of a read by a given site on the copy placed in another site, the write
number effected by a given site by a time unity, write cost realized by a given
site of the copy placed on another site. Finally, the storage cost, by time unity, of
a copy placed on a given site. The optimal placement returns back to minimize
a global objective function made up of parameters group described in above
passage. This model is not well adapted on a large-scale environment, because
it belongs to the NP-complete problems class. Extra hypothesis can simplify it
neglecting storage and write costs.

3 Cost Model and Replicas Placement

A possible data distribution of important sizes consists in replicating them so
as to place them on a set of servers. The interest of this fragmentation and
this distribution is to dispatch up the load on different servers, and to avoid the
bottlenecks appearance. Many placement strategies can be used in these types of
systems [12,11,10]. In this paper, we have used a distribution on a tree network
topology.

3.1 Grid Topology

The data grid topology used as a support for the proposed model is described
below in figure 1, and inspired of the architecture CERN. It is made up of 5
levels: the root (level 0), three sublevels that contain nodes (level 1 till 3), and
the last level is for leaves (level 4). All the nodes including the root, representing
the servers, can have data replicas, except the last level of the leaves, which
represents the clients from where the requests come.

In this topology, every node admits one child or many except the leaves, and
every node has only one immediate father except the root.

3.2 A Cost Model

The replication cost model suggested in our approach is designed as an opti-
mization problem of replicas placement, which reduces at least the sum of the
access cost in a grid, basing on the described parameters in (Table. 1).

Let n ∈ Rd, the nearest node serving a set of clients that query (read and
write) data d. We are going to calculate the global access cost of data d situated
in the node n, which is the sum of: transfer cost of data d, processing calculus
cost of operation (write or read) by the node n, and the propagation cost of data
d updating towards the other nodes belonging to Rd.

Dynamic Strategy of Placement of the Replicas in Data Grid 499

Fig. 1. Logical topology of the grid CERN

Table 1. Parameters used in the model

Parameter Description
pn The immediate father of a node n
Rd The group of nodes containing a replica of data d

BW (n) Bandwidth between the nodes n and pn; (BW (n) =1/ bandwidth(n, pn))
Size(d) Size of data d

Wayd(n1, n2) A set of nodes met along the way of node n1 till node n2, except node n2

TEdn Processing cost of write operation on data d situated at the node n
TLdn Processing cost of read operation on data d situated at the node n
NEdn Write number affected on the data d passed through the node n
NLdn Read number affected on the data d passed through by the node n

Let be CTd(n1, n2) transfer cost of data d from node n1 to node n2, defined
by

CTd(n1, n2) = Size(d)
∑

i

BW (i); i ∈ Wayd(n1, n2) (1)

To maintain the replicated data coherence, we use strict protocol ROWA [2],
from where CUdn : propagation cost of updating data d situated at node n.

CUdn =
∑

k

CTd(n, k); k ∈ Rd − {n} (2)

When a client c interrogates data d located in the closest node n, the costs
are evaluated to:
CEdn : write cost on data d situated at node n.

CEdn = CTd(c, n) + TEdn + CUdn (3)

CLdn: read cost on data d situated at node n,

CLdn = CTd(c, n) + TLdn (4)

500 G. Belalem and F. Bouhraoua

Let’s admit, in what follows, that all the nodes of the same level have the
same characteristics (power and high storage capacity), and the same bandwidth
between a node and its sons. Therefore, we can deduce that the write cost of
the node n(CEdn) is fixed for the interrogations of descending clients (leaves) of
this node n. The same for the read cost (CLdn). Consequently, we can evaluate
the global access cost:
CostGdn: global access cost to data d situated at node n,

CostGdn = NLdn ∗ CLdn +NEdn ∗ CEdn (5)

The optimization problem of the global cost function will be to find the min-
imum cost of N servers containing asked data d, we will have:

Cost Min =Min︸︷︷︸
i∈N

{NLdi ∗ CLdi +NEdi ∗ CEdi} (6)

3.3 Placement Algorithm

A node can serve several clients that formulate requests on data, when this last is
the nearest node to them containing a reply of this data. Going by the described
cost model above, placement algorithm takes the decision of moving, creating
or even deleting the replicas. This decision is taken according to the number
of writings and readings effected on the data replica d situated in node n by
the clients in a given time. It has to be noticed that in case of only reads are
occurred by clients (NEdi = 0∀i ∈ Rd), it is evident that The best solution is
the one where all the replicas will be placed on all the nodes of the before last
level (level 3). Yet, for the case where exist writes only (NLdi = 0∀i ∈ Rd), the
best solution is to have no replica. This is because of updating propagations.

Let Asc(n) a set of ascendants (ancestors) of node n and Des(n) a set of
descendants of node n. Let’s suppose at the given moment, that the global
cost CostGdn is the smallest cost among the ones of Asc(n) + Des(n). The
increase of the number of writings NEdn by a certain value (to be identified)
modifies the least cost which will be equal to another cost of node an Asc(n)
(Cost Min = CostGdan), while the increase of the number of reading by a
certain value (to be identified) modifies the least cost value which will be equal
to another cost of node dn ∈ Des(n) (Cost Min = CostGddn). Therefore, the
aim is to find the interval of NEdn values and the interval of the NLdn values so
that the cost CostGdn stays always the lowest (Cost Min = CostGdn), in other
words, the replica of data d will always be situated at the node n. This leads
us to find a trade-off between the number of writings NEdn and the number of
readings NLdn.

Let Tdn the ratio of the read number on the write number occurred on data
d situated in node n.
Tdn = NLdn/NEdn

So that the replica of the data d stays in the node n and doesn’t migrate in
the node pn father of the node n, it’s necessary that CostGdn < CostGdpn

Dynamic Strategy of Placement of the Replicas in Data Grid 501

i.e.: NLdn ∗ CLdn +NEdn ∗ CEdn < NLdpn ∗ CLdpn +NEdpn ∗ CEdpn

With: NLdn = NLdpn , NEdn = NEdpn and Tdn = NLdn/NEdn

After the resolution of this equation with NLdn and NEdn as unknowns, we
obtain:

Tdn >
CEdn−CEdpn

CLdpn−CLdn

Let Son(n) a set of nodes, which are at the same moment the immediate sons
of node n , the ancestors of clients that interrogates data d, and which don’t
contain replica of the data d.

However, so that the replica of the data d stays in the node n and doesn’t
migrate in the nodes sn immediate sons of node n (∀sn ∈ Son(n)), it’s necessary
that CostGdn < CostGdsn i.e.:

NLdn∗CLdn+NEdn∗CEdn <
∑

sn∈Son(n)

NLdsp∗CLdsn+
∑

sn∈Son(n)

NEdsn∗CEdsn

With : Tdn = NLdn/NEdn ,

NLdn =
∑

sn∈Son(n)

NLdsn

and
NEdn =

∑

sn∈Son(n)

NEdsn

After the resolution of this equation with NLdn and NEdn as unknowns, we
obtain: Tdn <

CEdsn−CEdn

CLdn−CLdsn

So that CostGdn the cost of node n be the smallest cost of all nodes belonging
to Asc(n) +Des(n) + n

CostGdn = min{NLdi ∗ CLdi +NEdi ∗ CEdi}; ∀i ∈ Asc(n) +Des(n) + n

Tdn must check the following equations:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∀sn ∈ Son(n)
If n = root Then Tdn < CEdsn−CEdn

CLdn−CLdsn

If n ∈ before− last− Level Then Tdn ≥ CEdn−CEdpn

CLdpn−CLdn

Else CEdn−CEdpn

CLdpn−CLdn
≤ Tdn < CEdsn−CEdn

CLdn−CLdsn

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(7)

Let a replicas distribution on the grid in a given moment, and let the cost of the
node n the smallest cost of all nodes belonging to Asc(n)+Des(n)+n(CostM in =
CostGdn). Placement algorithm applied on the node n whose its Tdn value has
changed will be as follows:

502 G. Belalem and F. Bouhraoua

Algorithm 1. Placement

1: x,z : node
2: x ← n
3: if Tdx value do not check equation 7 then
4:
5: if Tdx < (CEdx − CEdpx)/(CLdpx − CLdx) then
6:
7: while Tdx < (CEdx − CEdpx)/(CLdpx − CLdx) do
8: NEdx ← NEdx + NEdpx

9: NLdx ← NLdx + NLdpx

10: end while
11: Move the replica of node n towards the node x
12: for all ((z ∈ Des(x)) and (z is server of d)) do
13: OldCostGdx ← CalculateCostGdx

14: NEdx ← NEdx + NEdz

15: NLdx ← NLdx + NLdz

16: NewCostGdx ← CalculateCostGdx

17: if NewCostGdx ≤ OldCostGdx then
18: Delete the replica of data d from node z
19: end if
20: end for
21: else
22: for all z ∈ Son(x) do
23: Create a replica of data d on node z
24: end for
25: Delete the replica of data d from node x
26: end if
27: end if

After the arrival of the requests, we check the Tdi values ∀d and ∀i ∈ Rd. Thus,
according to Tdi’s values, we take decisions of the emplacement of concerned
replicas. We notice that the suppression of replicas, which the requests number
produced by the clients for these replicas is inferior at a given threshold, gives
rise to a clear and remarkable amelioration in the global access cost to the grid
data.

4 Simulation

The presented cost model seems to be very well adapted to hierarchical archi-
tectures. A simulator called ”GREP-SIM ” was developed in order to evaluate
this model. This simulator allows us to generate a hierarchical topology of a tree
inspired of data grid architecture CERN. In this simulator, every node in the
network is able to specify its storage capacity, its processor performance, the lo-
cal replicas, and a detailed history of the requests passing through this node (the
passage of a request by this node at the time of its routing from a client toward
its server node), where we can associate two variables for every data in the grid

Dynamic Strategy of Placement of the Replicas in Data Grid 503

specifying respectively the read and write number occurred on this data and that
are passed through this node. This detailed history of nodes will indicate us the
number of the produced requests by every client on every data. If the number of
produced requests on data exceeds a certain threshold, the concerned client will
be considered as the best client for this data. Many algorithms were proposed
for the emplacement of replicas in the closest server to the best client, by using
several solutions to select the most appropriate server to contain its replicas [13].
In order to compare our model, we shall use two other placement models. The
first one is based on the best client algorithm where the replica will be placed
on the closest node of this client [14]. The second one is based on the common
father algorithm. Contrary to the first model, which favours the best client and
penalizes another client, which have produced a number of requests exceeding
the threshold, the common father place the replica on the closest common node
of the two clients.

4.1 Simulated Grid Model

The topology of simulated grid, described in the following schema in figure. 2, is
compound of 15 nodes. A root, 14 intermediary nodes and 16 leaves representing
the clients. The bandwidth improves from inferior level to the superior one.

Fig. 2. Simulated model of the Grid topology

4.2 Experimentations and Results

The experimentations were held on definite simulation parameters in table. 2.
In the beginning, a random distribution of replicas has been done and saved

along the simulation. The simulator calculates the response times of every request
for this distribution. Then, it recalculates the responses time for the same requests
but by applying models of the best client, common father and finally our model,
which we have named it, the best ancestor. For the same distribution, we execute
five different experimentations (scenarios), where the read and write numbers pro-
duced by the clients are modified, as it is mentioned in the following table. 3.

504 G. Belalem and F. Bouhraoua

Table 2. Simulation parameters

Data number 4

Data size From 1 Gb to 4 GB

Replicas number From 1to 8 per data

Requests number 800

Threshold 50

Table 3. Read/Write per scenario

Scenario Read number Write number

1 800 0

2 770 30

3 740 60

4 600 200

5 450 350

The obtained results are illustrated by two graphs. The figure. 3 represents
the average time response per scenario and the figure. 5 represents the average
time response per clients of the third scenario.

Fig. 3. Average time response per sce-
nario

Fig. 4. Average time response per scenario
after suppression

The results show that the global access cost in the grid is clearly improved
when using our model. Indeed, we notice in the first graph a decrease of 11,41% of
the average time response of this model compared to the common father model,
of 12,72% compared to the model of the best client and of 16,51% compared
with the random distribution.

We were anxious to present the second graph (figure. 5) to show some excep-
tional cases that can appear. For instance, the averages time response for the
clients 413 and 416 that are favoured by the model of the best client are the best
times, versus the clients 414 and 415 that are penalized.

During the simulation study, we have noticed that if we make dynamic sup-
pression of replicas weakly requested (the requests number produced on these
replicas doesn’t exceed a certain threshold), the performances will improve even
more. After the suppression of the replicas that the request number produced
on them doesn’t exceed a threshold equal 10, the results presented in figure. 4
show a decrease of 13,39% of the average time response of this model compared
to the common father model, of 14,78% compared to the model of the best client
and de 18,37% compared with the random distribution.

Dynamic Strategy of Placement of the Replicas in Data Grid 505

Fig. 5. Average time response per clients

5 Conclusion and Future Works

In this work, we have studied the problem of the global access cost in a grid sys-
tem for the replicated data. The problem was formulated such as an optimization
subject of a cost model linked mainly to two cost functions: read cost and write
cost by node, and linked to two essential parameters: reads number and writes
number by node. So, this model allowed us to conceive an efficient algorithm of
dynamic placement of replicas. The logical data grid model is based on a tree
architecture where the bandwidth is variable according the tree levels and the
nodes of the same level have the same characteristics. The results show that the
use of the dynamic replication algorithm based on our model improves the ac-
cess performances to data in the grid. These results are promising. Nevertheless,
they are based on specific work environments. In the future work we project to
validate our model on real data grids by implementing the proposed approach in
a more realistic environment such as Globus. Furthermore, this approach studies
will be focused on the contribution of the prediction of the requests types’arrival
by using the statistic laws (normal distribution, Poisson distribution,. . .).

506 G. Belalem and F. Bouhraoua

References

1. Deris, M.M., Abawajy, J.H., Suzuri, H.M.: An Efficient Replicated Data Access
Approach for Large-Scale Distributed Systems, IEEE International Symposium
CCGrid 2004, Chicago, Illinois, USA (April 19-22, 2004)

2. Goel, S., Sharda, H., Taniar, D.: Replica Synchronization in Grid Databases. Int.
Journal Web and Grid Services 1(1), 87–112 (2005)

3. The European Organization for Nuclear Physics CERN DataGrid Project,
http://grid.web.cern.ch/grid/

4. Foster, I., Kesselman, C., Tuecke, S.: The Anatomy of the Grid: Enabling Scalable
Virtual Organizations. Int. Journal Supercomputer Applications 15(3) (2003)

5. Lamehamedi, H., Szymanski, B., Deelman, E.: Data Replication Strategies in Grid
Environments. In: Proc. 5th International Conference on Algorithms and Archi-
tecture for Parallel Processing, ICA3PP’2002, Bejing, China, pp. 378–383 (2002)

6. Leiserson, C.H.: Fat-Trees: Universal Networks for Hardware-Efficient Supercom-
puting. IEEE Trans. on Comp. C-34(10), 892–901 (1985)

7. NS Network Simulator, http://www.mash.cs.berkeley.edu/ns
8. Parhamu, B.: Introduction to Parallel Processing: Algorithms and Architectures,

Plenum (1999)
9. Raynal, M.: Gestion des Donnees Reparties: Problemes et Protocoles. Tome3: In-

troduction aux principes des systemes repartis, Eyrolles, France (1992)
10. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs,

3rd edn. Springer, Heidelberg (1996)
11. Xu, J., Li, B., Lun Lee, D.: Placement Problems for Transparent Data Replica-

tion Proxy Services. IEEE Journal on Selected Areas in Communications 20(7)
(September 2002)

12. Milojicic, D.: Peer to Peer Techbology, HP Labs Technical Report, HPL-2002-57,
http://www.hpl.hp.com/techreports/2002/HPL-2002-57.html

13. Guyton, J.D., Michael, F.S.: Locating Nearby Copies of Replicated Internet
Servers, University of Colorado, TR CU-CS-762-95

14. Ranganathan, K., Foster, I.: Identifying Dynamic Replication Strategies for a High
Performance Data Grid. In: Proc. of the International Grid Computing Workshop,
Denver, CO (November 2001)

http://grid.web.cern.ch/grid/
http://www.mash.cs.berkeley.edu/ns
http://www.hpl.hp.com/techreports/2002/HPL-2002-57.html

V. Malyshkin (Ed.): PaCT 2007, LNCS 4671, pp. 507–515, 2007.
© Springer-Verlag Berlin Heidelberg 2007

ISO: Comprehensive Techniques Toward Efficient
GEN_BLOCK Redistribution with Multidimensional

Arrays

Shih-Chang Chen and Ching-Hsien Hsu*

Department of Computer Science and Information Engineering
Chung Hua University, Hsinchu 300 Taiwan

scc@sclab.csie.chu.edu.tw, chh@chu.edu.tw

Abstract. Runtime data redistribution is usually required in parallel algorithms
to enhance data locality, achieve dynamic load balancing and reduce remote data
access on distributed memory multicomputers. In this paper, we present
comprehensive techniques to implement GEN_BLOCK redistribution in
parallelizing compilers, including Indexing schemes for communication sets
generation, a contention-free communication Scheduling algorithm and an
Optimization technique for improving communication efficiency. Both
theoretical analysis and experimental results show that the proposed techniques
can efficiently perform GEN_BLOCK data redistribution during runtime.

1 Introduction

The data-parallel programming model extends sequential programming language with
parallel constructs for handling large aggregates of data such as arrays. To efficiently
execute a program written with this paradigm, appropriate data distribution is critical to
the performance. Appropriate distribution of data can balance the computational load,
improve data locality, and reduce inter-processor communication. However, in many
data parallel algorithms, an optimal distribution of data depends on the characteristics
of an algorithm, as well as on the attributes of the target architecture. Because the
optimal distribution changes from one phase to another, data redistribution turns out to
be a critical operation during runtime.

In general, data redistribution can be classified into two categories, regular and
irregular. Regular redistribution employs BLOCK, CYCLIC, or BLOCK-CYCLIC(c)
to specify array decomposition while irregular data redistribution employs
user-defined function to specify size of data segments.

To map unequal sized segments of arrays onto processors, High Performance
Fortran version 2 (HPF2) provides GEN_BLOCK directive to facilitate generalized
block distributions. The following code segment demonstrates an example of High
Performance Fortran version 2 (HPF2) irregular data redistribution with GEN_BLOCK
format. The source and destination distributions are defined by old = /22, 23, 46, 9/ and
new = /8, 47, 21, 24/, respectively, where old and new are declared as templates for

* Corresponding author.

508 S.-C. Chen and C.-H. Hsu

mapping data segments onto processors. Consequently, the DISTRIBUTE directive
decomposes array A onto 4 processors according to the old parameters in the source
distribution phase. The REDISTRIBUTE directive realigns data elements in array A
with processors according to new parameters in the destination distribution phase.

 PARAMETER (old = /22, 23, 46, 9/)
 !HPF$ PROCESSORS P(4)

 REAL A(100), new (4)
 !HPF$ DISTRIBUTE A (GEN_BLOCK(old)) onto P
 !HPF$ DYNAMIC

 new = /8, 47, 21, 24/
 !HPF$ REDISTRIBUTE A (GEN_BLOCK(new))

In general, data redistribution has two important issues to be handled in order to
achieve good algorithm performance during runtime, the indexing scheme and
communication scheduling approach. In recent years, most researches focused on
proposing different communication scheduling heuristics to minimize communication
costs of irregular data redistribution during runtime. Without precedent, this study
integrates comprehensive techniques to implement GEN_BLOCK (irregular)
redistribution, including an Indexing scheme for generating communication sets with
multi-dimensional arrays, a communication Scheduling method, termed as Two-Phase
Degree Reduction (TPDR) algorithm, for GEN_BLOCK redistribution, and an
Optimization technique, named Local Message Reduction (LMR), for enhancing
efficiency of the algorithm.

2 Related Work

Techniques for dynamic data redistribution are usually classified into regular and
irregular instances. There are many researches have been done with regular
block-cyclic data distribution format. Due to the different definition of GEN_BLOCK,
methods on irregular problems can be varied from regular ones.

For regular instances, the PITFALLS algorithm [10] is a representative research for
communication sets identification. Similar researches include algorithms for
BLOCK-CYCLIC data redistribution between processor sets proposed by Park et al. [8],
the algorithmic redistribution methods for BLOCK-CYCLIC decompositions proposed
by Dongarra et al. [9], the Generalized Basic-Cycle Calculation method [3] and
redistribution algorithms using MPI User-Defined Datatypes proposed by Bai et al. [1].

For communication efficiency, the communication scheduling technique proposed
by Dongarra et al. [2] is a representative research. Other techniques include the
multiphase redistribution strategy proposed by Kaushik et al. [6] to minimize message
startup cost and the processor mapping techniques for minimizing data transmission
overheads presented in [4] and [7].

Researches on irregular array redistribution include data indexing and
communication optimization. For data indexing category, a symbolic analysis method
was proposed by Guo et al. [5] to generate messages and reduce communication cost.
For communication efficiency, Lee et al. [7] presented a logical processor reordering

 ISO: Comprehensive Techniques Toward Efficient GEN_BLOCK Redistribution 509

algorithm on irregular array redistribution. This algorithm reordered processor id to
reduce communication overheads. Guo et al. [11] proposed a divide-and-conquer
scheduling algorithm for performing irregular array redistribution. Yook and Park
proposed a relocation scheduling algorithm [13]. It was a two-phase scheduling
algorithm which consisted of a list scheduling phase and a reallocation phase. Hui et al.
[12] proposed an improved algorithm based on relocation algorithm. However, it
reports very high algorithm complexity due to the constitution of divide-and-conquer
algorithm and the relocation process.

3 Communication Sets Identification

3.1 Single Dimensional Array

Definition 1: Given a S = (s1, s2, …, sm) to D = (d1, d2, …, dm) GEN_BLOCK
redistribution over m processors, the parameters s1, s2, …, sm and d1, d2, …, dm are
quantities of source data and destination data for processors P1, P2, …, Pm, respectively.
For source processor SPi, the lower bound and upper bound of source data denoted by

SDl
i and SDu

i, are defined as SDl
i = 1 +∑

−

=

1

0

i

k
ks and SDu

i = ∑
=

i

k
ks

0

. For destination

processor DPj, the lower bound and upper bound of destination data denoted by DDl
j

and DDu
j, are defined as DDl

j= 1 +∑
−

=

1

0

i

k
kd and DDu

j = ∑
=

i

k
kd

0

.

Definition 2: Given a S = (s1, s2, …, sm) to D = (d1, d2, …, dm) GEN_BLOCK
redistribution over m processors, for source processor SPi, its destination processor set
denoted by DPSi, is the set of destination processors with consecutive ids start from
DPSi

l and end at processor DPSi
u; for destination processor DPj, its source processor set

denoted by SPSj, is the set of source processors with consecutive ids start from SPSj
l

and end at processor SPSj
u;

According to the this definition, DPSi and SPSj can be formulated as follows,

DPSi
l = { j | DDl

j ≤ SDl
i ≤ DDu

j }, DPSi
u = { j | DDl

j ≤ SDu
i ≤ DDu

j },
SPSj

l = { i | SDl
i ≤ DDl

j ≤ SDu
i }, SPSj

u = { i | SDl
i ≤ DDu

j ≤ SDu
i }

To simplify the presentation, table 1 summarizes notations used in this paper and its
corresponding terminology.

Table 1. Mapping table of notations used in this paper

Abbreviation Full Name
SD Source Data
DD Destination Data
DPS Destination Processor Set
SPS Source Processor Set

510 S.-C. Chen and C.-H. Hsu

Fig. 1 shows two distribution schemes on array A[1:100] over 4 processors. Scheme
I represents array decomposition for SPi and scheme II represents array decomposition
for DPi. Parameters in Fig. 1 are the quantity of data segment that will be distributed to
corresponding processors.

 (a) (b)

Fig. 1. Irregular array distribution schemes. (a) Distribution scheme for source processors. (b)
Distribution scheme for destination processor.

To facilitate identification of communication sets, array S and array D are associated
with a dummy head entry, storing parameters in scheme I and scheme II, respectively.
Accordingly, for example, S = {0, 22, 23, 46, 9} and D = {0, 8, 47, 21, 24}.

Applying the above definitions, equations (1) and (2) can be used to generate
communication messages between source and destination processors. Given a S = (s1,
s2, …, sm) to D = (d1, d2, …, dm) GEN_BLOCK redistribution on a one-dimensional array
A, for source processor SPi, the message to be sent to destination processor DPj is a
consecutive data segment, can be formulated as

send
jimsg → = (x, y) (1)

where x < y.1

x = max(1+∑
=

i

a

aS
0

][, 1+∑
=

j

b

bD
0

][), is the left index of the message in local array of

SPi.

y = min(∑
+

=

1

0

][
i

a

aS ,∑
+

=

1

0

][
j

b

bD), is the right index of the message in local array of SPi.

For destination processor DPj, the message to be received from source processor SPi
can be formulated as follows,

receive
ijmsg ← = (p, q) (2)

where p < q.2

p = max(1+∑
=

j

a

aS
0

][, 1+∑
=

i

b

bD
0

][), is the left index of the message in local array of

DPj.

1 if x>=y, means SPi does not need to send message to DPj.
2 if p>=q, means DPj does not need to receive message from SPi.

 ISO: Comprehensive Techniques Toward Efficient GEN_BLOCK Redistribution 511

q = min(∑
+

=

1

0

][
j

a

aS ,∑
+

=

1

0

][
i

b

bD), is the right index of the message in local array of DPj.

Because of no repetition communication pattern in irregular GEN_BLOCK array
redistribution, according to definition 2, Equations (3) and (4) can be used to calculate
the total number of messages for SPi to send and for DPj to receive.

 |DPSi| = DPSi
u –DPSi

l +1 (3)

 |SPSj| = SPSj
u – SPSj

l + 1 (4)

3.2 Multi-dimensional Array

For the reason of simplicity, we use 2-D equation model to explain the
multi-dimensional indexing method. Following is an example, given a 2*2 processor
grid and distribution schemes (6, 4) in the first dimension and (2, 3) in the second
dimension, representing the source distribution scheme. Fig. 2 shows that data block
(1, 6)*(1, 2) is allocated to P00, the data block (7, 10)*(1, 2) is allocated to P10 and so on.

Fig. 3 shows another example of GEN_BLOCK distribution, representing destination
distribution with distribution scheme (8, 2) in the first dimension and (4, 1) in the
second dimension, denoted by dotted lines. By overlapping the two distribution layouts
in Fig. 2 and Fig. 3, it results nine separated data blocks, m00, m01, .., m22. The data
block m00 is allocated to P00 in both source and destination distributions. Similarly, m22
belongs to P11 in both source and destination distributions. Unlike m00, data blocks m01,
m10 and m11 are allocated to P01, P10 and P11, respectively, in the source distribution and
will all be allocated to P00 in the destination phase. Similar situation on m12 and m21, the
two blocks are both allocated to P11 in source phase and will be redistributed to P01 and
P10 in the destination phase.

Similar to 1-D scheme, the Sx = {0, 6, 4} and Dx = {0, 8, 2} are arrays for
representing source and destination distribution parameters in the first dimension; Sy =
{0, 2, 3} and Dy = {0, 4, 1} are arrays for representing distribution parameters in the
second dimension. Therefore, given a S = (Sx{}, Sy{}) to D = (Dx{}, Dy{})
GEN_BLOCK redistribution on a two-dimensional array A, for source processor SPxy,
the message to be sent to destination processor DPxy can be formulated as

send
yxxymsg ''→ = ((r, s), (t, u)), where r≦s and t≦u (5)

Fig. 2. 2-D array decomposition with
GEN_BLOCK distribution

Fig. 3. The generated messages for 2-D
GEN_BLOCK redistribution

512 S.-C. Chen and C.-H. Hsu

r = max(1+∑
=

x

a

aSx
0

][, 1+∑
=

'

0

][
x

b

bDx), s = min(∑
+

=

1

0

][
x

a

aSx , ∑
+

=

1'

0

][
x

b

bDx),

t = max(1+∑
=

y

a

aSy
0

][, 1+∑
=

'

0

][
y

b

bDy), u = min(∑
+

=

1

0

][
y

a

aSy , ∑
+

=

1'

0

][
y

b

bDy).

For example, data blocks that SP10 sends to DP00, DP01, DP10 and DP11 are ((7, 8), (1,
2)), ((9, 10), (1, 2)), ((7, 8), (5, 2)) and ((9, 10), (5, 2)), respectively. Because of the
validation conditions are r≦s and t≦u, only m01 = ((7, 8), (1, 2)) and m02 = ((9, 10), (1,
2)) are valid. Thus SP10 sends m01 and m02 to DP00 and DP01, respectively. Note that
although Equation (5) is a 2-D indexing scheme, it can be extended and applied to
multi-dimensional instances.

4 Communication Scheduling

Prior to demonstrate the proposed scheduling algorithm, we first clarify common
restrictions in this problem. In general, to avoid communication conflicts, no two or
more messages sent/received by the same processor can be scheduled in the same
communication step.

Definition 3: Given a directed bipartite graph G = (V, E) and vertex vi ∈ V, the degree of
vertex vi denoted by degree(vi), is the sum of in-degree or out-degree of vi. Degreemax
denotes the maximum degree(vi).

The TPDR scheduling algorithm is consisted of two parts. The first part is a degree
reduction iteration phase which can be applied when Degreemax > 2. The second part is
an adjustable coloring mechanism, which employs a coloring method and an adjustable
mechanism to arrange communications remained in G, used when Degreemax ≤ 2. Since
the optimality of graph theory, this phase is guaranteed to be optimal in terms of
minimum number of communication steps and total costs.

The degree reduction iteration phase operates as following steps:

1. If Degreemax = d >2, let Vmax={v1, v2, …, vk} be the set of vertices with
degree equal to d. Sort vertices v1, v2, …, vk in an non-increasng according
to accumulated costs of communication messages that adjacent to the
vertex.

2. Schedule the minimum message from each of vertices {v1, v2, …, vk} into step d
under the condition of no contention incurred.

3. Allocate all messages that are smaller than present length3 of step d under the
condition of no contention incurred.

4. Degreemax = Degreemax - 1. If Degreemax >2, repeat steps 1-3.

3 Length of a step is equal to the maximum message size in that scheduling step.

 ISO: Comprehensive Techniques Toward Efficient GEN_BLOCK Redistribution 513

5 Local Message Reduction Optimization

As discussed in section 4, a good scheduling algorithm could arrange messages to be
sent / received in proper communication steps. In order to minimize synchronization
delay among different communication steps, messages with close size will be
scheduled into the same step. However, this adoption is inadequate to derive a good
schedule in practice due to the different access time of local and remote data. In other
words, a good schedule of communications can be desired if the scheduling algorithm
is performed upon actual communication costs instead of theoretical message sizes.
Namely, the local communication should be distinguished from remote ones.

The Local Message Reduction (LMR) optimization scheme first defines ratio of
remote access time to local access time as follows,

RLR =
LAT

RAT 4 (6)

In LMR implementation, the RLR is then used to regulate costs of local messages in
order to reflect the actual communication costs. Upon the reduced message sizes,
TPDR can be employed to give a more precise scheduling result.

A minor issue worthy to mention, although it is not reasonable to say that the
scheduling result obtained by LMR outperforms the ordinary schedule by only
comparing the theoretical-reduced costs, the improvement of LMR scheme can still be
observed in further experiments which will be addressed in next section.

6 Performance Evaluation

To evaluate the performance of proposed techniques, we have implemented these
algorithms along with two other methods, the Coloring and List-Coloring scheduling
algorithms, with C+MPI codes. The former employs a pure coloring mechanism and
the later is combination of Coloring method and list scheduling method. The
experimental results are based on an array A[1:1000] over 4, 8, 12 and 16 processors.
The size of array A is 1 GB. Each executing time in the following Figures is the
average time of 10 randomly generated GEN_BLCOK redistribution cases.

Fig. 4 shows the performance results of TPDR, Coloring and List-Coloring
scheduling algorithms. The Coloring method paid all attention on optimizing
communication steps without considering the overall schedule length. On the other
hand, the List-Coloring algorithm adopted a size-oriented list scheduling approach to
minimize overall communication costs and a coloring mechanism to ensure minimum
number of communication steps during the redistribution operation. We observe that
both TPDR and List-Coloring outperforms the pure coloring mechanism in terms of
total execution time. Moreover, because both of the two algorithms aim at improving
scheduling length and guarantee the minimum number of communication step, they do
not have significant difference from performance results.

4 RLR is short for Remote to Local Ratio; RAT is short for Remote Access Time; LAT is short for

Local Access Time.

514 S.-C. Chen and C.-H. Hsu

Fig. 5 gives comparisons of three algorithms implemented with LMR scheme. We
have similar observations that both TPDR and List-Coloring outperforms the pure
coloring mechanism in terms of total execution time. There is one thing worthy to
mention is that the LMR technique improves all scheduling algorithms as compare to
Fig. 4 and resulting TPDR and List-Coloring have almost the same performance when
number of processors increased.

Fig. 4. Performance results of three scheduling
algorithms

Fig. 5. Performance results of the three
scheduling algorithms when LMR is applied
(RLR=8)

7 Conclusions

Without precedent, this paper presented comprehensive techniques to implement
GEN_BLOCK redistribution, which includes an Indexing scheme for communication
sets generation, a contention-free communication Scheduling algorithm and an
Optimization technique for improving communication efficiency. Both theoretical
analysis and experimental results show that the proposed techniques can efficiently
perform GEN_BLOCK data redistribution during runtime.

Acknowledgements

This paper is based upon work supported by National Science Council (NSC), Taiwan,
under grants no. NSC95-2213-E-216-006. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the authors and do not necessarily
reflect the views of the NSC.

References

[1] Bai, S.-W., Yang, C.-S., Huang, T.-C.: Packing/Unpacking using MPI User-Defined
Datatypes for Efficient Data Redistribution. IEICE Transaction on Information and
Systems E87-D, 1721–1728 (2004)

 ISO: Comprehensive Techniques Toward Efficient GEN_BLOCK Redistribution 515

[2] Desprez, F., Dongarra, J., Petitet, A.: Scheduling Block-Cyclic Data redistribution. IEEE
Transactions on Parallel and Distributed Systems 9, 192–205 (1998)

[3] Hsu, C.-H, Bai, S.-W, Chung, Y.-C, Yang, C.-S: A Generalized Basic-Cycle Calculation
Method for Efficient Array Redistribution. IEEE Transactions on Parallel and Distributed
Systems 11, 1201–1216 (2000)

[4] Hsu, C.-H, Yang, D.-L., Chung, Y.-C., Dow, C.-R.: A Generalized Processor Mapping
Technique for Array Redistribution. IEEE Transactions on Parallel and Distributed
Systems 12, 743–757 (2001)

[5] Guo, M., Pan, Y., Liu, Z.: Symbolic Communication Set Generation for Irregular Parallel
Applications. The Journal of Supercomputing 25, 199–214 (2003)

[6] Kaushik, S.D., Huang, C.H., Ramanujam, J., Sadayappan, P.: Multi-phase data
redistribution: Modeling and evaluation. In: Proceeding of IPPS’95, pp. 441–445 (1995)

[7] Lee, S., Yook, H., Koo, M., Park, M.: Processor reordering algorithms toward efficient
GEN_BLOCK redistribution. In: Proceedings of the ACM symposium on Applied
computing, pp. 539–543 (2001)

[8] Park, N., Prasanna, V.K., Raghavendra, C.S.: Efficient Algorithms for Block-Cyclic Data
redistribution Between Processor Sets. IEEE Transactions on Parallel and Distributed
Systems 10, 1217–1240 (1999)

[9] Petitet, A.P., Dongarra, J.J.: Algorithmic Redistribution Methods for Block-Cyclic
Decompositions. IEEE Transactions on Parallel and Distributed Systems 10, 1201–1216
(1999)

[10] Ramaswamy, S., Simons, B., Banerjee, P.: Optimization for Efficient Data redistribution
on Distributed Memory Multicomputers. Journal of Parallel and Distributed
Computing 38, 217–228 (1996)

[11] Wang, H., Guo, M., Wei, D.: Divide-and-conquer Algorithm for Irregular Redistributions
in Parallelizing Compilers. The Journal of Supercomputing 29, 157–170 (2004)

[12] Wang, H., Guo, M., Wei, D.: Message Scheduling for Irregular Data Redistribution in
Parallelizing Compilers. IEICE Transactions on Information and Systems E89-D, 418–424
(2006)

[13] Yook, H.-G., Park, M.-S.: Scheduling GEN_BLOCK Array Redistribution. The Journal of
Supercomputing 22, 251–267 (2002)

A New Memory Slowdown Model for the
Characterization of Computing Systems

Rodrigo Fernandes de Mello1, Luciano José Senger2, Kuan-Ching Li3,
and Laurence Tianruo Yang4

1 Dept. of Computer Science - ICMC, University of São Paulo, São Carlos, SP Brazil
mello@icmc.usp.br

2 Dept. of Information Technology, University of Ponta Grossa, PR Brazil
ljsenger@uepg.br

3 Dept. of Computer Science (CSIE), Providence University, Shalu, Taichung Taiwan
kuancli@pu.edu.tw

4 Dept. of Computer Science, St. Francis Xavier University, Antigonish, NS Canada
lyang@stfx.ca

Abstract. Performance measurements were extensively conducted to character-
ize parallel computer systems by using modelling and experiments. By analyzing
them, we corroborate current models did not provide precise memory charac-
terization. After detailed result observation, we conclude that the performance
slowdown is linear when using the main memory, and exponential when using
the virtual memory.

In this paper, we propose a characterization model composed of two regres-
sions which represent the slowdown caused by memory usage. Experimental re-
sults confirm the memory slowdown model improves the quality of computing
system characterization, allowing to carry out simulations and the use of such
results as a way to design real systems, minimizing project design costs.

1 Introduction

The computer system evaluation allows the analysis of technical and economic feasibil-
ity, safety, performance and correct execution of processes. The evaluation comprises
the application of techniques to estimate the behavior on different situations. Such tech-
niques provide numerical results which allow the comparison among different solutions
for the same problem [7]. The computer system evaluation may use elementary or indi-
rect techniques. The elementary ones are directly employed on the system, consequently
the system has to be previously implemented. Indirect techniques allow the system eval-
uation before implementing, what is relevant at the project design phase [8,9,14,15,12].

Indirect techniques employ mathematical models to represent the main system com-
ponent behavior. Such models should be as similar as possible to the real computing
system, allowing to obtain the nearest real results without being necessary to imple-
ment the system [12]. The main advantage of this approach is that the system can be
evaluated and investigated before its implementation stage, reducing the total amount
of investment. A number of models have been proposed for the evaluation of execution
time and process delay. They consider CPU usage, the performance slowdown due to
the use of the virtual memory [1] and the time spent in message transmissions [6].

V. Malyshkin (Ed.): PaCT 2007, LNCS 4671, pp. 516–524, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A New Memory Slowdown Model for the Characterization 517

Amir et al. [1] have proposed a method for job assignment and reassignment on clus-
ter computing. This method utilizes a queuing network model to represent the slowdown
caused by virtual memory usage. In such model, the static memory m(j) used by the
process is known and load to each computer is defined according to equation 1, where:
L(t, i) is the load of computer i at the instant t; lc(t, i) is the CPU occupation; lw(t, i)
is the amount of main memory used; rw(i) is maximum capacity of the main memory;
and β the slowdown factor due to the use of virtual memory. Such factors increase the
process response time, what consequently reflects in a lower final performance. This
work attempts to minimize the slowdown by means of scheduling operations.

L(t, i) =

{
lc(t, i) if lw(t, i) ≤ rw(i)
lc(t, i) ∗ β otherwise

(1)

Mello et al. [10] have proposed improvements to the slowdown model by Amir
et al. [1], investigating in parallel modelling of message transmission delays [6, 18].
That work includes new parameters which allow better modelling of process slowdown.
However, such model presents similar limitations to the work previously presented by
Amir et al. [1], since it neither model the delay caused by the virtual memory usage
(represented in equation 1 by the parameter β), nor consider other execution delays gen-
erated by message transmissions, hard disk accesses and other input/output operations.

Culler et al. [6] have proposed the LogP model to quantify the overhead and net-
work communication latency among processes. The overhead and latency cause delays
among communicating processes. This model is composed of the following parameters:
L which represents the high latency limit or delay incurred in transmitting a message
containing a word (or a small number of words) from the source computer to a target;
o represents the overhead which is the time spent to prepare a message for sending or
receiving; g is the minimum time interval between consecutive message transmissions
(sending or receiving);P is the number of processors. The LogP model assumes a finite
capacity network with the maximum transmission defined by L/g messages.

Sivasubramaniam [18] used the LogP model to propose a framework to quantify the
overhead of parallel applications. In such framework, aspects such as the processing
capacity and the communication system usage are considered. This framework joins
efforts of actual experiments and simulations to refine and define analytic models.
Though, this approach still presents limitations, due to its incompleteness.

The LogP model can be aggregated to the model by Amir et al. [1] and Mello et
al. [10], permitting to evaluate the process execution time and slowdowns considering
CPU, memory and network messages. Unfortunately, the composition of these three
models is still incomplete, since the spatial and message generation probability dis-
tributions are not considered. Motivated by such limitations, some studies have been
proposed [11, 20].

Chodnekar et al. [11] have presented a study to characterize the probability distribu-
tion of messages on communication systems. In such work, the 1D-FFT and IS [19],
Cholesky and Nbody [17], Maxflow [2], 3D-FFT and MG [3] parallel applications are
evaluated and executed on real computing systems. In the experiments, some informa-
tion has been captured such as the message sending and receiving moments, message
size and destination. Such information were analyzed by using statistic tools, and the

518 R.F. de Mello et al.

spatial and message generation probability distributions were obtained. The spatial dis-
tribution defines the frequency that each process communicates to others, while the
message generation distribution defines the probability that each process sends mes-
sages to others.

They have concluded that the most usual message generation probability distribution
for parallel applications is the exponential, hyperexponential and Weibull. It has also
been concluded that the spatial distribution is non-uniform and there are different traffic
patterns during the application execution. In most of the applications, there is a process
which receives and sends large number of messages to others (like a master node in
PVM and MPI applications). The work also presents some features on message volume
distribution, though precise analysis about the message size, overhead and latency can
not be provided.

Vetter and Mueller [20] have studied the communication behavior of scientific appli-
cations using MPI. This study quantifies the average volume of transmitted messages
and their size, and the result is that in peer-to-peer systems, 99% of the transmitted
messages vary from 4 to 16384 bytes, while in collective calls, this number varies from
2 to 256 bytes. This was combined to the studies on spatial and message generation
distributions by Chodnekar et al. in [11] and to the LogP model [6] which allow the
identification of overhead and communication latency in computing systems.

All models previously presented try to represent and characterize a real comput-
ing system. Each model focus on a specific subject such as processing, memory and
network. Experiments conducted using such models and comparing to results obtained
from real environments. The results proved that models are not able to completely repre-
sent real environments. We expect that, when joining all the characteristics of such mod-
els, it is possible to characterize and replicate the behavior to be observed in computer
systems. By replicating, we can simulate such systems and better understand before im-
plementing the production version. This may reduce costs related to the design, on-the-
fly modifications, and also allows the simulation of environments not easily available to
common users (such as Grids). Unfortunately, even in such way we cannot understand
the actual system behavior, because some parameters are not well defined and studied.
Such problem has motivated this work which proposes a new memory model to char-
acterize the delays caused by the main and virtual memory on process executions. By
modelling such delays or slowdowns caused to the process execution, we can better
represent a real environment.

To study such memory delay, we have developed a suite of benchmark tools called
BenchSim. In this suite, there are applications to measure the CPU, hard disk and net-
work performances.

This paper is organized as following. In section 2, we present the proposed memory
model, while validation results are presented in section 3, and finally, some concluding
remarks are presented in section 4.

2 The Model

By joining all previously presented models, researchers may study and evaluate differ-
ent system techniques without the need to run applications on real computing systems.

A New Memory Slowdown Model for the Characterization 519

This reduces the time to evaluate such techniques, allowing to consider more time in
the design than implementation phase. This is also very important because some envi-
ronments are easily available (such as clusters and grids). Our motivation in this paper
is to improve the system characterization by better represent the slowdowns caused by
memory.

The work by Amir et al. [1] presents adequate equation in which there is a delay in
the process execution from the moment the virtual memory starts to be used. Though,
we have to improve such characterization to better represent real systems. Based on this
research, we decided to propose a suite of benchmark tools to evaluate system capacity,
including memory. From experiments, we noticed the memory was not well charac-
terized by previous models and we decided to propose a static and virtual memory
parameter to improve related work.

From experimental results, we corroborate the other models did not provide the pre-
cise memory characterization. We observed the performance slowdown is linear during
the main memory usage and exponential from the moment the virtual memory starts to
be used. So, we should model the memory usage with different parameters.

The proposed memory benchmark creates child processes until the main and virtual
memories are filled up, measuring the delays of the context switches among processes.
Child processes only allocate memory and then sleep for some seconds, and thus, it
does not consider the processor usage. We assume this context switch time as the slow-
down time to resume a process execution, and this is considered as the memory delay
parameter to complement other models.

We have conducted experiments on a personal computer consisting of one Intel Pen-
tium 4 2.4 GHz CPU, 512 MB RAM, 512 MB virtual memory, 7200 rpm hard disk and
one 100 Mb Fast Ethernet network card. The results are very interesting, and they are
shown in figure 1.

We confirmed the main memory slowdown has a linear behavior. Though, from the
moment the virtual memory starts to be used, the slowdown becomes exponential and
tends to be infinite after occupying both memories. Such results invalidate the mul-
tiplicative constant delay proposed by Amir et al. [1]. For generating memory delay
parameters, data regressions is proposed in table 1, which are based on the figure 1.
Such equations are used as memory slowdown parameter, instead of β in the equation
1, in the Amir’s model. The memory occupation is applied in the regressions of table 1
and the resultant y is used as β. If only the main memory is used, we adopt the linear
regression, otherwise, the exponential.

Besides measuring the memory slowdown, the suite of benchmark tools, named
BenchSim1, contains applications to measure objectively the CPU capacity, hard disk
read and write throughput and the message transmission delays. Such tools evaluate
these characteristics until they reach a minimum sample size based on the central limit
theorem, allowing to apply statistical summary measures such as confidence interval,
standard deviation and mean [21]. This suite is composed of the following tools:

1. mips – it measures the processor capacity, in millions of instructions per second.
This tool uses a bench() function implemented by Kerrigan [13];

1 Source code available at http://www.icmc.usp.br/˜mello

520 R.F. de Mello et al.

 0

 10

 20

 30

 40

 50

 60

 70

 0 100 200 300 400 500 600 700 800 900 1000

M
em

or
y

O
cc

up
at

io
n

Slowdown

Fig. 1. Main and Virtual Memory Slowdown

Table 1. Regressions of the Main and Virtual Memory Slowdown

Used Memory Regression Equation R2

Main memory Linear y = 0.0069x − 0.089 0.9377

Main and
virtual Memory Exponential y = 1.1273 ∗ e0.0045x 0.9691

2. memo – it creates child processes until the main and virtual memories are filled
up, measuring the delays of the context switches among processes. Child processes
only allocate memory and then sleep for some seconds, thus it does not consider
the processor usage;

3. discio – it measures the write mean throughput (buffered and unbuffered) and
the read mean throughput in local storage devices (hard disks) or remote storage
devices (via network file systems);

4. net – it is composed of two applications, a client and a server, which allow the
evaluation of the time spent to send and receive messages on communication net-
works.

Afterwards, a real environment was parameterized to validate the memory slowdown
model adaptation and also the way resource capacities are obtained by the BenchSim.
Results are presented in the next section.

3 Validation

In order to validate the proposed memory model characterization, all the previously
presented models were joint and real and simulation experiments conducted. The real
experiments considered executions of a parallel application developed in PVM [4] in a

A New Memory Slowdown Model for the Characterization 521

scenario composed of two homogeneous computers. This application is composed of a
master and worker processes. The master process launches one worker on each com-
puter and defines three parameters: the problem size, that is, the number of mathematic
operations executed to solve an integral (eq. 2) defined between two points a and b by
using the trapezium rule [16,5], while the workers present four stages: message receiv-
ing, processing and message sending. The message exchange happens between master
and worker at the beginning and at the end of the worker execution. The workers are
instrumented to count the time consumed in operations.

∫ b

a

2 ∗ sinx+ ex (2)

Scenario details are presented in the table 2 and they have been obtained by the
benchmark suite. A message size of 32 bytes has been considered for the benchmark
net. The table 3 presents the slowdown equations generated by using main and vir-
tual memories, respectively, on the computers c1 and c2. Such equations have were
obtained by the experiments with the benchmark memo. The linear format of the equa-
tions is used when the main memory is not completely filled up, for instance, in the
case of computers c1 and c2 not exceed 1GB of the memory capacity. After exceeding
such limit, the virtual memory is used and the delay is represented by the exponential
function.

Table 2. System details

Resource c1 c2
CPU (Mips) 1145.86 1148.65
Main memory (Mbytes) 1Gbyte 1Gbyte
Virtual memory (Mbytes) 1Gbyte 1Gbyte
Disk writing throughput (MBytes/seg) 65.55 66.56
Disk reading throughput (MBytes/seg) 76.28 75.21
Network overhead and latency (seconds) 0.000040

Table 3. Memory slowdown functions for computers c1 and c2

Memory Regression Equation R2

Main memory Linear y = 0.0012x− 0.0065 0.991
Main and

Virtual memory Exponential y = 0.0938 ∗ e0.0039x 0.8898

Experimental results are presented in the table 4. We may observe that the error
among the curves is low, close to zero. Ten experiments have been conducted for a dif-
ferent number of applications, each one composed of two workers executing on two
computers. Such experiment was applied to saturate the capacity of environment re-
sources. The figure 2 shows the experiment and simulation results.

522 R.F. de Mello et al.

Table 4. Simulation results for computers c1 and c2

Processes Actual Simulation Error (%)
10 151.40 149.51 0.012
20 301.05 293.47 0.025
30 447.70 437.46 0.022
40 578.29 573.58 0.008
50 730.84 714.92 0.021
60 856.76 862.52 0.006
70 1002.10 1012.17 0.009
80 1147.44 1165.24 0.015
90 1245.40 1318.37 0.055
100 1396.80 1471.88 0.051

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 10 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

Number of Processes

Actual average response time
Predicted average response time

Fig. 2. Actual and simulated mean response times for computers c1 and c2

Simulation results confirm the ability to reproduce the real system behavior. Errors
start to increase when the system executes large number of processes (ranging from 90
to 100).

Real executions, using 90 and 100 processes, overload the computers and some pro-
cesses were killed by PVM. The premature stopping of processes (about 5 processes
where killed) decreases the computer loads, justifying the model error. The simulator
was used aiming to predict the system behavior.

4 Conclusions and Future Work

After studied extensively performance models introduced by Amir et al. [1], Mello
et al. [10], Culler et al. [6], Sivasubramaniam [18], Chodnekar et al. [11], Vetter and

A New Memory Slowdown Model for the Characterization 523

Mueller [20], we have noticed such models are not capable to completely represent a
computing environment. Such drawbacks have motivated this work which proposes a
new memory model to characterize the delays caused by the main and virtual memory
on process executions and the development of a suite of benchmarks, named BenchSim.

As observed by experimental results obtained from real and simulated environments,
the proposed memory model can better represent a real computing system under
investigation.

Acknowledgments

This paper is based upon work supported by CAPES, Brazil under grant no. 032506-6
and NSC, Taiwan under grants no. NSC95-2911-I-216-001 and NSC95-2221-E-126-
006-MY3. Any opinions, findings, and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily reflect the views of the
CAPES or NSC.

References

1. Amir, Y.: An opportunity cost approach for job assignment in a scalable computing cluster.
IEEE Transactions on Parallel and Distributed Systems 11(7), 760–768 (2000)

2. Anderson, R.J., Setubal, J.C.: On the parallel implementation of goldberg’s maximum flow
algorithm. In: Proceedings of the fourth annual ACM symposium on Parallel algorithms and
architectures, San Diego, California, United States, pp. 168–177. ACM Press, New York
(1992)

3. Bailey, D.H., Barszcz, E., Barton, J.T., Browning, D.S., Carter, R.L., Dagum, D., Fatoohi,
R.A., Frederickson, P.O., Lasinski, T.A., Schreiber, R.S., Simon, H.D., Venkatakrishnan, V.,
Weeratunga, S.K.: NAS Parallel Benchmarks. The International Journal of Supercomputer
Applications 5(3), 63–73 (1991)

4. Beguelin, A., Gueist, A., Dongarra, J., Jiang, W., Manchek, R., Sunderam, V.: PVM: Parallel
Virtual Machine: User’s Guide and tutorial for Networked Parallel Computing. MIT Press,
Cambridge (1994)

5. Burden, R.L., Faires, J.D.: Análise Numérica. Thomson (2001)
6. Culler, D.E., Karp, R.M., Patterson, D.A., Sahay, A., Schauser, K.E., Santos, E., Subramo-

nian, R., von Eicken, T.: LogP: Towards a realistic model of parallel computation. In: Prin-
ciples Practice of Parallel Programming, pp. 1–12 (1993)

7. de Mello, R.F.: Proposta e Avaliacão de Desempenho de um Algoritmo de Balanceamento de
Carga para Ambientes Distribuídos Heterogêneos Escaláveis. PhD thesis, SEL-EESC-USP
(November 2003)

8. Lazowska, E., et al.: Quantitative System Performance: Computer System Analysis Using
Queueing Networks Models. Prentice-Hall, Englewood Cliffs (1984)

9. Bratley, P., et al.: A Guide to Simulation. Springer, Heidelberg (1987)
10. Mello, R.F., et al.: Analysis on the significant information to update the tables on occupa-

tion of resources by using a peer-to-peer protocol. In: 16th Annual International Symposium
on High Performance Computing Systems and Applications, Moncton, New-Brunswick,
Canada (June 2002)

11. Chodnekar, S., et al.: Towards a communication characterization methodology for parallel
applications. In: Proceedings of the 3rd IEEE Symposium on High-Performance Computer
Architecture (HPCA ’97), p. 310. IEEE Computer Society Press, Los Alamitos (1997)

524 R.F. de Mello et al.

12. Jain, R.: The Art of Computer Systems Performance Analysis: Techniques for Experimental
Design, Measurements, Simulation and Modeling. John Wiley & Sons, England (1991)

13. Kerrigan, T.: Tscp benchmark (2004)
14. Kleinrock, L.: Queueing Systems - Volume II: Computer Applications. Wiley, England

(1976)
15. Lavenberg, S.S.: Computer Performance Modeling Handbook. Academic Press, San Diego

(1983)
16. Pacheco, P.S.: Parallel Programming with MPI. Morgan Kaufmann, Seattle (1997)
17. Singh, J.P, Weber, W., Gupta, A.: Splash: Stanford parallel applications for shared-memory.

Technical report (1991)
18. Sivasubramaniam, A.: Execution-driven simulators for parallel systems design. In: Winter

Simulation Conference, pp. 1021–1028 (1997)
19. Sivasubramaniam, A., Singla, A., Ramachandran, U., Venkateswaran, H.: An approach to

scalability study of shared memory parallel systems. In: Measurement and Modeling of Com-
puter Systems, pp. 171–180 (1994)

20. Vetter, J.S., Mueller, F.: Communication characteristics of large-scale scientific applications
for contemporary cluster architectures. J. Parallel Distrib. Comput. 63(9), 853–865 (2003)

21. Shefler, W.C.: Statistics: Concepts and Applications. The Benjamin/Cummings (1988)

V. Malyshkin (Ed.): PaCT 2007, LNCS 4671, pp. 525–536, 2007.
© Springer-Verlag Berlin Heidelberg 2007

SCRF – A Hybrid Register File Architecture

Jer-Yu Hsu, Yan-Zu Wu, Xuan-Yi Lin, and Yeh-Ching Chung

Department of Computer Science, National Tsing Hua University,
Hsinchu, 30013, Taiwan, R.O.C.

{zysheu, ocean}@sslab.cs.nthu.edu.tw,
{xylin, ychung}@cs.nthu.edu.tw

Abstract. In VLIW processor design, clustered architecture becomes a popular
solution for better hardware efficiency. But the inter-cluster communication
(ICC) will cause the execution cycles overhead. In this paper, we propose a
shared cluster register file (SCRF) architecture and a SCRF register allocation
algorithm to reduce the ICC overhead. The SCRF architecture is a hybrid regis-
ter file (RF) organization composed of shared RF (SRF) and clustered RFs
(CRFs). By putting the frequently used variables that need ICCs on SRF, we
can reduce the number of data communication of clusters and thus reduce the
ICC overhead. The SCRF register allocation algorithm exploits this architecture
feature to perform optimization on ICC reduction and spill codes balancing.
The SCRF register allocation algorithm is a heuristic based on graph coloring.
To evaluate the performance of the proposed architecture and the SCRF register
allocation algorithm, the frequently used two-cluster architecture with and
without the SRF scheme are simulated on Trimaran. The simulation results
show that the performance of the SCRF architecture is better than that of the
clustered RF architecture for all test programs in all measured metrics.

Keywords: VLIW processor, cluster processor architecture, register architec-
ture, register allocation algorithm.

1 Introduction

The clustered RF architecture is one of the solutions for this scalability problem of the
wide-issue architecture [1,2,3]. In the clustered RF architecture, the functional units
and the RF are partitioned into clusters and functional units can only have intra-
cluster accessibility to their local RFs. Therefore, the complexity of RFs and bypass
network can be reduced significantly.

In this paper, we propose a shared clustered RF architecture, SCRF, to reduce the
ICC overhead. The SCRF is a hybrid architecture by combining the clustered RF
architecture and the RF replication scheme. In the SCRF architecture, the RF and
functional units are divided into clusters. The RF in each cluster contains one shared
RF and one local RF. The shared RFs (SRFs) act as the replicated RFs in the RF
replication scheme and the local RFs (CRFs) act as the RFs in the clustered RF
architecture. Any one of the ICC models mentioned above can be used as the ICC
model of the SCRF architecture. When a functional unit in a cluster wants to access
data in another cluster, it can access the data through either the ICC or the SRF in its

526 J.-Y. Hsu et al.

cluster. By putting the frequently used variables that need ICCs on the SRF, we can
reduce the number of data communication of clusters and thus reduce the ICC over-
head. In the clustered RF architecture, some registers will be used for calling conven-
tion. These registers are called macro registers [4]. The ICCs generated to access
these macro registers cannot be optimized by the clustering algorithm. In the SCRF
architecture, we can define these macro registers in the SRF and the ICC overhead can
be reduced a lot.

In the SCRF architecture with macro registers in the SRF, the execution cycles, the
ICC overhead, the spill codes overhead, and the code density can get 11.6%, 55.6%,
52.7%, and 18.2% reduction in average, respectively.

The rest of the paper is organized as follow. In Section 2, we will give brief de-
scriptions for some related research work. Section 3 will describe the SCRF architec-
ture and discuss some hardware design issues. In Section 4, we will give the details of
the SCRF register allocation algorithm. Section 5 will give the experiment evaluation
and analysis.

2 Related Work

The clustered RF architecture has advantage in hardware efficiency, but the drawback
is the extra ICC overhead [5]. Many new RF organizations have been proposed in the
literature to eliminate ICC overhead and remain hardware efficient [1,6,7,8].

Narayanasamy et al. propose a clustered superscalar architecture. The RF organiza-
tion is similar as that of the SCRF. But their ICC is decided by hardware, and shared
RF is only used for ICC. Zhang et al. [9] also proposed a similar SCRF architecture.
They design a two destination write operation to write registers in shared RF and
clustered RF simultaneously. This way can remove the anti-dependency to speed up
the software pipelining. But they did not propose any compiler algorithms for this
architecture.

Some researchers try to solve the problem of binding variables to clustered RFs. In
our work, we want to bind variables to SRF and CRFs. Hiser et al. do variables bind-
ing before the instruction clustering. The authors proposed a heuristic to do the vari-
ables binding for ICC reduction. Terechko et al. [10] proposed several global values
binding algorithms for the clustered RFs architecture. Since the global values are long
live range variables, the binding of global values is more important. The authors pro-
posed a feedback-directed two-pass assignment. The assignment does variable bind-
ing after initial assignment, clustering and scheduling for accurate ICC estimation.
But it dose not take spill pressure into consideration.

3 The Architecture Models

3.1 The Clustered RF Architecture

The clustered RF architecture and its instruction set used in this paper are based on
the EPIC processor architecture [4] (see Fig. 1).

 SCRF – A Hybrid Register File Architecture 527

In the EPIC processor architecture, each cluster contains an integer unit, a floating
unit, a branch unit, a general purpose RF (GPR), a floating point RF (FPR), a branch
target RF (BTR), and a memory unit. In this clustered RF architecture, it has the fol-
lowing disadvantages:

• Since the ICC uses communication units to move date between RFs in different
clusters, it will lead to several performance overheads such as extra issue slots oc-
cupation, the schedule length increasing, and the code size increasing.

• Since the spill codes pressure will aggregate to one cluster under certain situations
in the register allocation phase, this imbalance of the spill code pressure will cause
more spill codes overhead.

I : integer unit
M: memory unit
B: branch unit
F: floating unit
C: communication unit

Fig. 1. The clustered RF architecture

3.2 The SCRF Architecture

In the SCRF architecture, each cluster contains two types of RF, SRF and CRF (see
Fig. 2). The SRF can be accessed by all functional units and the CRF can be accessed
only by functional units in its local cluster.

The ICC is solved by using communication units to move date between CRFs in
different clusters. The SCRF architecture has the following advantages:

• The SRF provides a shared storage to allocate variables. Functional units can ac-
cess these variables on SRF without the ICC. An efficient SRF register allocation
scheme is needed for variables binding in order to optimize the ICC reduction.

• In addition to the ICC reduction, the balanced spill codes pressure is another ad-
vantage of the SCRF architecture. In the SCRF architecture, we can allocate some
variables from high spill codes pressure cluster to the SRF. Therefore the unbal-
anced situation of spill codes pressure can be eliminated.

I : integer unit
M: memory unit
B: branch unit
F: floating unit
C: communication unit

Fig. 2. The SCRF architecture

528 J.-Y. Hsu et al.

4 The SCRF Register Allocation Algorithm

The notations used in the following sections are listed below:

• CLR: the set of all variables.
• SLR: the set of meta-variables.
• Ci: the ith cluster of the SCRF architecture.
• vi: a variable in CLR.
• Si: a variable in SLR.
• crij: the ith register of the CRF in the jth cluster.
• sri: the ith register of the SRF.
• C_LR(vi): the live range of variable vi.
• S_LR(Si): the live range of variable Si.
• icc_cost(vi): the ICC overhead of variable vi.
• icc_cost(Si): the ICC overhead of variable Si.
• sp_code(vi): the spill code overhead of variable vi.
• sp_code(Si): the spill code overhead of variable Si.
• icc_relation(vi): the set of variables that have an ICC relation with vi.
• in_relation(vi): the set of variables that have an interference relation with vi.
• node(vi): the corresponding vertex of variable vi in a variable graph.
• (node(vi), node(vj)): an edge of a variable graph.
• W(node(vi)): the weight associated to vertex node(vi) in a variable graph.
• W((node(vi), node(vj))): the weight associated to edge (node(vi), node(vj)) in a variable

graph.
• color(crij): the color of register crij.
• color(sri): the color of register sri.
• color(vi): the color of variable vi.
• color(Si): the color of variable Si.

Fig. 3 shows the compilation flow used in the SCRF architecture. In Fig. 3, the
clustering phase performs clustering for instructions and variables. In this phase, each
variable is assigned to one cluster. If ICC is needed, the clustering algorithm will gen-
erate new variables and insert communication instructions for data transfer. The new
generated variables are assigned to the demand cluster.

Fig. 3. The compilation flow of the SCRF architecture

Before modeling the variable binding problem, we need the following definitions:

Definition 1: If two variables vi and vj in CLR are on different clusters and they are
used in an ICC code, then C_LR(vi) and C_LR(vj) have an ICC relation.

 SCRF – A Hybrid Register File Architecture 529

Definition 2: If C_LR(vi) and C_LR(ji) have intersections, then C_LR(vi) and C_LR(ji)
have an interference relation.

If C_LR(vi) and C_LR(vj) have an ICC relation, the ICC overhead occurred be-
tween variables vi and vj. If C_LR(vi) and C_LR(vj) have an interference relation,
variables vi and vj cannot be allocated to the same register.

Definition 3: A variable graph VG = (V, E) is defined as a weighted graph, where V =
{node(vi) | ∀ vi ∈ CLR}, E = Eicc ∪ Ein ={(node(vi), node(vj)) | ∀ vi, vj ∈ CLR, vj ∈
icc_relation(vi)} ∪ {(node(vx), node(vy)) | ∀ vx, vy ∈ CLR, vy ∈ in_relation(vx)},
W(node(vi)) = sp_code(vi) for all vi ∈ CLR, W((node(vi), node(vj))) = icc_cost(vi) for
all (node(vi), node(vj)) ∈ Eicc, and W((node(vx), node(vy))) = 0 for all (node(vx),
node(vy)) ∈ Ein.

Given a variable graph VG and the colors of CRFs and SRF, the variable binding
problem can be modeled as a graph coloring problem as follows:

Input:
A variable graph VG = (V, E) and the colors of CRFs and SRF

Constrains:
1. For all (node(vx), node(vy)) ∈ Ein, color(vx) ≠ color(vy).
2. If vi is assigned to cluster Cj, vi can only be colored by the colors of reg-

isters in Cj or the colors of registers in SRF
Goal:

Based on the constraints, do a graph coloring on VG using the colors of reg-
isters in CRFs and SRF such that the following cost function is minimized:
Cost(VG) = Cost(V) + Cost(Eicc) (1)

where Cost(V) = (())

i

i

v CLR

W node v
∈
∑ if vi is not colored,

and Cost(Eicc) =
((), ())

(((), ()))

i j icc

i j

node v node v E

W node v node v
∈

∑ if

color(vi) ≠ color(vj).

Since the graph coloring problem above is NP-complete, we propose a greedy al-
gorithm, the SRF register allocation algorithm, to find a suboptimal solution. Given
CLR and the variable graph VG of CLR, the proposed algorithm consists of the fol-
lowing phases:

4.1 Phase 1

Since our goals are to reduce the ICC and the spill code overheads, if variables used
in ICCs can be binding to SFR, the ICCs and the spill code overheads of variables can
be eliminated. Therefore, in this phase, we want to construct the set SLF from CLF by
merging variables in CLF that have the same ICC relation as a variable in SLF. We
called the variables in SLF as meta-variables. Note that a meta-variable in SLF con-
tains at least one variable in CLF. The meta-variables are candidates for SRF binding.
The construct of SLF from CLF is given as follows:

530 J.-Y. Hsu et al.

Algorithm SLR_gen(CLR)
1. Let SLR = ∅; for (i=1; i< |CLR|; i++) mark[i] = 0;
2. for (i=1; i< |CLR|; i++) {
3. if (mark[i] == 0) then {
4. Si = {vi}; S_LR(S) = C_LR(vi);
5. for (j=i+1; j<= |CLR|; j++)
6. if (mark[j] == 0 && (vj ∈ icc_relation(vi)) then
7. { Si = Si ∪ {vj}; S_LR(S) = S_LR(S) ∪ C_LR(vj); mark[j] = 1;}
8. SLR = SLR ∪ Si;
9. }
10. }

End_of_SLR_gen

4.2 Phase 2

Given a colored or uncolored VG, in this phase, the CRF-coloring algorithm will
color those uncolored vertices in VG such that Cost(VG) in Equation (1) is minimized.
This problem is similar to the traditional Chaitin’s style graph coloring register alloca-
tion problem [11]. In the CRF-coloring algorithm, the weights of vertices are used to
decide the coloring order of vertices. Initially, all uncolored vertices are sorted as a
list, CAN, according to their weights in descending order. Then, vertex node(vi) in
CAN is colored one by one according to the colors of neighbors of node(vi). During
the coloring process, a vertex may be colored or uncolored. However, the number of
colors used should be the minimum. The CRF-coloring algorithm is given as follows:

Algorithm CRF_coloring(VG)

1. Let CAN be a sorted uncolored vertices of VG according to the weights of vertices
in descending order; /* CAN(k) denotes the kth element in CAN */

2. for (k=1; k<= |CAN|; k++) {
3. Let CAN(k) be the corresponding vertex vi of variable in VG and vi is a vari-

able assign to cluster Cj;
4. Let neighbor_color(vi) = {color(vl)| vl ∈ in_relation(vi)};
5. m = 1; while (color(crmj) ∈ neighbor_color(vi)) m++;
6. if (m <= the number of register of CRF in Cj)
7. then color(node(vi)) = color(crmj)
8. }

End_of_CRF_coloring

4.3 Phase 3

Given the colored VG obtained in the Phase 2, in this phase, we want to find the vari-
able Si in SLF such that the binding of Si to SRF can lead to a maximum gain of the
ICC and the spill code overheads reduction. After binding Si to SRF, we change the
colors of vertices in VG that corresponding to variables in Si to the color of Si, that is,
for each variable vi in Si, set color(vi) = color(Si). Since the change of variable colors
will release some colors for other uncolored variables, we call algorithm

 SCRF – A Hybrid Register File Architecture 531

CRF_coloring to color those uncolored variables. Then, we continue the binding of
variables in SLF to SRF process until all variables in SLR are binding to SRF or no
variable in SLR can be binding to SRF. The following algorithm performs the tasks
mentioned above.

Algorithm SRF_coloring(VG, SLF)

1. n = 1; for (k=1; k<= |SLF|; k++) mark[k] = 0; VG2 = VG;
2. do {
3. gain = 0; i = 0; VG1 = VG;
4. for (k=1; k<= |SLF|; k++)
5. if (mark[k] == 0) then {
6. call color_Sk(VG, Sk);
7. temp = Cost(VG1) – Cost(VG);
8. if (temp > gain) then { gain = temp; VG2 = VG; i = k;}
9. VG = VG1;
10. }
11. VG = VG2; n++; mark[i] = 1;
12. } until (n > |SLF|)

End_of_SRF_coloring

Algorithm color_Sk(VG, Si)
1. neighbor_color(Si) =

j iv S∈
∪ {color(vl)| vl ∈ in_relation(vj)};

2. m=1;while(color(srm)∈neighbor_color(Si)) m++;
3. if (m <= the number of register of SRF) then {
4. color(Si) = color(srm);
5. ∀ vj ∈ Si, color(vj) = color(Si);
6. call CRF_coloring(VG);
7. }

End_of_color_Sk

4.4 Phase 4

The coloring process will be terminated as one of the following conditions is satisfied;

• All variables in SLR are binding to SRF.
• No variable in SLR can be binding to SRF.

If the first case is satisfied, all variables can be binding to SRF, the ICC and the
spill codes overheads of variables can be eliminated. For the second case, if all vari-
ables are colored, the spill code overheads of variables can be eliminated. Otherwise,
some variables will be spilled to memory. The corresponding spill codes, callee-saved
codes, and caller-saved codes will be generated.

4.5 An Example to Illustrate the SCRF Register Allocation

In the SCRF register allocation, we calculate the CLR, interference relations and ICC
relations as the input data. In this example, these input data is listed as follow.

532 J.-Y. Hsu et al.

• CLR = { v0, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11 }
• Interference relations = {(v0, v1), (v0, v2), (v0, v5), (v1, v2), (v1, v3), (v1, v4),

(v1, v6), (v2, v4), (v3, v4), (v4, v5), (v5, v7), (v6, v7),
(v8, v9), (v8, v10), (v8, v11), (v10, v11)}

• ICC relations = {(v0, v8), (v3, v9), (v5, v8), (v7, v10)}

According to Definition 3, VG can be build as the Fig. 4. In Fig. 4, Fig. 5 and Fig.
6, the interference relations are show as the solid lines and the ICC relations are show
as dash lines.

The goal of the SCRF register allocation is to minimize Equation (1). The follow-
ing will show the state transition of this example in these four phases of the SCRF
register allocation.

In phase 1, SLR is computed from CLR by merging variables in CLR based on the
ICC relations of variables in CLR. Variables in SLR are candidates that can be binding
to SRF. The following is the computed result by SLR_gen algorithm.

SLR ={ S0, S1, S2, S3, S4, S5, S6, S7},
S0 = { v0, v5, v8}, S1 = { v1}, S2 = { v2}, S3 = { v3, v9},
S4 = { v4}, S5 = { v6}, S6 = { v7, v10}, S7 = { v11}

In phase 2, the CRF-coloring algorithm is performed to color VG such that the
Cost(VG) in Equation (1) is minimized. In this example, CRFi denotes the CRF in
cluster i and cri denotes the register i in CRF. In SRF, sri denotes the register i in SRF.
In Fig. 5 and Fig. 6, if one node is colored by cri or sri, we color the node as green or
blue respectively and mark the number i inside this node. In this example, there are
two registers in each CRFi and one register in SRF.

CRF0 = { cr0, cr1 }, CRF1 = { cr2, cr3 }, SRF = { sr0 }

After the CRF-coloring algorithm, the state of VG is show as Fig. 5.
In phase 3, the SRF-coloring algorithm is performed to bind variables in SLF to

SRF such that the Cost(VG) is minimized. The SRF-coloring algorithm will terminate
when all variables in SLR are binding to SRF or no variable in SLR can be binding to
SRF.

In SRF-coloring algorithm, the variable Smax in SLR is found such that the binding
of Smax to SRF can lead to a maximum gain based on the current colored VG. Each
gain of Si in SLR is calculated as follow and S0 is found as Smax.

gain(S0) = 155, gain(S1) = 22, gain(S2) = 34, gain(S3) = 101,
gain(S4) = 78, gain(S5) = 0, gain(S6) = 89, gain(S7) = 25.
=> Smax = S0

After the SRF-coloring algorithm, the state of VG is show as Fig. 6.
In phase 4, the termination condition of SRF-coloring is checked. If one of the ter-

mination conditions is occurred, the SRF-coloring is finished. Otherwise, SRF-
coloring is repeated until one of the termination conditions is occurred. In Fig. 6, the
termination condition is occurred in no variable in SLR can be binding to SRF. The
following lists each Si state in Fig. 6.

 SCRF – A Hybrid Register File Architecture 533

S0:colored, S1:un-colorable, S2: un-colorable, S3: un-colorable,
S4: un-colorable, S5:gain<0, S6: un-colorable, S7: un-colorable.
=> No more variable in SLR binding to SRF is possible

After SRF-coloring, the un-colored node variables are spilled to memory. In this

example, v4 is spilled to memory and the corresponding spill codes are generated.

Fig. 4. The initial graph for SCRF register allocation

G: Green

G

G G
G

G

G

G
G

Fig. 5. The state of VG after CRF-coloring

G: Green
B: Blue

GG

G
G G

G

G

G

B

B

B

Fig. 6. The state of VG after SRF-coloring

4.6 Macro Register Allocation

In the SCRF architecture, if the macro registers are defined in CRFs, variable vi used
for the dedicated functionalities cannot be merged with variables in icc_relation(vi)
and the improvement of the ICC overhead reduction and the spill code balance is con-
strained. If we define some frequent used macro registers in SRF, the ICC and the

534 J.-Y. Hsu et al.

spill code overheads of variables binding to these macro registers are eliminated. In
the SCRF register allocation phase, we can define some frequent used macro registers
in SRF and bind variables used for the dedicated functionalities to their macro regis-
ters before performing algorithm SLR_gen. From the simulation results, we can see
that the proposed register allocation algorithm with macro register defined in SRF has
better performance than that with macro register defined in CRFs.

5 Performance Comparisons

To evaluate the proposed the SCRF register allocation algorithm, we have imple-
mented the SCRF architecture shown in Fig. 3 and the SCRF register allocation algo-
rithm on a compiler framework, Trimaran [12], from CCCP project [13] along with
the clustered RF architecture shown in Fig. 2. We use a set of multimedia research
benchmarks, MediaBench [14], as test programs. The BUG [15] is used as the cluster-
ing algorithm for instructions and variables. We compare the performance of the
benchmarks in terms of the execution cycles, the ICC overhead, the spill codes over-
head, and the code density for the clustered RF architecture and the SCRF architecture
under different architecture parameters. Table 1 shows the settings of these architec-
ture parameters used in the performance evaluation. In Table 1, the CRF size field in-
dicates the number of registers in a CRF (GPR, FPR, BTR). The SRF size field indi-
cates the number of registers in the SRF. The Macro Reg. field dedicates what RF is
the frequent used macro registers.

Fig. 7 to Fig. 10 shows the simulation results of execution cycles, ICC overhead,
spill code overhead and code size, respectively.

Table 1. The architecture parameter settings

Architecture CRF size SRF size Macro Reg.
CRF{16, 16} 16 0 CRF
CRF{20, 20} 20 0 CRF
SCRF{16, 16, 8} 16 8 CRF
SCRF_m{16, 16, 8} 16 8 SRF

70
75
80
85
90
95

100
105

cjepg

djepg

g721encode
g721decode
gsm

encode
gsm

decode
m

peg2enc
m

peg2dec
pegw

itenc
pegw

itdec
pgpencode
pgpdecode
raw

caudio
raw

daudio
epic

unepic
rasta

m
esam

ipm
ap

m
esaosm

edo
m

esatexgen
avg.

N
or

m
al

iz
ed

 E
xe

cu
ti

on
 C

yc
le

s
(%

)

CRF {16,16} CRF {20,20} SCRF {16,16,8} SCRF_m {16,16,8}

Fig. 7. The execution cycles benchmark result

 SCRF – A Hybrid Register File Architecture 535

0
5

10
15
20
25
30
35

cjepg

djepg

g721encode
g721decode
gsm

encode
gsm

decode
m

peg2enc
m

peg2dec
pegw

itenc
pegw

itdec
pgpencode
pgpdecode
raw

caudio
raw

daudio
epic

unepic
rasta

m
esam

ipm
ap

m
esaosm

edo
m

esatexgen
avg.

N
or

m
ai

li
ze

d
E

xe
cu

te
d

 I
ns

n.
 (

%
) CRF {16,16} CRF {20,20} SCRF {16,16,8} SCRF_m {16,16,8}

Fig. 8. The ICC overhead benchmark result

0
5

10
15
20
25
30
35

cjepg

djepg

g721encode
g721decode
gsm

encode
gsm

decode
m

peg2enc
m

peg2dec
pegw

itenc
pegw

itdec
pgpencode
pgpdecode
raw

caudio
raw

daudio
epic

unepic
rasta

m
esam

ipm
ap

m
esaosm

edo
m

esatexgen
avg.N

or
m

al
iz

ed
 E

xe
cu

te
d

In
sn

. (
%

) CRF {16,16} CRF {20,20} SCRF {16,16,8} SCRF_m {16,16,8}

Fig. 9. The spill code overhead benchmark result

70
75
80
85
90
95

100
105

cjepg

djepg

g721encode
g721decode
gsm

encode
gsm

decode
m

peg2enc
m

peg2dec
pegw

itenc
pegw

itdec
pgpencode
pgpdecode
raw

caudio
raw

daudio
epic

unepic
rasta

m
esam

ipm
ap

m
esaosdem

o
m

esatexgen
avg.N

or
m

al
iz

ed
 C

od
e

Si
ze

 (
%

)

CRF {16,16} CRF {20,20} SCRF {16,16,8} SCRF_m {16,16,8}

Fig. 10. The code size benchmark result

6 Conclusions

In this paper, we propose the SCRF architecture and the SCRF register allocation al-
gorithm. We use replication techniques in SRF for hardware efficiency. The SCRF
register allocation algorithm is a heuristic and priority based algorithm. It not only
considers the ICC reduction but also the spill code pressure balance. To evaluate the
proposed the SCRF register allocation algorithm, we have implemented the SCRF

536 J.-Y. Hsu et al.

architecture and the SCRF register allocation algorithm on a compiler framework,
Trimaran, along with the clustered RF architecture. A set of multimedia research
benchmarks, MediaBench, is used as test programs. We compare the performance of
the benchmarks in terms of the execution cycles, the ICC overhead, the spill codes
overhead, and the code density for the clustered RF architecture and the SCRF archi-
tecture under different architecture parameters. The simulation results show that the
performance of the SCRF architecture is better than that of the clustered RF architec-
ture for all test programs. In the SCRF architecture with specific registers in the SRF,
the execution cycles, the ICC overhead, the spill codes overhead, and the code density
can get 11.6%, 55.6%, 52.7%, and 18.2% reduction in average, respectively.

References

1. Aleta, A., Condina, J.M., Gonzalez, A., Kaeli, D.: Removing Communications in Clus-
tered Microarchitectures through Instruction Replication. ACM Trans. Arch. and Code
Opt. 1, 127–151 (2004)

2. Gibert, E., Sanchez, J., Gonzalez, A.: Distributed Data Cache Designs for Clustered VLIW
Processors. IEEE Trans. Computers 54, 1227–1241 (2005)

3. Parcerisa, J.M., Sahuquillo, J., Gonzalez, A., Duato, J.: On-chip Interconnects and Instruc-
tion Steering Schemes for Clustered Microarchitectures. IEEE Trans. Parallel and Distrib-
uted Systems 16, 130–144 (2005)

4. Terechko, A., Garg, M., Corporaal, H.: Evaluation of Speed and Area of Clustered VLIW
Processors. In: Proc. 18th Int. Conf. VLSI Design, pp. 557–563 (2005)

5. Gangwar, A., Balakrishnan, M., Kumar, A.: Impact of Inter-cluster Communication
Mechanisms on ILP in Clustered VLIW Architectures. In: 2nd Workshop on Application
Specific Processors, in conj. 36th IEEE/ACM Annual Int. Symp. Microarchitecture (2003)

6. Lin, Y.-C., You, Y.-P., Lee, J.-K.: Register Allocation for VLIW DSP Processors with Ir-
regular Register Files. In: Proc. Compilers for Parallel Computers, pp. 45–59 (2006)

7. Nagpal, R., Srikant, Y.N.: Integrated Temporal and Spatial Scheduling for Extended Operand
Clustered VLIW Processors. In: Proc. 1st Conf. Computing Frontiers, pp. 457–470 (2004)

8. Zalamea, J., Llosa, J., Ayguade, E., Valero, M.: Hierarchical Clustered Register File Or-
ganization for VLIW Processors. In: Proc. 17th Int. Symp. Parallel and Distributed Proc-
essing, p. 77.1 (2003)

9. Zhang, Y., He, H., Sun, Y.: A New Register File Access Architecture for Software Pipelin-
ing in VLIW Processors. In: Proc. Conf. Asia and South Pacific Design Automation, vol.
1, pp. 627–630 (2005)

10. Terechko, A., Le Thenaff, E., Corporaal, H.: Cluster Assignment of Global Values for
Clustered VLIW Processors. In: Proc. Int. Conf. Compilers, Architecture and Synthesis for
Embedded Systems, pp. 32–40 (2003)

11. Chaitin, G.J.: Register allocation and spilling via graph coloring. In: Proc. ACM
SIGPLAN Symp. Compiler Construction, pp. 98–105 (1982)

12. Trimaran Consortium: The Trimaran Compiler Infrastructure (1998)
http://www.trimaran.org

13. CCCP research group: Compilers Creating Custom Processors. http://cccp.eecs.umich.edu
14. Lee, C., Potkonjak, M., Mangione-Smith, W.H.: MediaBench: A Tool for Evaluating and

Synthesizing Multimedia and Communications Systems. In: Proc. 30th ACM/IEEE Int.
Symp. Microarchitecture, pp. 330–350 (1997)

15. Ellis, J.: Bulldog: A Compiler for VLIW Architectures. MIT Press, Cambridge (1985)

V. Malyshkin (Ed.): PaCT 2007, LNCS 4671, pp. 537–543, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Model Based Performance Evaluation for MPI
Programs*

Victor Ivannikov, Serguei Gaissaryan, Arutyun Avetisyan, and Vartan Padaryan

Institute for System Programming Russian Academy of Sciences,
25 B. Kommunisticheskaya st., Moscow, 109004, Russia

Phone (+7-495) 912-46-14; Fax (+7-495) 912-15-24
{ivan, ssg, arut, vartan}@ispras.ru

http://www.ispras.ru/groups/ctt/parjava.html

Abstract. The paper considers the model of a parallel program, which can be
effectively interpreted using an instrumental computer, allowing for fairly exact
prediction of the actual runtime of a parallel program on a specific parallel
computing system. The model has been developed for parallel Java-programs
with explicit exchange of messages by means of the MPI library. The model is
part of the ParJava environment. The model is derived by converting the
program control tree, which, for the Java-program, can be built by modifying
the abstract syntax tree. Communication functions are modeled by using the
LogGP model, allowing to account for the specific features of a distributed
computational system.

1 Introduction

At present, parallel computations are widely used to solve engineering and scientific
problems. Efficient parallel computations require knowledge of dynamical
characteristics of a parallel program, used not only for its debugging but also for
tuning. The existing technologies can yield such characteristics only through the use
of a target computational system, which, due to specific features of access, increases
the time and, consequently, the cost of the design.

Many scientific centers study the possibility of performing this stage of parallel
program development to an instrumental computer. These studies are based on the
modeling of parallel programs, when an adequate model of the parallel program is
studied and interpreted on an instrumental computer. We believe that novel model-
based technologies of parallel programming not only will make it possible to transfer
most of the design to the instrumental computer but also will extend the capabilities
of an application programmer in investigating and modifying the program to be
designed.

In this paper, we consider a model of a parallel program that can efficiently be
interpreted on an instrumental computer, making it possible to accurately predict the
time of its actual execution on a given parallel computational system. The model is

* This work is supported by RFBR, grants 05-01-00995, 05-07-90308, 06-07-89119.

538 V. Ivannikov et al.

designed for parallel programs with explicit message passing written in Java with
calls to the MPI library and is a part of the ParJava environment [1].

2 Model of a Parallel Java Program

Let us consider the structure of a Java program. According to Java Language
Specification, a Java program is a set of classes that can be regarded as types of the
corresponding objects. Each class contains methods, static blocks, and variables. The
methods and variables can be either static (related to all objects of a given class) or
object (related to each individual object of a given class). The values of static and
object variables govern the state of the object, and the methods make it possible to
change this state. The static blocks are executed when a corresponding class is loaded
into the JVM and compute the initial values of static variables.

A model of a parallel Java program is defined as the set of models of all classes of
the program. A model of a class c of a parallel Java program is the list of models of
all methods of the class. The first element of the list is named c._ and models the set
of static and object variables of the class c, as well as the static blocks defined in class
c . The class constructor is modeled as the method named c.<init>. If overloaded
methods (or constructors) are defined in the class, the method name is appended with
a suffix constructed by the method signature.

The model of the method body is obtained from the abstract syntax tree (AST) of
the method by replacing the AST subtrees corresponding to the expressions and calls
of other methods and functions by basic blocks. The computations performed in each
basic block are represented in the Java byte-code. The tree resulting from these
transformations contains internal nodes corresponding to the following statements of
the source program: {}, if, if-else, do, for, while, switch, try, break,
continue, return, throw, sync and the leaves of the model are the basic
blocks.

To describe the semantics of communication functions, the following ten basic
exchange operations are introduced: Init, Free, Pack, Unpack, Post, Get,
Process, Copy, MakeThread, and Idle. The operations Init and Free
describe the selection and initialization (the release, respectively) of service data
structures used in the communication. Pack(buf, n, type) and
Unpack(buf, n, type) are transformations performed by the MPI over the data
arrays buf of type type and size n bytes. Here, we mean the conversion of float
and double data into a machine-independent form, shift of bytes in data of integer
types, conversion of data of type MPI_CHAR (representation conversion). The
operations Post(buf, n, dest) and Get(buf, n, source) describe
sending of the buffer buf of length n bytes to the processor with number dest
(receiving the buffer buf of length n bytes from a processor with number source).
Together with the buffer, a fixed-length service message is always sent. If only a
service message is to be sent, neither the buffer name nor its length is specified;
therefore, in these cases, the operations Post(nul, 0, dest) and Get(nul,
0, source) are used. Process(serv_msg) handles the service message.
Copy(buf, n) copies the buffer buf of size n bytes into the memory of a

 Model Based Performance Evaluation for MPI Programs 539

computational node.MakeThread creates a job stream in the program based on tools
provided by the user or operating system.

Consider a blocking receive operation (MPI_RECV). The operation scenario of this
function depends on the operational mode of the corresponding message sending. If
the message has already been buffered in the memory of the process-receiver, the
function MPI_RECV duplicates data from the system (or intermediate, in the case of
the buffered sending) buffer to the user buffer. Besides, it is necessary to take into
account the operation of the runtime support system aimed at keeping data in the
intermediate memory.

MPI_RECV(buf, count, datatype, suorce, tag, comm, status)
::=
{Get(buf, count, source);}RTS ||
{Init;
 Copy(buf, count);
 Unpack(buf, count, datatype);
 Free;}Program

If the message has not yet arrived to the buffer, the function MPI_RECV stops the
operation of the computational node until an appropriate message arrives. It is
possible that the function will have to respond to the request of the authorization of
data sending in the case where the sending process sends a message in the
synchronous mode or in the buffered mode based on the “lazy” algorithm. Thus, in
the case when the sending starts after the start of the receiving, the operation of the
function is described as follows:

MPI_RECV(buf, count, datatype, suorce, tag, comm, status)
::=
{Init;
 Wait(request, source)
 Post(nul, 0, source);
 Wait(buf, source);
 Get(buf, count, source);
 Unpack(buf, count, datatype);
 Free;}Program

If the sending begins before starting MPI_RECV, the request will be processed in
the runtime support system:

{Get(nul, 0, source);
 Process(request)}RTS ||
{Init;
 Post(nul, 0, source);
 Wait(buf, source);
 Get(buf, count, source);
 Unpack(buf, count, datatype);
 Free;}Program

In the remaining cases, when the authorization is not requested (sending in the
readiness mode or by the “greedy” algorithm), the function MPI_RECV operates as
follows:

540 V. Ivannikov et al.

{Init;
 Wait(buf, source);
 Get(buf, count, source);
 Unpack(buf, count, datatype);
 Free;}Program

3 Interpretation of the Model

The aim of the interpretation is to calculate the attribute Time for each interpreted
node, which can be a basic block, an internal node, or a method (function). When the
time of execution has been computed, the corresponding node of the model can be
reduced; i.e., it can be replaced by a node of the type reduced basic block by means of
the reduction operation.

The interpretation of the model of a parallel Java-program consists in the
interpretation of the model of method main from one of the classes of the program.
The name of this class is specified by the user. The user can also specify values of the
parameters of method main.

The interpretation of the model of a function (method) represents an interpretation
of its root. The interpretation of an internal node v is the recursive computation of the
attribute Time by the values Time(r1), Time(r2), …, where r1, r2, … being direct
descendants of the node v. The choice of the descendent is determined by the value of
the selector.

For example, the interpretation of the node v = <id, if-else, I, O, C, (r1, r2),
id(S), Time> representing the if statement consists in computing values of the
selector s = val(S) resulting from the interpretation of the expression S and in the
subsequent interpretation of a node r1 (if s = true) or r2 (when s = false). Note that
Time(v) = Time(S) + Time(ri), where i = 1 if s = true and i = 2 if s = false.

The preliminary estimation of the time of execution of computational basic blocks
makes it possible to reduce the overheads of the subsequent interpretation, since this
approach estimates the time of execution of each basic block only once. Comparative
analysis of different methods for estimating the time of execution of computational
basic blocks is conducted in [2]. It is noted that the methods based on measurement of
the time of execution of computational basic blocks on an instrumental computer and
subsequent scaling of the measured time by multiplying it by some coefficient do not
provide the required accuracy because of the complexity of deriving the scaling
coefficient. Other methods considered in that paper assume the specification of the
time of execution by the user or the use of a hardware emulator of a node of the target
computational system.

Since the duration of execution of a communication function may depend on the
moment of its call, as well as on the moment when the response communication
function is called, it is necessary to introduce the notion of model time. Following [3],
we assume that a parallel program is interpreted in n independent logical processes.
Each logical process has its own model clock, mapping Ti(v) of nodes v of the model
interpreted in the logical process i (where i is the number of the process within the
communicator MPI_COMM_WORLD) into the time instants (readings of model timer).

 Model Based Performance Evaluation for MPI Programs 541

The initial readings of model timers of all logical processes are equal to zero. The
readings of the model timer of a logical process are updated after the interpretation in
this process of each basic block by adding the value of the attribute Time of the basic
block to the current value of the model time. The interpretation of the communication
functions uses the readings of model timers of different processes in order to choose a
scenario for the communication and estimate its duration. During the interpretation of
a communication function, we assume that the interpreter of the parallel program has
determined the logical processes involved in the communication and that the readings
of model timer of each process are available.

The MPI functions were modeled by means of ten basic operations. Let us divide
these operations into three groups: (1) operations the execution time of which depends
only on the features of the computational node, (2) operations the execution time of
which depends only on the features of the network, and (3) operation Wait, the
execution time of which depends on the readings of the model timer of another logical
process.

The first group includes also basic operations whose features are determined for
each realization of the MPI: Init, Free, Pack, Unpack, Copy, MakeThread,
and Process. The time of execution of these operations is predefined and kept in a
service table. The time of execution of the operations Pack and Unpack are not
equal to zero only if the elements of the array to be sent are objects (and,
consequently, the array needs to be serialized/deserialized). If the array elements are
of a basic type, the tools of the package java.nio make it possible to obtain data at
the C-code level without overheads. The operation MakeThread allows the basic
communication operations in a logical thread to be executed independently and can be
represented in the MPI realization in different ways (for example, by callbacks). The
duration of these basic communication operations is determined with the help of
benchmarks.

The second group consists of operations Post and Get. In work [4], it was shown
that LogGP model of a network adequately describes real scalable networks (for
example, Quadrics, Myrinet, SCI, etc.). Thus, the durations of operations Post and
Get are given by the formulas

Time(Post(data)) = b*(n+k) + dP(n+k), dP (0) = l

Time(Get(data)) = b*n + dG(n), dG (0) = l

The parameters b (bandwidth) and l (latency) are taken from the characteristics of
the communication hardware. The parameter k is the size of the service data that are
always sent together with the message. The values of the overhead functions dP(n)
and dG(n) are determined from a table, which, for each computational system, can be
obtained by means of benchmarks using the technique proposed in [5].

To compute the waiting time, one needs only readings of the model timer at the
beginning and end of operation Wait(event). To determine the beginning of the
waiting, it is sufficient to compute the time when the previous operation terminated.
The CPU idling ends when the message arrives at the receiving node. This moment is
called the time mark of the message and denoted as TM(message). The time mark of
the message is determined by the process-sender of this message on the basis of

542 V. Ivannikov et al.

readings of the model timer at the moment when the sending starts and the estimate of
the time needed for the message to arrive at the receiving computational node. Thus,
the value of TM(message) is determined by the formula

TM(message) = Tb(Post(message)) + dP(n + k),

where n is the message size, k is the size of service data, Tb() are readings of the
model timer at the message start time, dP() is the function of message sending
overheads.

4 Conclusions

The proposed model has been implemented and included into the instrumental
environment for development of parallel programs ParJava.

In order to validate our modeling method, we have compared the actual running
time of the several programs (as synthetic benchmarks, as real application programs)
with our interpretation of it. The application of the model to the prediction of the time
of execution of model programs for clusters of different architectures has shown quite
acceptable results: the prediction error is less than 10%. We used SCI-cluster at RCC
MSU, Myrinet-cluster at ISP RAS, and the fragment of the Myrinet-cluster at Joint
SuperComputer Center (JSCC) Russian Academy of Sciences.

The ParJava environment was used for the development of several application
programs and packages: the package of alphanumeric solving linear algebra problems
(Tambov State University), programs for modeling the origination of intense
atmospheric eddies (Institute of Physics of the Earth, Russian Academy of Sciences),
parallel implementation of genetic algorithms for local adaptive control systems
(Division of Modeling Systems, Institute of System Programming, Russian Academy
of Sciences), and the like. The application of the model to the development of these
programs will assist in revealing their bottlenecks and, at the same time, will make it
possible to detect drawbacks of the model and its interpreter. In addition, it will be
clarified what instrumental programs should be implemented for successful
exploitation of the model.

At present, on the basis of the model described in this paper, analyzers of parallel
traces aimed at revealing bottlenecks, cross-blockings, etc. are being developed.
These tools will allow us to investigate a parallel program under development on an
instrumental computer, thus essentially reducing the development time and cost.

References

1. Ivannikov, V., Gaissaryan, S., Avetisyan, A., Padaryan, V.: Improving Properties of a
Parallel Program in ParJava Environment. In: Dongarra, J.J., Laforenza, D., Orlando, S.
(eds.) Recent Advances in Parallel Virtual Machine and Message Passing Interface. LNCS,
vol. 2840, pp. 491–494. Springer, Heidelberg (2003)

2. Zheng, G., Wilmarth, T., Jagadishprasad, P., Kale, L.V.: Simulation-Based Performance
Prediction for Large Parallel Machines. Int. J. Parallel Programming 33(2-3), 183–207
(2005)

 Model Based Performance Evaluation for MPI Programs 543

3. Prakash, S., Bagrodia, R.: MPI-SIM: Using Parallel Simulation to Evaluate MPI Programs.
In: Proc. of the Winter Simulation Conf., USA, IEEE, pp. 467–474 (1998)

4. Alexandrov, A., Ionescu, M.F., Schauser, K.E., Scheiman, C.: LogGP: Incorporating Long
Messages into the LogP Model — One Step Closer Towards a Realistic Model for Parallel
Computation, Technical Report TRCS95-09, Univ. of California at Santa Barbara (1995)

5. Martin, R.P., Vahdat, A.M., Culler, D.E., Anderson, T.E.: Effects of Communication
Latency, Overhead, and Bandwidth in a Cluster Architecture. In: Proc. 24th Annual Int.
Symposium on Comp. Architecture, USA, pp. 85–97 (1997)

Runtime System for Parallel Execution of
Fragmented Subroutines�

K.V. Kalgin1,2, V.E. Malyshkin1,2,3, S.P. Nechaev1,2, and G.A. Tschukin1,3

1 Supercomputer Software Department
Institute of Computational Mathematics and Mathematical Geophysics,

Russian Academy of Sciences
{kalgin,malysh, nechaev}@ssd.sscc.ru

2 Novosibirsk State University
3 Novosibirsk State Technical University

gera_lord@mail.ru

Abstract. The architecture of a runtime system supporting parallel ex-
ecution of fragmented library subroutines on multicomputers is proposed.
The approach makes possible to develop the library of parallel subrou-
tines and to provide automatically their dynamic properties such as dy-
namic load balancing. Usage of the MPI for communications program-
ming provides good portability of an application.

1 Introduction

This paper presents a runtime system supporting execution of the fragmented
parallel subroutines. The project deals with to the development of the library of
standard parallel subroutines (LPS) for numerical modeling. This is the part of
a wider Assembly Technology project [1,2]. The LPS is developed on the basis of
some libraries of sequential subroutines like Intel MKL [3], or any other library.
Every subroutine of MKL is used for construction of its LPS version. Instead of
parallelization of the code of a certain subroutine from MKL, this subroutine is
applied not to its whole input data but to the data parts. The subroutine appli-
cations to the data parts are permitted to be executed in parallel. For example, a
matrices multiplication subroutine sgemm is used for construction of fragmented
parallel matrices multiplication subroutine lps_sgemm in the following way. The
matrices A, B and C are represented as sets of minors, (see fig. 1) The algorithm
of lps_sgemm consists of the applications of the sgemm to every pair of minors
Aik and Bkj for calculation of the partial results Ck

ij and then calculation of
the resulting sum Cij =

∑
k C

k
ij . A fragment F k

ij consists of sgemm code, input
matrices Aik , Bkj and output matrix Ck

ij . Therefore, the lps_sgemm consists
of the set of fragments F k

ij and fragments for Ck
ij summing, that may (but do

� This work is partially supported by the grants of NWO-RFBS contracts NWO-RFBS
047.016.007 and NWO-RFBS 047.016.018, Russian Ministry of Education, contract
РНП.2.2.1.1.3653 and PhD grant from the French Ministere Education Nationale
(MEN-DRIC).

V. Malyshkin (Ed.): PaCT 2007, LNCS 4671, pp. 544–552, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Runtime System for Parallel Execution of Fragmented Subroutines 545

Aik Bkj ji
kC

Fig. 1. Matrix multiplication fragmentation

not have to) be executed in parallel. The subroutine lps_sgemm is included into
the LPS. Every LPS subroutine is described as an asynchronous program, the
fragments of which can be executed in parallel, if the data dependencies between
fragments are not violated. Setting apart the details of the fragmented module
representation we consider the architecture of the runtime system and the results
of its testing.

2 Related Work

MapReduce [4] is a programming model and an associated implementation used
at Google for processing and generating large data sets. Users specify a map func-
tion that processes a key/value pair to generate a set of intermediate key/value
pairs, and a reduced function that merges all intermediate values associated with
the same intermediate key. This idea is based on a similar operator in the func-
tional language Lisp. The map function computation is split into several amounts
of splits, which have the same functionality as fragments in the architecture pro-
posed. Dynamic load balancing is attained by having much more splits, than the
processors available and re-distributing splits during runtime. The MapReduce
runtime system uses a centralized dispatching mechanism. There is one dedicated
process – master, which takes care of splits distribution during runtime.

2.1 Parallel Libraries

IBM PESSL [5] is a scalable mathematical subroutine library that supports par-
allel processing applications on clusters of processor nodes optionally connected
by a high-performance switch. The parallel ESSL supports the Single Program
Multiple Data (SPMD) programming model using the Message Passing Interface
(MPI) library. For communications programming, the Parallel ESSL contains
Basic Linear Algebra Communications Subroutines (BLACS), which use MPI.
For programming of the computations Parallel ESSL uses the ESSL subroutines.
Global data structures (vectors, matrices, or sequences) must be distributed by
the user in a special way across the processes prior to calling the Parallel ESSL
subroutines.

Intel Cluster MKL is a superset of Intel MKL and includes also ScaLAPACK
software and Cluster DFT software for solving computational problems on

546 K.V. Kalgin et al.

distributed-memory parallel computers. In order to use ScaLAPACK routines,
it is necessary to do the following:

1. Initialize the processes grid;
2. Distribute data onto the processes grid;
3. Call the computation routine;
4. Free the processes grid

MPI or BLACS communication routines are used for programming of commu-
nications. The main problem with the use of these libraries is the necessity
to distribute data and to program communications properly. Library routines
encapsulate only high-performance sequential implementations of computations
and communications inside a certain subroutine. All the necessary dynamic prop-
erties of a program should be implemented by the user.

The key feature of the proposed runtime system is to put together data and
code, whereas the mentioned above libraries keep them separate, and to imple-
ment fragments migration. This provides universal mechanism for implementa-
tion of dynamic properties of a subroutine execution.

2.2 Complex Projects

The program fragmentation and the architecture of a supporting computer sys-
tem were proposed in [6] as comprehensive project. On the basis of this sug-
gestion, in the middle 80s, the 24 nodes multicomputer ES-2704 was developed,
oriented to support execution of the fragmented programs [7]. Each node of ES-
2704 was in its turn the multiprocessor with three specialized processors with
common memory. These processors were functionally specialized for computa-
tion, scheduling of computation and communications correspondingly. The main
objective of this work was providing a high reliability of computations.

The above mentioned Assembly Technology [1,2] is based on two principal
ideas. First, the program, as a whole is assembled out of ready made fragments.
Second, the fragmented structure of the assembled program is kept during run-
time in order to automatically provide the dynamic properties of the program.
The technology was used for parallel implementation of the large scale numerical
models of natural phenomena.

The main difference between the runtime system proposed and the above
systems are the following:

– Fragmented parallel subroutines can be called even from sequential programs
for parallel execution.

– Dynamic properties of an application are provided automatically.

In the above mentioned projects, runtime systems were used because the high
quality solutions of program construction cannot sometimes be statically found
before computation, in particular, in the course of compilation. In construction of
a parallel program, many good solutions, for example proper resources allocation,
can also be found only during runtime. In such a way, a high quality execution
of fragmented programs should be supported by a runtime system in order to
provide the implementation ofdynamic properties of fragmented subroutines.

Runtime System for Parallel Execution of Fragmented Subroutines 547

3 Fragments Creation and Execution

3.1 Implementation of a Fragment

The runtime system considers a fragment as a data structure, which encapsulates
both data and methods (class). This class inherits interface doWork() from the
base class. A data to be processed is the class member. So, if two data elements
are processed by the same code, then two fragments should be created.
The runtime system only has to call doWork() method in order to obtain the
result. This method has void return type, so it has to manage what to do with
intermediate results: send them to another fragment, write them to file, etc.

3.2 Creation of Fragments

All the fragments must be created before the runtime system starts their exe-
cution. When calling a LPS routine from a serial code, the following auxillary
functions are required:

– lps_routine_name_create_fragments() – creation and initial distribution
of appropriate fragments out of lps_routine_name() parameters During
construction each fragment obtains a unique identifier – fragment rank,
which does not depend on fragment’s current location and does not change
during execution.

– lps_init() – Initialization of LPS runtime system
– lps_finalize() – Finalization of LPS runtime system and return to serial

control flow

If two or more LPS subroutines are called one after another, some interpocedural
optimizations should be performed to avoid redundant inter-fragment commu-
nications. The interprocedural optimizer is one of purposes of future work.

Only existing LPS subroutines can be called out of serial code. In order to cre-
ate new subroutines a special high-level programming language for fragmented
program description is under development. Fragments are created during trans-
lation of program, written in this language, into C++ + MPI.

4 The Outline of the Runtime System Architecture

4.1 The Runtime System Functions

A parallel subroutine is considered as a set of fragments, which communicate
with each other by message passing. So, runtime system should provide the
following functions:

– Execution of ready fragments
– Passing messages between fragments
– Fragment lookup service
– Fragment migration support

548 K.V. Kalgin et al.

4.2 Execution of Ready Fragments

A fragment is considered to be ready, when the runtime system process running
in corresponding node has received all the messages for this fragment. This con-
dition is sufficient to avoid deadlocks, because sends are non-blocking, and recvs
will not block execution of fragment, cause all the messages for it are already
received by the runtime system process. Situation, when several fragments have
been left unprocessed and none of them can start, is easy to detect. In that case,
runtime system finishes its work and produces an error message.

Inter-fragment communications are time-consuming operations, when frag-
ments are processed by different processes. In this case it is suitable to have
several worker threads in SMP node instead of several processes.

In such a way, fragments in a certain node are being processed by a pool of
workers, containing as many threads, as amount of CPUs/CPU cores are present
in the node.

4.3 Data Exchanges and Implementation of Information
Dependencies

Due to MPI implementations limitations, MPI functions cannot be called from
fragments directly. In order to overcome this, the base class Job has methods
send and recv to communicate with other fragments. Both methods work with
structures, encapsulating MPI_Send family functions parameters. send method
places an outgoing message in a special queue, and recv method asks for data,
already received by the system.

Information dependencies between fragments are defined in a subroutine by
developers of the library subroutine. The dependence should be specified explic-
itly in the code of a fragments. This is done in the following way. A fragment
receives a value of every input variable with recv() method. A fragment outputs
a value of an output variable with send() method. Therefore, adding message
from fragment A to fragment В makes fragment A to be run before fragment B.
The runtime system starts a certain fragment only if it has received all its input
messages.

4.4 Fragment Lookup Service

During runtime, fragments can communicate with each other. In outgoing mes-
sages, the recipient is identified by a fragment rank. In the MPI_Send family of
functions the recipient is identified by the process rank in MPI communicator.
Because fragments can migrate between processors, it is necessary to detect cur-
rent location of a certain fragment during runtime. Each process should track
the locations of fragments initially included into its work queue. So, only one
extra message is required to detect the location of a necessary fragment. The
components work in asynchronous manner, temporary inconsistency between
FLS entry and a real location of a fragment may occur. If a message arrives for
a fragment, which has already left its location, the message will be redirected to
the fragment current location.

Runtime System for Parallel Execution of Fragmented Subroutines 549

4.5 Fragment Migration Support

The dynamic load balancing is implemented by providing the fragments mi-
gration support. The decentralized heuristic load balancing algorithm "receiver
initiates" [8] is used. If some node has no fragments for processing, then the
runtime system asks its neighbors for extra fragments. In order to identify the
neighbors of each node, the MPI communicator with different virtual topologies
associated with it is used. It provides good tunability of a subroutine execution
to the network interconnections topology. Fragments migrate with all the in-
coming messages runtime system has already received for it. The outline of this
architecture is shown on the fig. 2 (Only one worker of thread pool is shown;)

Server
thread

Outgoing
messages

queue

fragments
queue

worker
thread

incoming
messages

queue

FLS

MPI CommunicatorServer
thread

Server
thread

Server
thread

local part

Fig. 2. Outline of runtime support system

5 Experiments

5.1 Hardware

The tests were accomplished on the following hardware:

– NKS-160: 45 x dual Itanium2 processors, 3GB RAM each, interconnected
with InfiniBand

– MVS-1000: 64 x dual Alpha 21264 processors, 2GB RAM each, intercon-
nected with Myrinet

– smp4x64: 2 x dual core Itanium2 processor with 64 GB RAM
– woodcrest: 2 x dual core Xeon processor with 8GB RAM

5.2 Measurement Program

The matrix-by-matrixmultiplication was selected for performance measurements.
There are two kinds of fragments here: "Scatter", which generates source matri-
ces and scatters it between "Worker" fragments, and "Worker", which multiplies
submatrices (see fig. 3).

550 K.V. Kalgin et al.

Scatter Worker Worker

Scatter Worker Worker

Scatter Worker Worker

Scatter Worker Worker

Worker

Worker

Worker

Worker

Worker

Worker

Worker

Worker

Fig. 3. Scheme of fragmented matrix multiplication

5.3 Overhead Costs

In this series of tests fragmentation maintenance cost is measured. The runtime
system is started at a single processor using a single worker thread and changing
the amount of fragments. The total amount of computations remains constant
because each fragment becomes smaller. The multiplication of matrices 1024 x
1024 of floats was tested. The figure 4 shows that the fragmentation overhead
in this particular case is smaller than ln(n+l), where n stands for the amount
of fragments, while n does not exceed some certain value. This means, that
fragments must not be too small in order to keep low overheads. Finally, this
series of test shows that fragmentation offers dynamic properties of a program
for a reasonable price

0

5

10

15

20

25

30

35

40

45

1 4
1
6

6
4

2
5
6

1
0
2
4

4
0
9
6

1
6
3
8
4

6
5
5
3
6

2
6
6
7
5
2

1
0
4
8
5
7
6

Fig. 4. Fragmentation Overheads

5.4 Speedup and Efficiency

In this series of tests speedup of a fragmented program is measured. Changing the
amount of cluster nodes is used. The amount of fragments remains constant and,
so, the total amount of computations remains constant, too. Program consists
of 16 fragments, load disbalance is missing;

5.5 Load Balancing Possibility Tests

In this series of tests the cost of the dynamic load balancing of a fragmented pro-
gram is measured. Changing the amount of cluster nodes is used. The amount of
fragments remains constant and, so, the total amount of computations remains
constant, too. The following criteria are used: the total execution time and a

Runtime System for Parallel Execution of Fragmented Subroutines 551

Table 1. Speedup and efficiency. Execution time in seconds.

NKS-160 MVS-1000 smp4x64 woodcrest
1 processor 24.35394 126.3 25.9 13.22319
2 processors 12.91473 65.2 13.4 7.05442
4 processors 7.04837 34.6 7.2 4.45204
8 processors 4.96530 18.4 — —
16 processors 2.68926 10.6 — —

Table 2. Dynamic load balancing. Time in seconds.

NKS-160 smp4x64 woodcrest
1 processor 24.615423 25.97979 13.21207
2 processors 15.76361 16.20747 9.96568
4 processors 10.15956 11.61100 6.72279
8 processors 6.21874 — —
16 processors 3.53200 — —

maximum difference between the nodes execution times. As result of the imple-
mentation peculiarities, messages between fragments located at the same nodes
are delivered much faster, than those between fragments located at different
nodes of a cluster. In the previous test, communicating "Scatter" and "Worker"
fragments were initially distributed on the same node, and in this test they were
distributed randomly.

6 Conclusions and Future Work

On the basis of LPS, where many necessary subroutines are accumulated, even
execution of a sequential program with many calls to the LPS subroutines might
be done in parallel very well. Certainly, usage of fragmented programming de-
mands to reconstruct the numerical algorithms into fragmented form. It is clear,
that not any numerical algorithm can be reconstructed into fragmented form.
Such algorithms cannot be used for development of parallel applications and
selection of the suitable algorithms should be done. Therefore, one of the first
needs is reconstruction of the most widely used numerical algorithms into frag-
mented form. in order to simplify work of an application programmer and to
provide better performance of an application program the implementation of
the runtime system also should be improved. First, the optimization of subrou-
tines execution should be done. For this the manager of dynamic memory should
be developed in order to simplify the implementation of the memory allocation
and re-allocation, dynamic load balancing, etc. Secondly, the global optimization
of the data allocation should be done. Future work includes also improvement
of the load balancing and message dispatching algorithms. Implementation of
runtime system for GRID is planned, too.

552 K.V. Kalgin et al.

References

1. Valkovskii, V.A., Malyshkin, V.E.: Synthesis of Parallel Programs and Systems on
the Basis of Computational Models. Nauka, Novosibirsk (in Russian) (1988)

2. Kraeva, M.A., Malyshkin, V.E.: Assembly Technology for Parallel Realization of
Numerical Models on MIMD-Multicomputers. The International Journal on Future
Generation Computer Systems 17(6), 755–765 (2001)

3. Intel MKL reference. http://www.intel.com/cd/software/products/asmo-na/
eng/341976.htm

4. Dean, J., Ghemawat, S.: MapReduce: Simplified Data Processing on Large Clusters
http://216.239.37.132/papers/mapreduce-osdi04.pdf

5. IBM PESSL reference. http://www.pdc.kth.se/doc/SP/manuals/pessl/
pessl.pdf

6. Glushkov, V.M., Ignatyev, M.V., Myasnikov, V.A., Torgashev, V.A.: Recursive ma-
chines and computing technologies. In: Proceedings of IFIP Congress, vol. 1, pp.
65–70, North-Holland Publish. Co (1974)

7. Torgashev, V.A., Tsarev, I.V.: Sredstva organizatsii parallelnykh vychislenii i pro-
grammirovaniya v multiprocessorakh s dynamicheskoi architechturoi. Program-
mirovanie (in Russian) 4, 53–67 (2001)

8. Tanenbaum, A.S.: Modern Operating Systems, 2nd edn.

http://www.intel.com/cd/software/products/asmo-na/eng/341976.htm
http://www.intel.com/cd/software/products/asmo-na/eng/341976.htm
http://216.239.37.132/papers/mapreduce-osdi04.pdf
http://www.pdc.kth.se/doc/SP/manuals/pessl/pessl.pdf
http://www.pdc.kth.se/doc/SP/manuals/pessl/pessl.pdf

V. Malyshkin (Ed.): PaCT 2007, LNCS 4671, pp. 553–558, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Application of Simulation Approaches to Creation of
Decision Support System

for IT Service Management

Yuri G. Karpov, Rostislav I. Ivanovsky, and Kirill A. Sotnikov

St.Petersburg State Polytechnical University,
Distributed Computing and Networking Department,

21, Politekhnicheskaya ul., St. Petersburg, Russia, 194021
tel./fax: +7 812 297 1639

{karpov, iri, sotnikov}@dcn.infos.ru
http://dcn.infos.ru

Abstract. The paper presents a simulation-based approach to creation of
decision support system for IT Service Management. The presented approach
includes monitoring of stochastic data IT Services and calculation of measure of
alignment to business goals with its characteristic basing on SLA/SLO. The
approach combines the benefits of two kinds of models: analytical and
simulation ones. The key idea of the paper is to demonstrate how modern
methods of stochastic process analysis may enhance trustworthiness and quality
of decision making along business goals within IT Services.

Keywords: Simulation, Stochastic analysis, SLA, SLO, IT Service Management,
Decision support.

1 Problem Statement

Managing IT systems and services (ITS) is the main challenge enterprise IT
organisations are facing today. There is a number of Enterprise Resource Planning
(ERP) systems presented on the market now, which include considerably powerful
tools covering gathering and analysing statistical data, planning and scheduling of
miscellaneous tasks, fixing and ordering of data, automation of flows of various
natures, etc. But the fact is that most of these ERP systems lack in means of ITS
optimisation and decision support.

We present a simulation-based approach to decision support system which uses
monitored stochastic data and calculates the measure of alignment to business goals
with its characteristic basing on SLA/SLO. The approach combines the benefits of
two kinds of models: analytical and simulation ones. The parameters of analytical
model are defined by monitoring the real-life system and then simulation model
parameters are adjusted basing on analytical one together with data obtained from real
system. The presentation demonstrates how modern methods of stochastic process
analysis (like sensitivity analysis, regression analysis, risk analysis, factor analysis

554 Y.G. Karpov, R.I. Ivanovsky, and K.A. Sotnikov

with finding most leverage factors influencing results, etc.) may enhance
trustworthiness and quality of decision making along business goals by the example
of managing IT infrastructure.

The goal of this paper is to suggest an approach to IT service management (ITSM)
according the business goals of the enterprise with measure of trustworthiness and
risk analysis.

2 Proposed Approach

Processes in the ITS possess a stochastic character, so all the predictions about
system’s future behaviour basing on the analysis of these processes are stochastic as
well. We propose to calculate such characteristics as reliability and confidence
interval for every parameter obtained from the analysis of ITS processes. As in
general such estimates cannot be obtained analytically we use in our work the
simulation model [1] which is described in more detail in section 3.

Before running the simulation model we select a criteria J (in general a
combination of weighted key goal indicators (KGI) [4]) and preliminarily select and
analyze:

• set of influencing factors xi, (i = 1,.., n);
• set of controls uk, (k = 1,.., m);
• set of disturbing influences qr, (r = 1,.., l).

Simulation model of a complex system has numerous parameters and selection of
KGIs among them is a non-trivial task, but there’s a number of methods to solve it.
We use sensitivity analysis and regression analysis to specify valuable KGIs before
using model for decision making.

Using simulation model as a basis for decision support is possible only when its
reliability is proved (guaranteed). For this purpose we consequently analyse different
approximations inside simulation model (SMj), starting from the very first (j = 1,
initial estimation), with the subsequent periodic calibration of our model to the real
life data [2]. The data about the real processes in IT system may be obtained from the
repository. Every following variant of model is characterized by a higher degree of
reliability and confidence. In general the sequence of SMj possesses the convergence
by probability:

0;1}|{|lim >=<−
∞→

εεITSSMP j
j

 (1)

where P is probability, ITS – genuine IT system.
While running the simulation model between the calibration moments the

following range of tasks is solved:

• by analyzing the sensitivity of J(xi, uk, qr) to variations of factors xi, controls uk and
disturbances qr ranking by the degree of impact to J is done.

• disturbances qr are simulated, class of every disturbance is determines (random
variable, random process) and parameters of their distributions are defined;

 Application of Simulation Approaches 555

• by multiple runs of the model (considering significant xi, qr) in the defined time
interval [t0, tf] the set of possible meanings random variable Jf(uk) = sup J(tf) is
obtained and sum polygon of this random variable is defined. Here Jf(uk) is the
upper bound of criteria value achievable in the current conditions;

• by obtaining the sum polygon we estimate the possibility of random variable Jf(uk)
to hit in areas (fair QF, tolerant QT and critical QC) and determine thus the
possibility of risk of hitting QC area. The area (QF, QT, QC) borders are defined by
business goals.

As during the simulation criteria values may be obtained on every step within the
interval [t0, tf] the regression analysis method may be applied to calculate the
mathematical dependence to describe the behaviour of sup J(t) at the average.
Additionally, not only point estimates of regression correlations, but also dispersions
of these parameters may be received. This in turn allows to fulfil the prediction of sup
J(t*) value, where t* > tf is a fixed time, with the estimate in increasing error while
increasing τ = t* - tf.

KGI value

(a)

(b)

(c)

(a) modeled observation interval, periodically calibrated
(b) prediction modeling
(c) KGI values estimation obtained from multiple runs of prediction modeling

tt t

QF K
GI

QC QT

Fig. 1. Prediction process diagram

The reliability of prediction grows as well while calibrating the simulation model.
In mathematical terms every next calibration may be considered as a shift of
observation’s left bound to the right and decrease prediction interval. On every step
we gain the best knowledge about the current situation. Using the calibrated
prehistory we make a forecast with such characteristics as reliability and risk analysis
of hitting the critical area. The simulation modeling allows us to get the numeric

556 Y.G. Karpov, R.I. Ivanovsky, and K.A. Sotnikov

estimates of prediction’s reliability increase. Graphical representation of our approach
is presented on Figure 1.

3 Application Example

The structure of example solution is presented on figure 2. The upper level of our
system, repository, may be in particular considered as any ERP solution which
provides the detailed and comprehensive information about system processes. Data
from the repository is used for periodical calibration of the model to achieve higher
reliability of prediction results.

The simulation model simulates the real structure behaviour including customers,
IT infrastructure and financial flow modelling. One of the main advantages of
simulation modelling is the fact that one can build a model of sufficiently complex
system just having in mind understanding of only behaviour of each element of the
system and interconnection rules. For example a model of IT infrastructure (ITI) may
be specified as an interconnection of a number of servers, switches, communication
channels, etc. The model of server may be expressed as a random delay depending on
number of concurrently processed transactions; the switching rules may be specified
using policies. While running simulation model the processing time of each
transaction may be obtained and possible SLA violations, penalties, etc. may be
calculated using SLA expressions and rules.

Real IT system

Real life

Analytical model

Repository:
data

monitoring,
collecting,
analyzing

utility

Simulation model

M
od

el
 c

al
ib

ra
tio

n

Si
m

ul
at

io
n

re
su

lts

Customer model

IT infrastructure model

What-ifs

M
od

el
 c

on
tr

ol

...)(2
210 tataaty

Decision Support System

Algorithms of
estimation,

prediction and
sensitivity
analysis

R
ec

om
m

en
da

ti
R

es
ul

ts

Fig. 2. Example solution structure

The customer uses the resources the provider company (IT infrastructure in our
case) by generating various types of transactions according to SLA, pays for this
usage and receives penalty payments if SLA is violated. The customer may
experience technical problems as well which are to be resolved by IT system services.

 Application of Simulation Approaches 557

ITI model includes models of its elements with proper behavior characteristics,
breakdowns (incidents and problems in ITS), recovery times and downtimes with the
corresponding stochastic specifications. In addition, techniques for modeling financial
flows for IT services leading to compliance models for SLAs/SLOs. We stress that
incidents are one of the key points of our simulation model as they are a starting point
for possible loses in system. Incidents as well as customers’ technical problems are
resolved by technical department which is also included in our structure. Incidents
resolution time depends on IT Management strategy. The other task of technical
department is to trace the operations fulfilment and disclose SLA violations. The
infrastructure model also includes a financial department which calculates appropriate
invoices for customers and calculates penalties if SLA is violated. Financial
department may be used as output showing the current situation in terms of business
goals or KGIs.

Decision Support System realises algorithms of prediction, estimation and analysis
described in section 2. In addition to calculations it may provide answers to what-if
questions and be a foundation for decision making.

When using simulation models one of the key problems is proof of model validity.
In addition to traditional approach of model calibration basing on scenarios of real
system functioning we use adjustment of model parameters at every time step using
analytical model based on parameters monitoring which represents integral system
characteristic. The calibration affects the stochastic description of the process flow in
the ITS and allows to achieve higher reliability simulation results.

4 Further Development and Application Area

The range of tasks which may be solved using the presented approach is rather wide
and is not certainly restricted by just ITI management. It may also be used for
business management, application management, etc.
Considering ITSM we may excrete the following range of tasks which may be solved
using and within the frames of our approach.
In application to analytical methods of prediction and forecasting:

• Sensitivity analysis and regression analysis. One may extract a variety of
indicators, characterizing the ITS functioning. Sensitivity and regression analysis
allows specifying the most valuable indicators, key performance indicators (KPIs)
which may be used for future decision making.

• Selection and analysis of influencing factors, controls and disturbing influence
factors in ITS. Ranking of factors, controls and disturbances by the degree of
impact to KPIs using the sensitivity analysis. This type of analysis may be also
applied to the criteria selected in accordance with business goals.

• Application of analytical models for prediction and forecasting. As usage of the
simulation model gives a possibility to obtain every value at every time step, the
regression analysis method may be applied to calculate the mathematical
dependence to describe the behavior of selected criteria at the average.
Additionally, not only point estimates of regression correlations, but also
dispersions of these parameters may be received. This in turn allows fulfilling the

558 Y.G. Karpov, R.I. Ivanovsky, and K.A. Sotnikov

prediction of criteria value with such characteristics as reliability and risk analysis
of hitting the critical area (for the criteria).

In application to decision support for ITSM:

• Selection and ranking of key performance indicators that measure the performance
of IT service delivery and operations with respect to the value they contribute to
the business supported by the IT.

• Investigation of dependencies between IT metrics and business objectives, business
rules and policies.

• Investigation of optimization techniques for decision support within IT service
management processes.

Our approach may also cover ITI processes like change management, incident
management, service level management, etc. thus giving the new possibilities for
these spheres.

5 Conclusion

The paper presents the simulation-based approach to IT service management. The
main benefits of this approach lie in combination to two kinds of models, analytical
and simulation ones, and in constant calibration to the real system’s behavior. The
example provided covers the IT infrastructure management, but the general approach
is not restricted by this area and may also be used for business management,
application management as well as covering of specific ITS processes.
We do not consider our approach as a separate tool or system; we expect it to be a
supplemental tool to huge enterprise systems providing powerful means of gathering
and structuring the information but lacking in decision support capabilities.

References

1. Popkov, T., Karpov, Yu., Garifullin, M.: Using Simulation Modelling for IT Cost Analysis.
In: 10th HP OpenView University Association Workshop (July 2003) http://
www.hpovua.org

2. Schmid, M., Schaefer, J., Kroeger, R., Sotnikov, K., Karpov, Yu.: Combining Application
Instrumentation and Simulation to Forecast Costs and Revenue in Application Service
Provisioning Scenarios Using Simulation Modelling for IT Cost Analysis. In: 13th HP
OVUA Workshop (June 2006)

3. Aib, I., Sallé, M., Bartolini, C., Boulmakoul, A.: A Business Driven Management
Framework for IT Systems Management. In: IFIP/IEEE International Symposium on
Integrated Management, poster session, Nice, France (September 2005)

4. Control Objectives for Business Information-related Technology COBIT. http://
www.isaca.org/cobit.htm

Using Analytical Models to Load Balancing in a

Heterogeneous Network of Computers

Jean M. Laine and Edson T. Midorikawa

Department of Computer Engineering and
Digital Systems - Polytechnic School

University of São Paulo
Av. Prof. Luciano Gualberto, trav. 3, 158

São Paulo – SP – 05508-900, Brazil
{jean.laine, edson.midorikawa}@poli.usp.br

Abstract. An effective workload distribution has a prime rule on reduc-
ing the total execution time of a parallel application on heterogeneous en-
vironments, such as computational grids and heterogeneous clusters. Sev-
eral methods have been proposed in the literature by many researchers in
the last decade. This paper presents two approaches to workload distri-
bution based on analytical models developed to performance prediction
of parallel applications, named PEMPIs VRP (Vector of Relative Per-
formances). The workload is distributed based on relative performance
ratios, obtained by these models. In this work, we present two schemes,
static and dynamic, in a research middleware for a heterogeneous network
of computers. In the experimental tests we evaluated and compared them
using two MPI applications. The results show that, using the VRP’s dy-
namic strategy, we can reduce the imbalance, among the execution time
of the processes, in relation to average time from 25% to near of 5%.

1 Introduction

Load balancing strategies can improve the performance of parallel and dis-
tributed applications, dividing the workload among the machines, in order to
exploit each of them properly. Different approaches can be applied for that ob-
jective, both for homogeneous and heterogeneous environments of distributed
computing. In high-performance homogeneous environments, such as homoge-
neous clusters, generally, a static strategy is used to divide the work into a
number of pieces equal to the number of nodes or processors in the environment,
in order to distribute equally the computation among the machines. On the other
hand, in heterogeneous systems, such as heterogeneous network of computers,
heterogeneous clusters or computational grids [1,2], the workload is divided ac-
cording to the computational power of each host, and then, all machines will
receive a workload proportional to its processing capacity and load situation. A
static workload partition and distribution generates a low overheads compared
to dynamic strategies. Generally, these strategies are based on the divide-and-
conquer techniques, where the problem is divided into a number of sub-problems
that can be solved separately.

V. Malyshkin (Ed.): PaCT 2007, LNCS 4671, pp. 559–568, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

560 J.M. Laine and E.T. Midorikawa

A strategy that can be used is, partitioning the workload equally and dis-
tributing the parts to the nodes; each node should receive more or less slices ac-
cording to own capacity. Another approach is, dividing the workload not equally,
then each node would receive slices suitable to own computational power. An
advantage of the last one is the reduction of the total message exchange on the
network and consequently lower overhead to communication.

This paper presents two approach to PEMPIs VRP: static and dynamic. It’s
a set of techniques of workload distribution in heterogeneous environments. We
intend to verify how analytical performance prediction models can aid load bal-
ancing, considering the individual capacity of the machines. We use two MPI
(Message Passing Interface) [3,4] parallel programs as case studies: matrix mul-
tiplication and a simulator for the interaction of particles under gravitational
forces.

The remainder of this paper is organized as follows. Section 2 presents some
considerations about workload distribution in homogeneous and heterogeneous
systems. Section 3 describes our methodology for workload distribution for het-
erogeneous environments. In section 4 we introduce the applications used in our
experimental tests, present some characteristics of our experimental environment
and we detail how our experiments were conducted. The experimental results
are showed in section 4.2. Some related works are presented in section 5. The
conclusions of our paper and some future work are discussed in section 6.

2 Workload Distribution

In distributed and heterogeneous systems there are many factors able to influence
the application performance and affect the total execution time of programs. For
instance, we can quote the CPU processing power, CPU load, operating system
overhead, network bandwidth and amount of memory. The individual process-
ing power is not related only with CPU processing power but also with available
amount of memory, memory latency, cache size, interconnection structures and
I/O bandwidth. However, other factors can influence the performance of dis-
tributed applications, such as, bad load balance and huge message exchange. To
efficiently utilize computing resources, provided by the environment, and to in-
crease the global system performance, we have to adopt an efficient mechanism
of load balancing.

In heterogeneous environment, a load balancing strategy should consider the
computational power of each machine and the communication cost for exchang-
ing data on the network before partitioning and distributing the tasks to hosts.
In the literature is possible to find some strategies, such as, Self-Scheduling
(SS), Chunk Self-Scheduling (CSS), Guided Self-Scheduling (GSS) and Trape-
zoidal Self-Scheduling (TSS) [5, 6, 7, 8, 9] that were developed to this kind of
environment.

In homogeneous systems, the simplest load balancing strategy only divide the
problem size (n) by the number of processes (p) and distributes the tasks among
the machines. Then, each process will receive the same amount of work (n

p).

Using Analytical Models to Load Balancing 561

There are some strategies developed to this purpose, such as, Block Scheduling,
Cyclic Scheduling and Block-D Scheduling [10].

The main objective of load balancing is, to distribute workload uniformly
to all nodes, in order to prevent some machines with idle or under-utilized re-
sources and also overloaded. Otherwise, the load concentration or imbalance can
affect not only the global system performance, but also, a particular distributed
application running in the environment.

In this context, we present and discuss in this paper two strategies, static and
dynamic, applicable to heterogeneous network of computers, such as, clusters [11]
or computational grids [12,1]. Both strategies uses performance prediction mod-
els, elaborated by a methodology named PEMPIs to load balance. The master
divides the workload according to relative performance ratios defined by VRP
(Vector of Relative Performances).

3 Developed Strategy

This section describes a strategy developed for workload balance, based on ana-
lytical performance prediction models generated by PEMPIs, a methodology to
performance analysis and prediction of MPI programs [13]. The strategy, named
VRP, has two possible approachs: static and dynamic. The static scheme can be
used in homogeneous environment, while the second approach is more suitable
to heterogeneous and dynamic environment.

The analytical models developed by PEMPIs to represent the application’s
behavior can be applied to performance prediction and workload balance, as
will be explained later in this paper. To elaborate these analytical models, is
necessary to analyze, before, the complexity of the applications algorithm. For
instance, the model used to represent particles under gravitational forces appli-
cation, that is (O(n2

p)), can be written as following:

t(n, p) =
a

p
n2 +

b

p
n+

c

p
(1)

So, PEMPIs VRP is a strategy developed to provide workload balance in dis-
tributed systems by assigning an adequate workload for each node. The workload
distribution algorithm is based on a set of values, related to the performance of
each node. These values consider many factors, such as processing, memory re-
sources and communication capabilities.

Basically VRP is a vector of m positions, where each value is associated with
a machine and characterizes its relative performance in the environment. The
values of VRP are ordered by processing power, where V RP [1] represent the
slowest machine of the system and V RP [m] stores the relative performance
ratio of the fastest machine, as following:

V RP = {ϕ1, ϕ2, ϕ3, ..., ϕm−1, ϕm} (2)

where:
ϕm =

δ1(n, p)
δm(n, p)

(3)

562 J.M. Laine and E.T. Midorikawa

ϕm: represents the relative performance value of the mth machine and the
parameters δm(n, p) and δ1(n, p) represent the analytical models developed by
PEMPIs to machine 1 and m, respectively;
ϕ1: represents the relative performance value of the slowest machine of the

system and the value of ϕ1 is 1.
So, the relative performance value calculated to each machine indicates the

amount of load that will be processed by this machine. The parameters of this
unitary load and partition is computed by the following formulas:

ul =
τ

m∑

i=1

V RP [i]

(4)

Δm = +ul × V RP [m], (5)

where ul is the unitary load, τ is the total workload and Δm is the assigned
workload to mth machine.

So, we apply these formulas to each test configuration in the environment in
order to generate the most adequate VRP to our load balancing strategy. We
can use two different approachs to obtain the VRP. The first method to load
balancing is static, and the values used to VRP are the same to all configurations
of the environment and the problem. The second strategy is dynamic, and we
define the values of VRP in function of the number of processes (p) and size of
the problem (m). The tasks will be distributed based on VRP values. We can
observe during the tests that, the dynamic approach is more suitable and reach
better results than the static strategy.

4 Case Studies

In order to test and evaluate the PEMPIs VRP strategy we have applied it
to some parallel applications. Firstly, we modeled two MPI programs (the tra-
ditional matrix multiplication and a simulator of particles interaction under
gravitational forces) with PEMPIs. These applications were executed on the
environment showed in the figure 1.

4.1 Computational Environment

The experimental tests were executed on a heterogeneous network of comput-
ers composed by different processing nodes. There are three types of machines,
named intel, bio and taurus. The intel machines have an Intel Pentium D 950 pro-
cessor, 2GB of DDR2 SDRAM, dual gigabit Ethernet interfaces and run Fedora
Core 5. The bio machines are composed by dual AMD Athlon MP 2400+ nodes,
with 1GB DDR SDRAM, dual Intel Ether-Express Pro Fast Ethernet boards
and run RedHat Linux. The taurus machines have an Intel Celeron 433MHz,
256 MB SDRAM, Fast Ethernet interfaces and run RedHat Linux. The parallel
applications use the LAM-MPI implementation. The figure 1 shows our testbed
environment.

Using Analytical Models to Load Balancing 563

Primergy Primergy

Primergy Primergy
Primergy

Primergy
Primergy Primergy

Network Interconnection

IntelBio

Taurus

Fig. 1. Network testbed (logical diagram)

4.2 Workload Balancing

In this section we describe the application programs used in our experimental
tests, presenting some information about their respective algorithms and par-
allelization techniques, and then, we discuss the evaluation results of our load
balancing strategy.

Matrix Multiplication - MM. Matrix multiplication is present in the major-
ity of scientific computing and computer graphics applications. So, it is an im-
portant efficient implementation of this application on parallel and distributed
systems. Several works have been developed considering new parallel algorithms
for matrix multiplication on different environment, distributed or not, showing
its importance.

In our tests we used the conventional O(n3) algorithm. The program was,
initially, executed in each node type, in order to obtain the PEMPIs analytical
models. To evaluate our proposed strategy, we analyzed the execution time of
each parallel task. The Figure 2 shows the load balancing using a static strategy
to VRP. Some processes have presented an unbalancing up to 25% in relation to
average time (DFAT) for some problem sizes.

Fig. 2. MM with static VRP Fig. 3. MM with dynamic VRP

564 J.M. Laine and E.T. Midorikawa

The DFATp (Distance From Average Time) represents how much time the
execution of slave p (xp) is distant from average time of all slaves (x), as following:

DFATp =
xp − x
x

(6)

Depending on the configuration of the problem size (n) and the number of
processes (p), the static VRP cant be efficient and the imbalance can be high.
Based on these results and observations, we decide to improve our technique and
modified the form used to obtain the values of VRP. In the second approach,
the VRP is determined dynamically and adjusted to each problems configuration
(p,n). Figure 3 shows the new results after these modifications to the same prob-
lems configuration. As can be seen, all tasks presented a maximum distance close
to 5%, showing that the dynamic strategy was successful in adequately distribute
the workload among the heterogeneous nodes, generating a more homogeneous
distribution.

Particles under Gravitational Forces - PGF. The program gravity imple-
ments an application similar to the well known n-body problem [14], with the
simulation of the interaction of a number of particles under gravitational forces.
A total of N particles composes the system to be simulated, each of them are
characterized by its mass, position and momentum. The used algorithm adopts
the particle-particle (PP) method to compute the interaction forces among the
particles.

The application parallelization is based on partitioning the computation task
among the processing nodes through the data distribution: each node gets a set
of particles to the process. The data structure, describing the current state of
all particles, is maintained by the master and is broadcasted in the beginning of
a time step computation.

Before starting the computation of each step, each node must communicate
with the master in order to send the current state of its particles. After the
master have collected all the information, it broadcasts the data structure to
all tasks. Each parallel task is mapped in only one node. The memory used to
store all data structures is dynamically allocated, minimizing the total memory
requirements for each task.

The Figure 4 presents the DFAT for all slaves, using the static VRP approach.
As we can observe, the maximum distance from average time was about 5.5%

Fig. 4. PFG with static VRP Fig. 5. PFG with dynamic VRP

Using Analytical Models to Load Balancing 565

in some problems configuration. To solve this imbalance we used analytical per-
formance models for different workload ranges, in order to get a more accurate
prediction and then a more balanced execution across a dynamic VRP strategy,
as done and presented to matrix multiplication. After these modifications the
balancing was improved and the new results are showed in the figure 5. After
adjusting the models and the VRP, we reduced the maximum distance to near
1% of the worse situation of unbalancing. This represent an improvement of 80%
in the workload distribution (load balancing) if compared with static approach.

4.3 Comparing the PEMPIs VRP with SS Strategy

After these promising results, we have executed another evaluation using our
strategy and comparing it with the self-scheduling (SS) method. The reason
for the choice of self-scheduling method is the following: a natural way to dy-
namically adjust the workload in an heterogeneous environment is to assign the
computational task at run-time, depending on the availability of the nodes. This
approach is widely used for many heterogeneous systems, such as task-of-bags
grid applications.

Figure 6 presents the experimental tests to MM using 18 processors (4 intel, 7
bio and 7 taurus) and the speed-up curve comparing the VRP and SS strategy.
A simple inspection in the figure is possible to verify that our strategy outper-
forms the self-scheduling method and the speedup increases in function of n. For
example, to n = 1440 the speedup is approximately 1.5 and to n = 2880 this
value is near to 3.

We can note that for matrices with order 720 and 1080, PEMPIs VRP pre-
sented a performance a little lower than SS, with speed-up factors of 0.92 and
0.97, respectively. We consider the following reasons for this result: the overhead
of our strategy compared to the simplicity of SS and the lack of a more opti-
mized implementation. But the main reason is, due to the fact that PEMPIs
VRP makes use of an analytical performance model for the workload distribu-
tion. After adjusting the analytical models we improved the speed-up, in relation
to previous results, as far as 5% to n = 720 and n = 1080. The accuracy of this
performance model is very important in our strategy.

The figure 7 compared our strategy with Self-scheduling method to PGF
using 18 processors (4 intel, 6 bio and 8 taurus). The experimental tests show
that PEMPIs VRP outperforms SS by around 10%, allowing us to conclude the
usability of our proposal.

5 Some Related Works

With the growing adoption of heterogeneous distributed environments, mainly
clusters and computational grids, many researches have dedicated to research
many subjects relative to these platforms. Among these subjects we can quote
the performance analysis and prediction of parallel and distributed applications.
The execution time is much important for applications designed to solve complex

566 J.M. Laine and E.T. Midorikawa

Fig. 6. PEMPIs VRP x SS - MM Fig. 7. PEMPIs VRP x SS - PGF

problems using such platforms. So it is always meaningful to create mechanisms
to improve the applications response time.

Vraalsen [15] presents a strategy for performance prediction of applications
designed to grid environments. Also, the strategy intends to detect unexpected
behavior caused by systems dynamic. Among the causes for this behavior are
the resource sharing and the load balance.

For the real time monitoring of the application it is used a tool named Au-
topilot [16]. The tool was developed to dynamic environments and can execute
real time measurement of the application in heterogeneous computational grids.
For that, Autopilot uses sensors and actuators spread across the environment.

In the Self-Scheduling strategy (SS) each process requests a piece of work
when it is idle. This piece of work is the smaller possible. In the literature we can
find others strategies, as Chunk Self-Scheduling (CSS), Guided Self-Scheduling
(GSS) and Trapezoidal Self-Scheduling (TSS) [5, 6,7,8, 9].

In the [17] a study of dynamic schemes for loops with step dependencies
for heterogeneous clusters has been reported. The work extends three dynamic
schemes (CSS, TSS and DTSS) by introducing synchronization points at certain
intervals so that processors compute in pipelined fashion.

A study about the overhead of a dynamic load balancing library (DLBL) for
large irregular data-parallel scientific applications on general-purpose cluster is
described in [18]. The DLBL is based on dynamic loop scheduling techniques.

In the paper [19] is presented a game theoretic approach to solve the static
load balancing problem in a distributed system. The solution adopted is based
on the Nash Bargaining Solution (NBS) and, different of our work, they use
simulation to test the proposed scheme.

6 Conclusions

In this paper we have discussed an alternative approach to workload distribution
in heterogeneous environments using performance prediction analytical models,

Using Analytical Models to Load Balancing 567

named PEMPIs VRP. The main contribution of our strategy is the adoption of
these analytical performance prediction models to load balancing.

The analysis of the execution times distribution of the parallel tasks in the
application programs, showed that the computational workload for each process-
ing node in the heterogeneous cluster was adequate, presenting a more uniform
execution times distribution after the application of our strategy. For most cases,
the execution time of parallel tasks was under 5% (MM) and 2% (PGF) off the
average. The imbalance presented by the VRP’s static strategy was minimized
when the values of VRP were determined dynamically. To some configurations,
the imbalance was reduced from 25% to 5%. The new approach uses different an-
alytical models to determine the VRP values and produces a more homogeneous
workload distribution than the static approach.

For future works, we intend to extend our strategy to consider multiple proces-
sors or cores in SMP nodes to compute the workload for each task. Preliminary
studies show that dual-processor nodes has better performance than dual-core
processors. One possible explanation for this consideration is, the memory bus
that is shared by both cores to the main memory. A more detailed investigation
is being conducted.

The application of our strategy in a computational grid requires take into
consideration many other subjects, such as, the ratio of workload and communi-
cation times and network latency. These aspects are being studied and developed
in a research middleware project.

References

1. Németh, Z., Sunderam, V.: Characterizing grids: Attributes, definitions, and for-
malisms. Journal of Grid Computing 1(1), 9–23 (2003)

2. Foster, I., Kesselman, C., Nick, J.M., Tuecke, S.: The physiology of the grid: An
open grid services architecture for distributed systems integration. Technical Re-
port OGSI WG, Global Grid Forum (June 2002)

3. Snir, M., Otto, S.: MPI — The Complete Reference: The MPI Core. MIT Press,
Cambridge (1998)

4. Gropp, W., Huss-Lederman, S., Lumsdaine, A., Lusk, E., Nitzberg, B., Saphir,
W., Snir, M.: MPI — The Complete Reference: the MPI-2 Extensions, vol. 2. MIT
Press, Cambridge (1998)

5. Polychronopoulos, C.D., Kuck, D.J.: Guided self-scheduling: a practical scheduling
scheme for parallel supercomputers. IEEE Transactions on Computers C-36(12),
1425–1439 (1987)

6. Tzen, T.T., Ni, L.M.: Trapezoidal self-scheduling: A practical scheduling scheme
for parallel compilers. IEEE Transactions on Parallel and Distributed Systems 4(1),
87–98 (1993)

7. Shih, W.C., Yang, C.T., Tseng, S.S.: A performance-based approach to dynamic
workload distribution for master-slave applications on grid environments. In: GPC
73–82 (2006)

8. Yang, C.T., Shih, W.C., Tseng, S.S.: A dynamic partitioning self-scheduling scheme
for parallel loops on heterogeneous clusters. In: International Conference on Com-
putational Science, vol. (1), pp. 810–813 (2006)

568 J.M. Laine and E.T. Midorikawa

9. Yang, C.T., Chang, S.C.: A parallel loop self-scheduling on extremely heteroge-
neous pc clusters. In: International Conference on Computational Science, pp.
1079–1088 (2003)

10. Li, H., Tandri, S., Stumm, M., Sevcik, K.C.: Locality and loop scheduling on NUMA
multiprocessors. In: Proceedings of the 1993 International Conference on Parallel
Processing. Volume II - Software, pp. II-140–II-147. CRC Press, Boca Raton (1993)

11. Buyya, R.: High Performance Cluster Computing: Architectures and Systems.
Prentice Hall PTR, Upper Saddle River (1999)

12. Foster, I., Kesselman, C.: The Grid 2: Blueprint for a New Computing Infrastruc-
ture. Morgan Kaufmann Publishers Inc., San Francisco (2003)

13. Midorikawa, E.T., Oliveira, H., Laine, J.M.: Pempis: A new methodology for mod-
eling and prediction of mpi programs performance. International Journal of Parallel
Programming 33(5), 499–527 (2005)

14. Franklin, M., Govindan, V.: The n-body problem: Distributed system load balanc-
ing and performance evaluation. Technical Report 93-16, Department of Computer
Science and Engineering, Washington University, St. Louis (2003)

15. Vraalse, F., Aydt, R.A., Mendes, C.L., Reed, D.A.: Performance contracts: Pre-
dicting and monitoring grid application behavior. In: Lee, C.A. (ed.) GRID 2001.
LNCS, vol. 2242, pp. 154–165. Springer, Heidelberg (2001)

16. Ribler, R.L., Vetter, J.S., Simitci, H., Reed, D.A.: Autopilot: Adaptive control
of distributed applications. In: 7th IEEE Symposium on High-Performance Dis-
tributed Computing (HPDC), pp. 172–179 (1998)

17. Ciorba, F.M., Andronikos, T., Riakiotakis, I., Chronopoulos, A.T., Papakonstanti-
nou, G.: Dynamic multi phase scheduling for heterogeneous clusters. In: 20th In-
ternational Parallel and Distributed Processing Symposium (IPDPS’ 06), Rhodes
Island, Greece, p. 10. IEEE Computer Society Press, Los Alamitos (2006)

18. Banicescu, I., Carino, R.L., Pabico, J.P., Balasubramaniam, M.: Overhead analysis
of a dynamic load balancing library for cluster computing. In: 19th IEEE Interna-
tional Parallel and Distributed Processing Symposium (IPDPS’05) - Workshop 1,
Washington, DC, USA, IEEE Computer Society Press, Los Alamitos (2005)

19. Penmatsa, S., Chronopoulos, A.T.: Cooperative load balancing for a network of
heterogeneous computers. In: 20th IEEE International Parallel and Distributed
Processing Symposium (IPDPS 2006), 15th Heterogeneous Computing Workshop,
p. 10. IEEE Computer Society Press, Los Alamitos (2006)

Block-Based Allocation Algorithms for FLASH

Memory in Embedded Systems

Pangfeng Liu1, Chung-Hao Chuang1, and Jan-Jan Wu2

1 Department of Computer Science and Information Engineering
National Taiwan University, Taipei, Taiwan

pangfeng@csie.ntu.edu.tw
2 Institute of Information Science, Academia Sinica, Taipei, Taiwan

Abstract. A flash memory has write-once and bulk-erase properties so
that an intelligent allocation algorithm is essential to providing appli-
cations efficient storage service. This paper first demonstrates that the
online version of FLASH allocation problem is difficult, since we can find
an adversary that makes every online algorithm to use as many number
of blocks as a naive and inefficient algorithm. As a result we propose
an offline allocation algorithm called Best Match (BestM) for allocating
blocks in FLASH file systems. The experimental results indicate that
BestM delivers better performance than a previously proposed First Re-
arrival First Serve (FRFS) method.

1 Introduction

The recent rapid developments of embedded systems have changed many aspects
of our daily life. More and more embedded systems are deployed in household
appliances, office machinery, transportation vehicles, and industrial controllers.
These tiny devices, with the help from increasing computing power of modern
microprocessors, are able to perform and control complex operations. With this
advancing embedded system technology more and more ”smart” devices are able
to provide inexpensive and reliable controlling capability.

There are two special properties in the flash file system management – write-
once and bulk-erasing. The term write-once means that if there is a data in a
storage space, it cannot be overwritten in place. The new data must be placed
into another available place and the original data is declared out-of-date. If a
data is updated multiple number of times the correct location of the data will
change with time. This characteristic makes the management of flash file system
very different from disk file systems.

A bulk-erasing operation is performed when there are a large number of un-
marked and marked storage spaces mixed together in the flash file system. Before
a ”erase” operation the latest data within the regions that will be erased needs
to be copied to other space with no data. These copy operations and reusing the
space occupied by the old version of data are managed by the garbage collection.

There have been various techniques proposed to improve the performance
of garbage collection for flash memory [6,7,4]. Kawaguchi, et al. proposed a

V. Malyshkin (Ed.): PaCT 2007, LNCS 4671, pp. 569–578, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

570 P. Liu, C.-H. Chuang, and J.-J. Wu

cost-benefit policy [6], which uses a value-driven heuristic function as a block-
recycling policy. Chiang, et al. [4] refined the work by considering the locality in
the run-time access patterns. Kim, et al. [7] proposed to periodically move live
data among blocks so that blocks have more even life-cycles.

Although researchers have proposed excellent garbage-collection policies,
there is little work done in providing a deterministic performance guarantee
for flash-memory storage systems. It has been shown that garbage collection
could impose almost 40 seconds of blocking time on time-critical tasks without
proper management [8]. As a result, Chang, et al. [3] proposed a deterministic
garbage collection mechanism to provide a predictable garbage collection mech-
anism. If the allocation method uses less blocks, the number of flash memory
blocks requested to update reduces when the system executes garbage collec-
tion. Therefore, a good allocation algorithm improves garbage collection time.
This motivates us to develop great allocation algorithms to reduce the resource
consumption for flash memory systems.

Chou, et al. [5] proposed several allocation algorithms, including a First Re-
arrival First Serve (FRFS) method that provides excellence performance. FRFS
sorts the page access sequence by their re-arrival time and assigns each of them
an ordinal order accordingly. The algorithm then allocates blocks for page access
request according to this ordinal number. In this paper we compare our algorithm
with FRFS by examining their performance.

2 Flash Memory Allocation Model

A flash memory system consists of some blocks and each block has a fixed number
of cells. We assume that the number of cells in each block is denoted by B.
Every cell has the same amount of capacity for data, and every block has the
same number of cells. We denote the cells in every block by C[0], C[1], C[2], . . . ,
C[B − 1].

Every flash memory cell is in one of the three states – free, valid and invalid.
A cell is free means that there is no data in it. A cell is valid means that there is
data valid stored in it. A cell is invalid indicates that the data in it is no longer
valid while the valid data is actually stored elsewhere. From the status of its
cells we define that a block is either active or inactive. A block is active means
that there is at least one valid cell in it, otherwise it is inactive. In other words
an inactive block has only free or invalid cells. Note that only inactive blocks
can be erased and reused.

Initially all cells are free and all blocks are inactive. When a data is placed
into a free cell, the cell becomes valid and the block which contains the cell
becomes active. If an inactive block becomes active, we assign an index to the
block. Unlike a disk file system, a valid cell cannot be written in place. If we want
to relocate a valid cell, we need to put the data into another free cell so that
the original cell becomes invalid. Then the invalid cells can be transformed into
free cells by an erase operation, which erases all cells in a block simultaneously.
After the erase operation all cells of an inactive blocks return to the free state

Block-Based Allocation Algorithms for FLASH Memory 571

and can be reused. On the other hand, an active block, which has at least a valid
cell in it, cannot be erased.

2.1 Page Access Sequence

We assume that a file is partitioned into pages of the same size, and every page
is denote by a letter (e.g., a, b, c). Each page has the same amount of data as a
cell in the flash memory system, so that any page can fit into any cell. We access
a file by pages, therefore file access can be modeled as a sequence of page access.
This sequence is defined as page access sequence.

A page can appear multiple times in a page access sequence, and we need to
make a distinction among these appearances. For the purpose of assigning pages
to cells, we actually mean assigning a particular appearance of a page to a cell.
To avoid further confusion in notation, we will use the notation pi to denote a
i-th appearance of a page p.

2.2 Flash Memory Allocation

For a page access sequence, we only need to allocate free cells for page write
operation, since reading operations do not change the status of any cell. We
need to allocate free cells for page writes and set the status of those cells they
previously resided to invalid. Consequently, given a page access sequence, we can
focus on page writes and neglect pages reads.

After we retain only the writing operations in a page access sequence, we
must assign a free cell for each page write. We use a page allocation function for
this purpose, that is, an allocation function F maps a page appearance pi to a
block F (pi) and puts page appearance pi into the first free cell C in block F (pi),
then changes the state of C from free to valid. If the block F (pi) is inactive, we
set it to ”active”. In addition, if pi is not the first appearance of page p in this
sequence, we set the status of the cell it previously resided, which is in block
F (pi−1), to be invalid. If all cells of the block become invalid or free, we can
reuse the block and set it to be ”inactive”.

3 Algorithms

3.1 The Online Problem

We first consider a naive algorithm for the online page allocation problem. Let
us assume that there are N different pages in the input sequence. The algorithm
simply place all the requests for the same pages into the same block. As a result
each block contains only a single most up-to-date content of a page, plus all
the previous contents that all have been marked invalid. This simple minded
algorithm uses N blocks, which is much more than the obvious lower bound N

B ,
where B is the number of cells in a block.

We design an online adversary that makes every online algorithm to use N
blocks, where N is the number of different pages in the input sequence. The

572 P. Liu, C.-H. Chuang, and J.-J. Wu

adversary first asks the algorithm to allocate a cell for the first page appearance
a0. Then the adversary asks the algorithm to allocate a cell for the second page
appearance b0. If the algorithm puts b0 into the same block as a0 is in, the
adversary asks the algorithm to allocate a cell for the same page again – the
page appearance will be b1. That is, the adversary keeps asking the algorithm to
allocate a cell for the same page b until the algorithm allocates a block different
from the block page appearance a0 is in. The adversary keeps doing this for page
c, d and so on. Eventually every page has to be in its “own” block, therefore,
every online algorithm needs to use up to N blocks in the worst case.

Theorem 1. There exists an adversary that will find an input consisting of N
different pages, for any algorithm so that the algorithm must use N blocks.

First-Come-First-Serve Algorithm. For the online problem Chou and Liu
proposed a simple First Come First Serve (FCFS) algorithm [5]. The idea of
FCFS is to assign blocks to page appearances according to their arrival time, so
that we can use new blocks as late as possible. FCFS is simple enough to be used
in the online model. However, the experimental results from [5] indicate that it
does not provide superior performance.

3.2 The Offline Problem

We first review a previously proposed First-Re-arrival-First-Served (FRFS) al-
gorithm [5]. Chou and Liu showed that FRFS produces good schedules for inputs
taken from the actual disk tracing [5].

First-Rearrival-First-Serve. The idea of FRFS is to assign blocks to page
appearance according to when the page will re-arrive, so that those page ap-
pearances that will re-arrive earlier will be placed together, and the block they
reside can be reused as early as possible.

Although FRFS reuses blocks as soon as possible, it may use many new blocks
before reusing a block. For example, let the page access sequence be 1, 2, . . . ,
N , 1, 2, 1, 3, . . . , 1, N , and each block has two cells. FRFS allocates the first
N page appearances to N different blocks according to their re-arrival time. As
a result FRFS uses N different blocks before reusing the first block. Given any
page access sequence of N different pages, the worst possible case is to use N
blocks. For the given sequence above, FRFS actually produces the worst possible
schedule, thus we propose a new method called Best Match (BestM) so that this
worst case behavior is avoided.

Best Match. The idea of the Best Match algorithm is to assign page ap-
pearances to cells according to their difference. A difference between two page
appearances is defined as the sum of the difference of their arrival time and
the difference of their re-arrival time. The reason that we use difference to allo-
cate cells is that it is likely that all cells in the same block will be set to valid (and

Block-Based Allocation Algorithms for FLASH Memory 573

invalid) at about at the same time, so the flash memory allocation could use the
minimal number of blocks.

Best match allocation algorithm uses a data structure called block list to store
the flash memory blocks. Every block contains B cells and a block index. Initially
the block list does not contain any block. When a page appearance arrives, the
BestM algorithm computes a block index i for it. We then search the block list
for block i. If block i is not in the block list yet, we insert a new block into
the block list and set its index to i. After BestM decides the block index for an
incoming page appearance, BestM places this page appearance into the first free
cell of the assigned block. If a block becomes inactive and we want to recycle it,
we just delete it from the block list.

BestM algorithm has two stages. In the first stage, BestM computes the re-
arrival time for every page appearance. After knowing the re-arrival time of
every page appearance, we decide the block indices for those page appearances
that will not appear again. Since these pages will not be relocated, we reserve
the first +N/B, blocks for them. Specifically, we sort these “never-again” page
appearances by their arriving time, and those B page appearances having the
earliest arrival time are assigned to block index 0, and those next earliest B
page appearances are assigned to block index 1, and so on. The total number of
blocks used in this stage is +N/B,, so the first block indices that be be assigned
in the second stages is +N/B,.

In the second stage, we compute the length for those page appearances that the
corresponding pages will appear again. The length of pi is defined as A(pi+1)−
A(pi), where A(pi) is the arrival time of page appearance pi. Then we sort
the page access sequence according to their lengths. We first select the page
appearance that has the longest length, which is denoted by pj. When there
are multiple page appearances that have the same longest length, we randomly
pick one. We then select B − 1 page appearances that have the minimum sum
of the difference from page appearance pj . That is, we selected B − 1 page
appearances that have the smallest sum of differences from pj among all other
page appearances, and place them into the same block as pj. We repeat this
process until all page appearances are assigned to blocks.

After each page appearance is assigned to a block, we know when every block
is used and when it can be recycled. thus we can compute the necessary number
of blocks for the sequence. BestM places the page appearances into the block
according to the block indices. When a page appearance arrives, we put it into
the first free cell of the assigned block. We insert a new block into the block list
and increase the number of active blocks by one, if it is the first page appearance
that is put into this block. When a page re-arrives, we also need to set the status
of the cell it previously resided to be invalid. If all cells of a block are invalid or
free, the block is inactive and can be reused, therefore we can delete the block
in the block list and decrease the number of active blocks by one. We maintain
the number of active blocks and at the end we know the maximum number of
blocks required by the algorithm BestM.

574 P. Liu, C.-H. Chuang, and J.-J. Wu

4 Experimental Results

4.1 Implementation Issues

For the longest page appearance pj that has not yet been selected, we select
other B − 1 page appearances that have the minimum difference from pj and
assign them to the same block. Obviously, BestM can be implemented in O(M2)
time, where M is the number of page appearances. When the length of page
access sequence is very longer, we will spend a great amount of time to pack
page appearances together. Consequently the time complexity of BestM will be
much higher than FRFS, which runs in O(MlogM) time. Fortunately, we use an
interval tree data structure plus a bounded search technique to reduce the time
complexity of matching page appearances.

We consider a page appearances as a “time windows”. The time window of
page appearance pi is from A(pi) to A(pi+1), where A(pi) is the time when
the page appearance pi arrives. For the longest page appearance pj , other page
appearances may intersect with it, be contained in it, or be disjoint from it.
BestM will find the most suitable page appearances from these three categories.

Intersected Intervals. We use an interval tree to find the most suitable page
appearances from the first category, that is, those that intersect with pj . First,
we build the interval tree using a standard technique [9]. Since there are at most
N distinct pages, and the page appearances from the same page do not intersect,
the time to query the interval tree in order to find all intervals that intersect
with pj is bounded to O(N + logM) [9]. The number of page appearances we
will find is at most 2N , since each endpoint of pj intersects with at most N page
appearances, and pj is the longest interval. From these 2N intervals, we select the
B−1 appearances that have the smallest difference from pj. Let S0 denote the set
of these intervals. The set S0 can be computed in time O(N logB) – we simply
maintain a heap of the B − 1 elements, and the number of insertion/deletion is
bounded by O(N). The total number of selections is O(M

B) so the total time is
O(M

B (N + logM +N logB)).

Contained Intervals. We now consider the intervals that are contained in pj .
An interval qk is contained in another interval pj if and only if the arrival time
of qk is no earlier than the arrival time of pj, and the re-arrival time of qk is no
later than the re-arrival time of pj .

The length of the longest interval pj can be up toM time steps in the extreme
case. If we examine each individual page appearance to determine those that are
contained in pj , the time complexity is Ω(M), which is unacceptable. However,
for a page appearance that is contained in pj , the longer its length, the smaller
its difference from pj , so if we examine these page appearances according to
their lengths, we can reduce the time to find the most suitable appearances that
should be put together with pj .

By using the same interval tree described earlier, we can find all page ap-
pearances that are contained in every page appearance efficiently. First we sort

Block-Based Allocation Algorithms for FLASH Memory 575

the page appearances according to their lengths, then the appearances query the
interval tree in non-decreasing length order. For every page appearance qk, we
find the intervals that intersect it by querying the interval tree. If both end points
of qk intersect with the same page appearance pi, then qk is contained in pi. In
addition, since a long page appearance queries the interval tree before a short
appearance, each appearance will have a list of appearances that it contains
in non-decreasing length order. The time complexity for this preprocessing is
bounded by O(N + logM) per page appearance, and is O(M(N + logM)) for
all appearances.

We now need to find the B − 1 longest intervals that are contained in pj .
For each page appearance, it can be contained by at most N intervals, so the
total number of entries in the “contained list” for all appearances is bounded by
O(MN). A page appearance can easily determine the longest remaining B − 1
appearances by scanning through its list. Hence, the total time to find best
B − 1 intervals that every page appearance contains is O(MN). The total time
including the preprocessing is therefore O(M(N + logM)). We use S1 to denote
the set of the best B − 1 intervals that are contained in pj .

Disjoint Intervals. Now we describe the selection process of finding the best
B−1 page appearances that do not intersect with, or are not included by pj . For
each page q, we consider the last appearance qb that appears before pj but do
not have intersection with pj . It is obvious that any page appearance qc, c < b
has a larger difference than qb has. Similarly, let the first appearance qa that
appears after pj but does not have intersection with pj . Any page appearance
qc, c > a will have a larger difference than qa has.

We can think of these appearances as 2N queues, where each page has two
queues of appearances that are before or after the intervals of pj . The elements
in these 2N queues are sorted in increasing “difference” order so that the first
element has the minimum difference in the queue.

Now we need to find the B− 1 appearances the have the minimum difference
from these 2N queues. We can accomplish this in two steps. First we construct
a heap of size B − 1 with the first element from these 2N queues. This heap
is constructed by repeated inserting the first element of each queue, and those
that are not among the B − 1 smallest elements are discarded. Second we start
removing elements from the heap. Once we remove the minimum element from
the heap, we insert the next element from the same queue into the heap. We
repeatedly remove B−1 elements from this heap, and the these elements are the
B − 1 appearances that has the minimum difference from pj . Let S2 denote the
set of these intervals found. The total time complexity is bounded by O((N +
B) logB) per pj , and O(M

B (N +B) logB) overall.

Time Complexity. We now calculate the time complexity. The time to find
B−1 intersected page appearances with minimum difference is O(M

B (N+logM+
N logB)). The time to find best B− 1 contained intervals is O(MN). The time
to find the best B − 1 disjoint page appearances is O(M

B (N + B) logB). The
time to choose the best B − 1 intervals from S0, S1, and S2 is O(B) per pj , and

576 P. Liu, C.-H. Chuang, and J.-J. Wu

O(M) overall. The total time combined is therefore O(MN + M
B logM) When

B is a constant the overall time complexity is O(M(N + logM)).

4.2 Experimental Settings

We have three different trace files collected from three computer systems. The
first file is collected from a NTFS file system. The applications that access this
file system include text editor, web browser and P2P software. It is collected
with Microsoft trace-log and analyzed by Microsoft tracedmp. The second trace
file is downloaded from BYU Trace Distribution Center [1]. It is from a database
system Postgres 7.1.2, Redhat Linux with one client running 20 iterations. The
third file is downloaded from flash-memory research group in CSIE, NTU. [2].
It is a FAT32 file system over a portable device. The applications have emails
sending/receiving, movie playing and downloading, web surfing and so on.

4.3 Effect of the Length of Page Access Sequence

Figure 1 shows the relation between the length of page access sequence and
the average number of used blocks for the first, second and third trace files
respectively. FCFS performs worst because when there are a large number of
pages that will not re-appear, FRFS and BestM allocate them in the same block
area, but FCFS may put them into different blocks so that FCFS cannot reuse
those blocks.

In Figure 1 although FRFS reuses block faster than BestM does, it may assign
those page appearances that arrive at very different time to the same blocks.
Consequently, FRFS may allocate a lot of blocks before it can reuse any. On the
other hand, BestM places page appearances whose arrival and re-arrival time
are close to each other into the same blocks, BestM combines the advantage
of reusing blocks as early as possible and using new blocks as late as possible.
Consequently BestM performs much better than FRFS, except for this kind of
trace file that there are very few pages that usually re-arrive and so many pages
that will not re-appear. FCFS performs badly for any kind of trace file.

4.4 The Effects of Cell Number

Figure 2 shows the ratio of the average numbers of blocks used by FCFS and
BestM using three different file system traces under different B values. The
ratio between the number of blocks used by FCFS and BestM rapidly increases
because FCFS may not be able to decrease the number of used blocks but BestM
is. However, when B reaches 256 for the first trace file this ratio actually drops
because FCFS luckily puts some page appearances that do not re-arrive into the
same block.

Figure 2 also shows the ratio of the average numbers of blocks used by FRFS
and BestM using three file traces. When the number of cells in a block (B)
increases the ratio increases for all three trace files. When B increases, FRFS is
more likely and mistakenly to put page appearances with very different arrival
time into the same blocks, and consequently use more blocks.

Block-Based Allocation Algorithms for FLASH Memory 577

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 100000 200000 300000 400000 500000 600000

A
ve

ra
ge

 N
um

be
r

of
 U

se
d

B
lo

ck
s

Length of Page Access Sequence

FCFS
FRFS
BestM

 1

 10

 100

 1000

 10000

 0 200000 400000 600000 800000 1e+06 1.2e+06

A
ve

ra
ge

 N
um

be
r

of
 U

se
d

B
lo

ck
s

Length of Page Access Sequence

FCFS
FRFS
BestM

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 50000 100000 150000 200000 250000 300000

A
ve

ra
ge

 N
um

be
r

of
 U

se
d

B
lo

ck
s

Length of Page Access Sequence

FCFS
FRFS
BestM

Fig. 1. The number of blocks used by FCFS, FRFS and BestM when given different
sized prefix of the NTFS file system trace, BYU Trace Distribution Center trace log,
and FAT32 portable device trace

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 50 100 150 200 250 300

R
at

io
 o

f F
C

F
S

’s
 U

se
d

B
lo

ck
s

to
 B

es
tM

’s

Number of Cells in Each Block

first file
second file

third file

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 50 100 150 200 250 300

R
at

io
 o

f F
R

F
S

’s
 U

se
d

B
lo

ck
s

to
 B

es
tM

’s

Number of Cells in Each Block

1.1
1.4

first file
second file

third file

Fig. 2. Effects of the number of cells in each block on the ratio of the number of used
blocks used by FCFS and BestM, and used by FRFS to BestM

5 Conclusion

This paper proposes an allocation problem in the context of flash memory sys-
tems. We use an online adversary argument to show that when the page access
sequence is given one page appearance at a time, for every algorithm we can

578 P. Liu, C.-H. Chuang, and J.-J. Wu

always find a bad input so that the performance is as bad as a simple naive
algorithm.

We propose a BestM allocation algorithm that puts those page appearances
whose arrival time and re-arrival time are close to each other into the same block.
To overcome the aggressive behavior of a previously proposed FRFS, BestM
matches together those page appearances whose arrival time and re-arrival time
are close to each other. The idea is that by doing so we may obtain a balance
between having to use new blocks and being able to reuse blocks.

We evaluate the performance BestM by experiments. We compare the allo-
cation results with a previous First Re-arrival First Serve algorithm (FRFS),
and show that BestM outperforms FRFS when given real trace data. When the
length of page access sequence or the number of cells in every block grows, this
advantage becomes more obvious. Although the O(M(N + logM)) time com-
plexity of BestM is slightly higher than FRFS, the number of required blocks is
reduced by a factor of 5 from FRFS to BestM.

References

1. Byu trace distribution center. http://tds.cs.byu.edu/tds/index.jsp
2. Chang, L.-P., Kuo, T.-W.: An adaptive stripping architecture for flash memory

storage systems of embedded systems. In: IEEE Eighth Real-Time and Embedded
Technology and Applications Symposium, pp. 601–606 (2002)

3. Chang, L.-P., Kuo, T.-W., Lo, S.-W.: Real-time garbage collection for flash-memory
storage systems of real-time embedded systems. ACM Transaction on Embedded
Computing Systems 3(4), 837–863 (2004)

4. Chiang, M.-L., Lee, C.-H., Chang, R.-C.: Manage flash memory in personal com-
municate devices. In: Proceedings of IEEE International Symposium on Consumer
Electronics, pp. 177–182 (1997)

5. Chou, L.-F., Liu, P.: Efficient allocation algorithms for flash file systems. In: 11th
International Conference on Parallel and Distributed Systems, pp. 634–641 (2005)

6. Kawaguchi, A., Nishioka, S., Motoda, H.: A flash memory based file system. In:
Proceedings of the USENIX Technical Conference, pp. 155–164 (1995)

7. Kim, H.-J., Lee, S.-G.: Memory management for flash storage system. In: Proceed-
ings of the Computer Software and Applications Conference, pp. 284–293 (1999)

8. Malik, V.: Jffs2 is broken. In: Mailing List of Memory Technology Device (MTD)
Subsystem for Linux (June 28, 2001)

9. Rivest, R.L., Cormen, T.H., Leiserson, C.E., Stein, C.: Introduction to Algorithms.
MIT Press, Cambridge (2001)

http://tds.cs.byu.edu/tds/index.jsp

Variable Reassignment in the T++ Parallel

Programming Language

Alexander Moskovsky, Vladimir Roganov, Sergei Abramov,
and Anton Kuznetsov

Program Systems Institute of the Russian Academy of Sciences,
Pereslavl-Zalessky, 152020, Yaroslavl region, Russia
moskov@lcc.chem.msu.ru,var@pereslavl.ru,

abram@botik.ru,tonic@pereslavl.ru
http://www.botik.ru/PSI

Abstract. The paper describes the OpenTS parallel programming sys-
tem that provides the runtime environment for T++ language. T++ is
an extension for C++ that adds a set of keywords to C++, allowing
smooth transition from sequential to parallel applications. In this con-
text the support of repeated assignments to a variable is an important
feature. The paper focused on semantics and implementation of such
variables in T++. Applications written in T++ can be run on compu-
tational clusters, SMPs and GRIDs, either in Linux or Windows OS.

Keywords: OpenTS, T++, parallel computing, variable reassignment.

1 Introduction

There are a lot of academic and industry projects exist in the field of high-
level parallel programming, many of which are successful and well-known [1, 4,
2, 5, 3, 6, 7, 8, 9, 10, 11, 12, 13, 14, 17, 18]. However, none of them has widespread
adoption outside high-performance computing community. Today, when paral-
lel processors are more accessible to mass market than ever before (multi-core
CPUs, small clusters), parallel programming tools has to be simple enough for
mainstream use. That makes further research in the parallel programming field
more necessary than ever before.

Our new and original OpenTS (Open T-system) approach has many advan-
tages due to combination of simplicity and high performance. The main project
goal is to ease the process of writing parallel programs for moderately expe-
rienced programmers. Therefore OpenTS users don’t have to be able to write
very efficient code, but nevertheless they can make quick though efficient parallel
applications.

Three ideas are basic for the OpenTS:

– Parallel graph reduction is used as a programming model [11](coarse grain
dataflow).

– Extending a sequential programming language (C,C++) with additional key-
words to express parallelism.

V. Malyshkin (Ed.): PaCT 2007, LNCS 4671, pp. 579–588, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

http://www.botik.ru/PSI

580 A. Moskovsky et al.

– Dynamic parallelization at runtime on basis of directives (T++ attributes)
specified by a programmer.

T++ is a native input language for OpenTS and is a transparent attribute-based
extension of C++ [16] that supports parallelism. It is simple, intuitively obvious
and easy to learn.

In this paper we focus on T++ language distinctive feature: ability to re-
assign variables. This feature differentiates our project from the other parallel
programming systems based on functional programming (e.g. SISAL [14]).

The paper is organized as following. First, OpenTS programming model and
language are described. Then, underlying shared memory mechanism is out-
lined. Finally, there are performance measurements and comparison of OpenTS
application with an analogue.

2 OpenTS Programming Model

The OpenTS programming model is very similar to a coarse-grain dataflow
model [10, 3]. In OpenTS in order to write a parallel program, a programmer
must designate the following:

– Independent parts (pure functions) of the program (parallelism granules or
T-functions), that can be moved over the network and computed remotely.

– Variables that are used to exchange data between parallelism grains (T-
variables).

The rest of work is performed by the OpenTS components: T++ compiler and
runtime support library.

It should be kept in mind that granules of parallelism must be large enough
(coarse grains) to avoid overhead inflicted by the runtime system operating with
relatively small grains. So, a grain with, say, a single floating-point multiplication
would not be efficient, because time needed to transfer such grain to a comput-
ing node can be much greater than grain computing time. On the other hand,
large grain size is often the cause of a small number of grains and unbalanced
computational load in multiprocessor.

Granule aggregation technique is available in OpenTS for recursive programs,
similar to “task inlining” technique of Multilisp [6]. In order to create an in-
put programming language for OpenTS, existing programming language should
be extended with extra keywords or pseudo-comments. Currently, only C++
extension “T++” is implemented, Refal [15] version is underway.

3 T++ Language

The T++ language adds the following keywords (attributes) to C++:

– tfun — a function attribute which designates a T-function that may return
a non-ready value. T-function represents a granule of parallelism. As for now,
a T-function cannot be a class method but must be an ordinary C function.

Variable Reassignment in the T++ Parallel Programming Language 581

– tval — a variable attribute which enables variables to contain a non-ready
value (T-value). Such values are produced by T-functions. At any moment of
time T-values can be in one of two possible states: non-ready, when producer
T-function is still working, or ready, when producer finished and returned a
result. The T-variable can be cast to the original C++ type variable, what
makes producer T-functions running and the thread of execution suspend
until T-value becomes ready. That it very similar to “dataflow variable”
[10] or “mentat variable” [3] or “futures” [6]. That also differs T++ from
standard data-flow models, where task is ready for execution only after all
incoming data is ready — in opposite, threads in OpenTS can be launched
before any incoming data for a granule is ready.

– tptr — T-pointer, a T++ analogue of C++ pointer that can hold reference
to a non-ready value (T-value).

– tout — a function parameter attribute used to specify parameters whose
values are produced by the function. This is a T++ analog of the “by-
reference” parameter passing in C++.

– tct — an explicit T-context specification. This keyword is used for specifi-
cation of additional attributes of T-entities.

– tdrop — a T++-specific function that makes a variable value ready. It may
be very helpful in optimization when it’s necessary to make non-ready values
ready before the producer function finishes.

– twait — a T++-specific function that causes waiting for an argument ex-
pression to be ready.

Open C++ [21] is used for conversion of T++ programs into C++. It translates
all T++ attributes into the pure C++ code.

The recursive calculation of the given Fibonacci number is the simplest par-
allel program:

#include <stdio.h>
tfun int fib(int n) {

return (n < 2) ? n : fib(n-1) + fib(n-2);
}
tfun int main (int argc, char *argv[]) {

if (argc != 2) {return 1;}
int n = atoi(argv[1]);
printf("Fibonacci %d is %d\n",n,(int)fib(n));
return 0;

}

In this case, invocations of fib functions are treated as independent tasks that
can be computed in parallel in independent threads, or on the remote computa-
tional nodes. You can see that minimal modifications differ the T++ from the
C++ code: attributes of T-functions and explicit cast of fib function result to
int. That casting not only extracts value from T-value, which is returned by
fib, but also makes main function to wait for the fib result. However, run-
time support library may implement a C-call for fib. In that case, overhead

582 A. Moskovsky et al.

of calling T-function drops dramatically, and parallelism granules (T-function
calls) “aggregated” in a single granule, technique, similar of “task inlining” for
MultiLisp [6].

Some specific of the T++ language should be underlined:

– It is a “seamless” C++ extension, which means that evident C++ macrodef-
initions of T++ keywords can enable T++ program compilation by a C++
compiler. If some good coding style in T++ is adhered to, such compila-
tion (which is done via “-not” command line option) will result in correct
sequential program.

– Garbage collection is supported. Non-ready values that are no longer neces-
sary are detected and destroyed by the runtime system.

– Function execution can be postponed, not necessarily generating any com-
putation after invocation, depending on execution strategy. By default, if no
thread is waiting for function result, function execution will be omitted.

– T-variables support repeated assignments. This is done by the tricky protocol
of assignment and readiness of the variable values, related to the thread
lifecycle.

4 Implementation of Variable Reassignment

The latter T++ feature deserves a more detailed description. Each T-variable is
linked with its T-value. T-variables are type-safe: it is possible to assign values of
the same type only. A T-variable can have multiple values during its lifetime. T-
variables may share the same T-value. In other words, T-variables are wrappers
for their values, however, variables may change their values in a way that C++
smart pointers [19] do. T-value can be either non-ready or an ordinary C-value.
An assignment of a T-variable to a C-variable makes execution thread to wait
until T-value is ready — a usual approach for “futures-based” [6] systems like
OpenTS.

tval int x;
int y;
x = some_tfun();
y = x; // will wait until x has a ready value

Contrary, assignment of a C-value to a T-variable immediately causes T-value
of that variable to be ready.

tval int x;
x = some_tfun(); // assigns a non-ready value to x
x = 1; // assigns a ready value to x
x = 2; // unlinks the old value, creates a new one

The capability to assign multiple values for a single T-variable required us
to introduce “producer” thread concept. For the sake of simplicity, let us con-
sider each T-function call to be executed in a separate thread of execution (a

Variable Reassignment in the T++ Parallel Programming Language 583

“lightweight thread”). Then, we consider thread as a producer for all values that
are allocated in its context. When producer thread is destroyed, all T-values pro-
duced by this thread are no longer changed (frozen). Consumer threads don’t
have any access to T-values, unless values are frozen. Frozen values are also
produced when a T-function is called with T-variable as a parameter — snap-
shot copy of current value is produced. Such frozen values then can be easily
shared among concurrent threads or across multiple cluster nodes. Consider the
following example of T-variable reassignments:

#include <stdio.h>
#define N 10
tfun int tproducer(int i) {

tval int x;
x = 2*i;
return x;

}
tfun int tconsumer(tval int t, int i) {

return t+i;
}
tfun int main(int argc, char *argv[]) {

tval int tmp;
tval int res[N];
for (int i = 0; i < N; ++i) {

tmp = tproducer(i);
res[i] = tconsumer(tmp,i);

}
for (int i = 0; i < N; ++i)

printf("%d\n",(int)res[i]);
return 0;

}

First, take a look at first loop inside main function. On each iteration, the tmp
T-variable is assigned a new value — an output of tproducer for i-th iteration.
On the next line, tmp is a parameter for tconsumer invocation: tmp value is
passed as input to tconsumer. If tmp value was “hot” (like after tmp=i instead
of tmp=tproducer(i) assignment), the value would be copied and the copy
would be frozen. Inside the tproducer, the x value was initially allocated as
“hot” and the tproducer is the value producer. Then the x variable is assigned
with 2*i value of type int. On the next line, the value of x variable is assigned
to the return value of tproducer call. When the tproducer thread stops, the
return value is “frozen” and delivered to consumers (to tmp and t variables). The
tconsumer job is trivial — it awaits of its input value (produced by tproducer)
and conducts a summation of two integers. On the next interation of the loop,
reassignment to tmp will unlink tmp’s value of last iteration and the process will
continue.

584 A. Moskovsky et al.

5 Distributed Shared Memory in OpenTS

The OpenTS implementation relies on object-oriented distributed shared mem-
ory (OODSM) [20] for storing T-values. The garbage collection is supported for
T-values. When OpenTS runtime detects that there is no more links to a given
T-value, the value is scrapped and memory address is reused. Each cell has “se-
qNo” attribute in order to distinguish between various “generations” of objects
sharing the same cell.

OpenTS employs MPI [4] as a low-level transport layer. In this case, a “naive”
reference count implementation of garbage collection is inapplicable. For in-
stance, MPI library [4] can deliver a bunch of “decrement” messages ahead of
corresponding “increments”, which could result in premature value destruction.
OpenTS utilizes a more sophisticated technique — weighted reference counting.
In this approach, each reference has an integer “weight” depending on “weight”
of value. A T-value is considered no longer necessary when its weight equals to
the original weight assigned at value creation.

6 POV Ray Parallelization with OpenTS

There are a lot of applications that utilize OpenTS as a parallel programming
platform. Most of them are simulation tools. Some are developed by groups out-
side of our institution, like [24, 25]. Here we present our case-study example:
implementation of patch for POV Ray (Persistence Of Vision) ray-tracer. In
order to evaluate the programming technique as a whole, not only the runtime
support library effectiveness and scalability is an issue, but programming lan-
guage qualities as well. Despite programming language beauty is a subjective
matter, we believe that some sharp differences in code statistics, such as the
number of lines of code, can be rather convincing.

The well-known POV Ray application is widely used to obtain realistic im-
ages using ray-tracing rendering technology. POV Ray is freely distributed with
source code evolved from C to C++ during last years. Since ray-tracing consumes
a lot of computation resources even for simple scenes, a few parallel versions of
POV Ray have been developed and contributed by different authors. There are
several approaches to parallelize POV Ray to make it work on multicomputers:
from trivial rsh-based scripts, invoking POV Ray executable for parts of target
scene on different UNIX hosts, to the most effective PVM and MPI-based im-
plementations, supporting dynamic load balancing and features like animation
and interactive display functions.

There are two well-known MPI-based POV Ray ports:

– MPI POVRay, based on POV Ray 3.1g., written in C with MPI patch ap-
plied.

– ParaPov, based on POV Ray 3.50c., written in C++ with MPI patch applied.

Total size of POV Ray 3.1g MPI-related source files (mpipov.c and mpipov.h)
is more than 1500 lines of code, with multiple changes scattered over many files.

Variable Reassignment in the T++ Parallel Programming Language 585

Fig. 1. Performance comparison of T++ and MPI versions of POV Ray

However, an intention to minimize changes in POV Ray code resulted in coding
style that sometimes can be challenging to the reviewer. POV Ray 3.50c MPI
patch is written in more straightforward C++, about 3000 lines total.

To make comparison more correct, we made our patch applicable to both
original POV Ray versions (3.1g and 3.50c). OpenTS port is straightforward:
most of porting work consisted in removing unnecessary task management MPI
code, replacing it by only two T-functions. Result code is written in C/C++ with
T++ patch applied, and no MPI code. T++ source file tpovray.tcc is shorter
than 200 lines. Also a few minor changes were made in file povray.c.

Table 1. Benchmark results (in seconds) for scalar, MPI and T++ versions of POV
Ray

N procs C-POVRay MPI-POVRay T-POVRay

1 1 364.40 1 368.16 1 578.34

2 1 361.05 787.00

3 682.97 526.33

4 455.81 395.96

5 342.22 318.64

6 273.56 265.79

7 228.26 228.74

8 197.56 200.63

9 171.29 179.21

10 152.27 161.38

11 137.30 146.65

12 125.00 136.00

13 114.95 125.00

14 105.89 116.96

15 98.82 109.59

16 91.97 102.42

586 A. Moskovsky et al.

Performance comparison has been done with the “chess board scene” taken
from the original POV Ray distribution with the scene width and height set
to 1500 pixels. The chess board scene has 430 primitives in objects and 41 in
bounding shapes. The graph, displaying the ratio between execution times of
MPI POV Ray 3.50c and OpenTS is shown on Fig. 1. In table 1 there are
execution times for scalar, MPI and T++ versions of POV Ray.

The computational cluster used had the following configuration:

– operating system: Red Hat Linux, kernel 2.4.27.
– 16 cluster nodes; each node: 2CPUs AMD Athlon MP 1800+ RAM 1GB,

HDD 40GB.

The performance advantage of T++ version is due to suboptimal load bal-
ancing of MPI version. The latter reserves one CPU for management work, and
advantage gradually degrades when number of CPUs increases.

7 Related Work

The comprehensive review of all research, conducted in the field of high-level
parallel programming tools, extends far beyond limits of this paper. The review
by D. Talia [17] which was written in 2000 has 62 citations in bibliography.
Since then, interest to parallel programming tools only grew, since multi-core
microprocessors appeared on commodity market and cluster computing became
very popular.

We would like to stress distinctive features of OpenTS approach:

– OpenTS borrows many ideas from the world of parallel functional pro-
gramming [8], that differentiates OpenTS from many parallel C++ exten-
sions [18]. At the same time, OpenTS relies on C++ runtime, that overcomes
performance limitations of functional programming languages.

– OpenTS has features like reassignment of variables and distributed garbage
collector implemented. That differentiates OpenTS approach from the data-
flow and future-based approaches like Mentat [3] or Oz [10].

– OpenTS adopts more higher-level implicit approach to parallelism than MPI
[4].

– OpenTS has no means to parallelize computations in loops, like OpenMP [1],
however, it is oriented primarily on computational clusters.

The way how values of variables in T++ become ready is similar to transac-
tion concept of modern relational databases, however, OpenTS does not follow
“transactional memory” approach to parallel programming [22,23].

8 Conclusion

OpenTS is a tool for high-level parallel programming, providing a runtime for
T++ language. It supports variable reassignment that helps in development

Variable Reassignment in the T++ Parallel Programming Language 587

of complex though efficient parallel applications. T-variable can be assigned a
value multiple times, that conforms to a usual imperative style of programming.
This feature considerably distinguishes OpenTS from many analogue parallel
programming systems. As POV Ray case-study shows, only 200 lines of T++
code is required to parallelize it, while independently developed MPI version is
more than 1500 lines long. At the same time, application performance is affected
in a very little extent. Many aspects of the system are not covered in this pa-
per, load balancing is the most important. We refer to our previous publication
here [16]. The OpenTS approach to parallelism is implicit, since runtime library
and compiler together should be able to adapt programs to a wide variety of
parallel computers that exist today: multi-cores, SMPs, computational clusters
with different kind of interconnects, and GRIDs. At the same time, computa-
tional source code of OpenTS is separated from management code (scheduling,
task aggregation and so on). We hope that these features together will make
OpenTS a useful tool for parallel computing. The OpenTS is available for down-
load at www.opents.net.

Acknowledgments. This work is supported by Russian Foundation of Basic
Research grant N 050708005ofi a and basic research program of Presidium of
the Russian Academy of Sciences “Development of basics for implementation of
distributed scientific informational-computational environment on GRID tech-
nologies”.

As well, we thank Igor Zagorovsky, German Matveev, Alexandr Inyukhin,
Alexandr Vodomerov, Eugene Stepanov, Ilya Konev, Elena Shevchuk, Yuri Shev-
chuk, Alexei Adamovich, Philip Koryaka, Maxim Kovalenko and others who
contributed to the design and implementation of OpenTS and T++.

References

1. Chandra, R., Menon, R., Dagum, L., Kohr, D., Maydan, D., Mcdonald, J.: Parallel
Programming in OpenMP. Morgan Kaufmann, Seattle (2000)

2. Kaleev L. V. ,Krishnan S. Charm++: Parallel Programming with Message-Driven
Objects in [18], pp. 175–213

3. Grimshaw, A.S.: Easy to Use Object-Oriented Parallel Programming with Mentat
IEEE Computer, pp. 39–51 (May 1993)

4. Lusk, E., et al.: MPI-2: Extensions to the Message-Passing Interface MPI Forum
(2001)

5. Cilk, R.K.H.: Efficient Multithreaded Computing, Ph. D. Thesis. MIT De-
partment of Electrical Engineering and Computer Science (June 1998)
http://supertech.lcs.mit.edu/cilk/

6. Halstead, R.: MULTILISP: a language for concurrent symbolic computation ACM
Transactions on Programming Languages and Systems (TOPLAS) 7(4), 501–538
(1985)

7. Zhang, L., Krintz, C., Soman, S.: Efficient Support of Fine-grained Futures in Java
International Conference on Parallel and Distributed Computing Systems (PDCS),
Dallas, TX (November 2006)

www.opents.net
http://supertech.lcs.mit.edu/cilk/

588 A. Moskovsky et al.

8. Pointon, R.F., Trinder, P.W., Loidl, H-W.: The Design and Implementation of
Glasgow distributed Haskell. In: Mohnen, M., Koopman, P. (eds.) IFL 2000. LNCS,
vol. 2011, pp. 53–70. Springer, Heidelberg (2001)

9. Lastovetsky, A.: mpC — a Multi-Paradigm Programming Language for Massively
Parallel Computers ACM SIGPLAN Notices 31(2), 13–20 (February 1996)

10. Smolka, G.: The Development of Oz and Mozart. In: Van Roy, P. (ed.) MOZ 2004.
LNCS, vol. 3389, p. 1. Springer, Heidelberg (2005)

11. Loidl, H-W.: Granularity in Large-Scale Parallel Functional Program-
ming PhD. Thesis. University of Glasgow (March 1998) Available online
http://www.dcs.gla.ac.uk/∼hwloidl/publications/PhD.ps.gz

12. Goodale, T., et al.: The Cactus Framework and Toolkit: Design and Applications.
In: Palma, J.M.L.M., Sousa, A.A., Dongarra, J.J., Hernández, V. (eds.) VECPAR
2002. LNCS, vol. 2565, pp. 197–227. Springer, Heidelberg (2003)

13. Cantonnet, F., El-Ghazawi, T.: Performance and Potential: A NPB Ex-
perimental Study Supercomputing Conference (2002) http://sc-2002.org/
paperpdfs/pap.pap316.pdf

14. Cann, D.: Retire Fortran? Debate Rekindled. Supercomputing Conference, New-
Mexico, USA (November 1991)

15. Turchin, V.F.: REFAL-5 programming guide and reference manual New England
Publishig Co., Holyoke (1989)

16. Abramov, S., Adamovich, A.I., Inyukhin, A., Moskovsky, A., Roganov, V.,
Shevchuk, E., Yu, S., Vodomerov, A.: OpenTS: An Outline of Dynamic Paral-
lelization Approach. In: Malyshkin, V. (ed.) PaCT 2005. LNCS, vol. 3606, pp.
303–312. Springer, Heidelberg (2005)

17. Talia, D.: Advances in Programming Languages for Parallel Computing in Annual
Review of Scalable Computing, Yuen C. K., pp. 28–58 (2000)

18. Wilson, G.V., Lu, P. (eds.): Parallel Programming Using C++. MIT Press, Cam-
bridge (1996)

19. Stroustrup, B.: The Design and Evolution of C++. Addison-Wesley, London (2004)
(in Russian translation: Piter, St.Petersburg, 2007)

20. Carter, J.B., Khandekar, D., Kamb, L.: Distributed shared memory: where we
are and where we should be headed Fifth Workshop on Hot Topics in Operating
Systems (HotOS-V), Orcas Island, Washington (May 04-05, 1995)

21. Chiba, S.: A Metaobject Protocol for C++ Proceedings of the ACM Conference on
Object-Oriented Programming Systems, Languages, and Applications (OOPSLA),
pp. 285–299 (October 1995)

22. Harris, T., Fraser, K.: Language Support for Lightweight Transactions Object-
Oriented Programming, Systems, Languages, and Applications. pp. 388–402 (Oc-
tober 2003)

23. Herlihy, M., Moss, J.E.B.: Transactional Memory: Architectural Support for Lock-
Free Data Structures Proceedings of the 20th Annual International Symposium on
Computer Architecture, pp. 289–300 (1992)

24. Arslambekov, R.M., Potemkin, V.A., Guccione, S.: Parallel version of MultiGen for
multi-conformational analysis of biological activity of compounds XII International
Conference CMMASS’ 2003, Book of abstracts (2003)

25. Kornev, A.: On globally stable dynamic processes Russian Journal of Numerical
Analysis and Mathematical Modelling 17(5), 472

http://www.dcs.gla.ac.uk/~hwloidl/publications/PhD.ps.gz
http://sc-2002.org/paperpdfs/pap.pap316.pdf
http://sc-2002.org/paperpdfs/pap.pap316.pdf

V. Malyshkin (Ed.): PaCT 2007, LNCS 4671, pp. 589–598, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Parallel Construction of Moving Adaptive Meshes
Based on Self-organization*

Olga Nechaeva1 and Mikhail Bessmeltsev2

1 Supercomputer Software Department
ICMMG, Siberian Branch

Russian Academy of Science
Pr. Lavrentieva, 6, Novosibirsk, 630090, Russia

nechaeva@ssd.sscc.ru
2 Department of Mechanics and Mathematics

Novosibirsk State University
Pirogova, 2, Novosibirsk, 630090, Russia

bmpix@mail.ru

Abstract. A new highly parallelizable method of moving mesh construction
based on the Kohonen’s Self-Organizing Maps (SOM) is proposed. This
method belongs to a class of methods in which the mesh is an image under an
appropriate mapping of a fixed mesh over a computational domain. Unlike the
conventional methods of this class, the proposed method doesn’t require solving
complicated systems of nonlinear partial differential equations and is able to
work with arbitrary time-dependent mesh density function. High efficiency of
parallelization is conditioned by the inherent parallelism of the underlying sto-
chastic SOM algorithm. Sequential as well as detailed parallel algorithms for
moving mesh construction are proposed.

1 Introduction

Adaptive mesh methods are commonly used for solving partial differential equations
with large solution variations, and play an important role in a variety of areas such as
solid and fluid dynamics, material science, heat transfer simulation, etc [1]. It has
been shown that improvements in accuracy and efficiency can be gained by concen-
trating mesh nodes around areas of large solution variation [2]. For the numerical
solution of time-dependent differential equations, moving adaptive mesh methods are
used in which a mesh density adapts to the solution behavior. Moving meshes are
efficient especially if the solution singularities are concentrated in a small region and
change rapidly [3].

Within the scope of all moving mesh methods, there is a class of methods in which
at each time step the mesh is an image under an appropriate mapping of a fixed mesh

* This work was supported in part by the Grant of Rosobrazovanie, contract PHП.2.2.1.1.3653

and Program for Basic Research of RAS Presidium No. 14.15-2006.

590 O. Nechaeva and M. Bessmeltsev

over a computational domain. It is important that there is no need to insert and delete
mesh nodes while adaptation. This class of methods is attractive for parallel computa-
tions because of the following properties. First, all methods of this class use simple
data structures and do not require, e.g., to store mesh nodes and connections between
them in a tree- or list-structure. Second, the moving mesh always has a fixed number
of nodes even though the nodes remain concentrated in moving regions of rapid varia-
tion of the solution, and there is no need to employ expensive load balancing tech-
niques after adaptive refinement at each time step [4].

However, all methods of this class, e.g. those proposed in [5-9], are very compli-
cated since they require solving systems of nonlinear partial differential equations
(PDEs) just to obtain an appropriate mapping that defines a mesh and controls mesh
nodes movements. That is why this class of moving mesh methods has been relatively
less developed. Deriving a reliable equation for the mapping is a difficult task even in
1D space. But real-world problems usually need complex 3D simulations. Addition-
ally, the necessity of solving the nonlinear PDEs leads to overwhelming difficulties in
parallelization for both static and moving mesh construction. Therefore, the task is to
develop a method of moving mesh construction that is applicable to any dimensional-
ity and simple to parallelize efficiently.

In our previous research, an alternative neural network approach to adaptive mesh
construction based on self-organization has been proposed [10]. The core of this ap-
proach is the Kohonen’s Self-Organizing Maps (SOM) [11]. In the case of static
adaptive meshes, the approach have been shown to provide highly parallelizable neu-
ral network methods for construction of qualitative adaptive meshes in a sense of
generally accepted quality criteria [12].

In this paper, the approach is extended to the moving mesh construction. Due to the
self-organizing principles and stochastic nature of the underlying SOM algorithm, the
new method (1) allows us to obtain a good mesh with arbitrary mesh density function
that can be even unsmooth or vanishing; (2) is able to work with large solution de-
formations while the PDE-based methods can produce qualitative meshes only for
relatively small deformations and, thus, require decreasing the time step; (3) is ex-
pected to be applicable to any dimensionality without essential modifications and,
thus, provides us the opportunity to solve 3D large-scale simulation problems. Fi-
nally, the most important property is that the proposed method for moving mesh con-
struction is fine-grained, has an inherent parallelism and can be parallelized with high
efficiency.

When solving a problem by the moving mesh methods, each time step of the nu-
merical algorithm usually contains two independent parts: a solution algorithm sub-
step and a mesh-deformation algorithm substep [3]. If each of the parts has different
requirements on data decomposition for an efficient parallelization, then it can lead to
an inefficient general parallel algorithm. Therefore, it is important to provide the
consistency between parallel implementation of these two parts.

In the proposed neural network method, all mesh nodes are processed according to
the same rule independently of each other. This property guarantees high efficiency of
parallel implementation of the mesh deformation algorithm for any uniform mesh
nodes distribution over the processors regardless of their locations in the physical
and computational domain. Consequently, the data decomposition can be done in

 Parallel Construction of Moving Adaptive Meshes Based on Self-organization 591

accordance with the requirements only on the parallel implementation of the solution
algorithm, and there is no need, e.g. to assemble all of the nodes on one processor or
to perform a large amount of communication between processors.

The paper is organized as follows. In Section 2, sequential algorithm of moving
mesh construction is proposed. Section 3 contains the detailed parallel version of the
algorithm of mesh construction and experimental results. Section 4 concludes the
paper.

2 Moving Mesh Construction Based on Self-organization

For static adaptive meshes, the process of mesh construction using Kohonen’s Self
Organizing Maps (SOM) is as follows [13]. Starting with an arbitrary initial mesh, the
SOM algorithm transforms it iteratively into a desired adaptive one, preserving the
structure of a fixed mesh. At each iteration of the SOM algorithm, mesh nodes get
displacements towards a random point generated from the physical domain. The dis-
placements decrease gradually because they are multiplied by the time dependant
decreasing learning rate. Density distribution of the obtained mesh approximates the
probability distribution used for the random point generation. The number of itera-
tions for the mesh construction process is fixed beforehand depending on the number
of mesh nodes.

In the case of moving meshes, the similar iterative process is performed at each
time step but with the less number of iteration and special learning rate, since the
mesh is to be adapted only around changing areas of solution variations and doesn’t
need to fit the whole physical domain.

In this paper, the neural network approach for moving mesh construction is illus-
trated in the 2D case. At each time step, the physical domain is assigned by a bit-
mapped image where grayscale pixels reflect the desired mesh density function in
such a way that dark areas correspond to the higher mesh density.

Let G be a physical simply-connected domain in a 2D Euclidean space with spa-

tial coordinates 1 2(,)x x x= . Since the physical domain is assigned by a bitmapped

image, G consists only of a finite number of pixels, i.e. | |G < ∞ . A moving adaptive

mesh 1() { (),..., ()}N NG t x t x t= is to be constructed on G, where ()ix t G∈ , 1,...,i N=

are moving mesh nodes, t is a discrete time step. Let Q be a computational domain in
a 2D Euclidean space with coordinates 1 2(,)q q q= with a fixed mesh

1{ ,..., }N NQ q q= , where iq Q∈ , 1,...,i N= are independent of time. For simplicity,

let us consider the case when QN is a rectangular uniform mesh (a widely used type of
a fixed mesh). Also, let (,)w t x be a mesh density function. In our experiments, at

each time step, the function (,)w t x is defined by the intensity of grey on the bit-

mapped image G. Density of the adaptive mesh is to be proportional to the values of
w. To use (,)w t x in the SOM algorithm, this function should be normalized to obtain

the probability distribution (,)p t x for random point generation.

592 O. Nechaeva and M. Bessmeltsev

(,)
(,)

(,)
z G

w t x
p t x

w t z
∈

=
∑

.
(1)

If large solution variations occur only within small regions, there is no need to
move the nodes which are far from these regions. It also improves accuracy of the
solution. Therefore, let us denote by (,) | (,) (1,) |w t x w t x w t xΔ = − − , 0t > , the differ-

ence between values of mesh density function at two adjacent time steps. Mesh de-
formation is to be carried out around non zero values of wΔ . To control the deforma-
tion within the physical domain, the function (,)v t x is defined depending on wΔ ,

where 0 (,) 1v t x≤ ≤ .

At each time step, the proposed mesh deformation algorithm is performed by the
procedure Deform which is based on the modified learning algorithm for SOM. The
input parameters for the procedure are the following: t is a time step, StartIter is the
iteration number from which the procedure starts, M is the maximum number of itera-
tions (1 StartIter M≤ ≤). The maximum number of iterations is fixed beforehand
depending on N.

Algorithm 1. The procedure Deform(t, StartIter, M).
Perform the following operations at each iteration s = StartIter ,..., M.
a) Point generation. Generate a random point y∈G according to the probability dis-

tribution (,)p t x given in (1).

b) Winner determination. Calculate the Euclidean distances between y and all the
nodes ()s

ix t and choose the node ()s
mx t which is the closest to y, i.e.

() ()s s
m iy x t y x t− ≤ − (2)

for all i = 1, ..., N. The node ()s
mx t is called a winner.

c) Node coordinates correction. Adjust locations of the mesh nodes using the fol-
lowing rule:

1() () (, ()) (,)(())
m

s s s M s
i i i q i ix t x t v t x t s q y x tθ+ = + − (3)

for all i = 1, ..., N, where (,) [0,1]
m

M
q it qθ ∈ is a learning rate.

The rule (3) defines the displacement of each mesh node ()s

ix t towards the random

point y. The displacement magnitude is controlled by the learning rate (,)
mq it qθ (de-

pending on the locations of the node iq and the winner mq in the computational do-

main) and by the value of (,)v t x at the old node position ()s
ix t .

To evaluate the function (,)v t x , a neighborhood of the point x is denoted by

()B xγ , where an integer γ is the radius of the neighborhood. Then, the function

(,)v t x is as follows.

 Parallel Construction of Moving Adaptive Meshes Based on Self-organization 593

2

2

()

2(/ 2)

0, () { : (,) 0}
(,)

,
x

if B x z w t z
v t x

e otherwise

γ

ρ
γ

−

∩ Δ > = ∅⎧
⎪= ⎨
⎪⎩

, (4)

where
() { : (,) 0}

() min || ||
z B x z w t z

x x z
γ

ρ
∈ ∩ Δ >

= − . This function is equal to 1 at all points x for

which (,) 0w t xΔ > , takes values from (0,1) in the neighborhood around the areas

with (,) 0w t xΔ > and is equal to 0 over the rest of the physical domain.

In our previous investigations, the learning rate has been thoroughly selected to
provide the good mesh quality with reasonable computational speed [13], and looks
like (,) () (,)

m m

M
q j q js q s s qθ δ η= , where 0.2() ()s s sδ χ−= is a learning step,

2
(,)

()(,) 0.05
m i

m

d q q

r s
q is qη

⎛ ⎞
⎜ ⎟
⎝ ⎠= is a learning radius, 5() /() 1 s M Ms eχ −= − ,

()/ 0,25() () () (1)0.05 ()s Mr s r M s r r M sχ −= + − . The maximum number of iterations M

is fixed beforehand depending on N; (1)r and ()r M are values of a learning radius

that are selected depending on distances between nodes in the computational do-
main Q, (1) ()r r M> . The functions ()sχ , ()sδ and ()r s are shown in Fig. 1.

0

0.2

0.4

0.6

0.8

1

0

1
0

0

2
0

0

3
0

0

4
0

0

5
0

0

6
0

0

7
0

0

8
0

0

9
0

0

1
0

0
0 0

0.2

0.4

0.6

0.8

1

0

1
0

0

2
0

0

3
0

0

4
0

0

5
0

0

6
0

0

7
0

0

8
0

0

9
0

0

1
0

0
0

0

5

10

15

20

25

0

1
0

0

2
0

0

3
0

0

4
0

0

5
0

0

6
0

0

7
0

0

8
0

0

9
0

0

1
0

0
0

a) b) c)

 … M … M … M

Fig. 1. Diagrams of functions taking part in the learning rate: a) function χ(s), b) function δ(s),
c) function ρ (s)

The iterative process in the procedure Deform can be conventionally divided into
two stages: ordering stage (1,..., / 2s M=) and refining stage (/ 2,...,s M M=) [11].
During the ordering stage, the learning step is sufficiently large and it makes the mesh
roughly take the form of the physical domain. The refining stage allows the mesh to
fit the domain and the probability distribution more accurately. For mesh deformation
at each time step, only the refining stage is needed and, then, the parameter StartIter
is equal to / 2M . As it tuned out from our experiments, mesh deformation for 0t >
requires a smaller value of M than the first mesh construction (at 0t =) which has to
obtain the mesh from arbitrary nodes positions. Therefore, at zero time step, the mesh
is constructed using the procedure Deform with maximum number of iterations equal
to 2M.

594 O. Nechaeva and M. Bessmeltsev

Algorithm 2. Moving mesh algorithm.
0. Set up arbitrary initial locations of the mesh nodes 0 (0)ix , 1,...,i N= .

1. Perform the procedure (0,1,2)Deform M using the function (0,) 1v x = ,

x G∀ ∈ .
2. For each time step 0t > repeat the following operations:

a) Density function modification. Obtain a new mesh density function (,)w t x .

Calculate the functions (,)p t x and (,) | (,) (1,) |w t x w t x w t xΔ = − − for all x G∈ .

b) Calculation of (,)v t x . For each x G∈ search for the point ()z B xγ∈ at

which (,) 0w t zΔ > and the distance || ||x z− reaches a minimum value. If there is

no such a point z, then (,) 0v t x = . Otherwise, calculate

() { : (,) 0}
() min || ||

z B x z w t z
x x z

γ

ρ
∈ ∩ Δ >

= − and

2

2

()

2(/ 2)(,)
x

v t x e
ρ
γ

−

= .

c) Mesh deformation. Perform the procedure (, / 2,)Deform t M M using (,)v t x

obtained at 2.b).

3 Parallel Adaptive Mesh Construction

Both the Algorithm 1 and 2 in the previous Section have an inherent parallelism
which makes it possible to parallelize them efficiently. In this section, parallel algo-
rithms for distributed memory systems are proposed. Let a multicomputer consist of k
processors 0 1,..., kP P − .

The most time consuming operations in the algorithm 1 are the calculation of dis-

tances ()s
iy x t− in (2) and the correction of node locations 1()s

ix t+ in (3), since they

require processing of all mesh nodes. Fortunately, all mesh nodes are processed in the
same way independently of each other. So, these steps can be parallelized by distrib-
uting the set of mesh nodes GN over the processors. It has to be noted that mesh nodes
distribution can be done in accordance with the requirements on parallel implementa-
tion of the PDE solution algorithm (the first substep of a time step). Let ()j

NG be a

subset of the mesh nodes stored in the processor Pj, 0,..., 1j k= − , where
1

()

0

()
k

j
N N

j

G t G
−

=

=∪ , () ()p q
N NG G∩ = ∅ , p q≠ . Let also a fixed mesh NQ be distributed

over the processors in such a way that the processor jP contains a subset of the fixed

mesh nodes ()j
NQ and if ()() j

i Nx t G∈ , then ()j
i Nq Q∈ . To perform the random points

generation, the whole image G is to be stored in all the processors. It is important to
ensure that the same sequence of random points is generated at each processor. Also
the correction of mesh nodes requires to store the function (,)v t x , x G∀ ∈ , in all the

processors. Parallel version of the mesh deformation algorithm (Algorithm 1) suitable
for the implementation on MPI is as follows.

 Parallel Construction of Moving Adaptive Meshes Based on Self-organization 595

Parallel Algorithm 1. The procedure (, ,)ParDeform t StartIter M .

All processors perform the following operations at each iteration
,...,s StartIter M= .

a) Point generation. In each processor, the same random point y G∈ is generated

according to the probability distribution (,)p t x given in (1).

b) Winner determination. According to (2), each processor jP searches for the

node ()
() () ()s j

m j Nx t G t∈ that is the closest to y (() ()s
m jx t is a local winner) and performs

MPI_Allreduce with the operation MPI_MINLOC to distribute ()|| () ||s
m jy x t− and

determine the global winner ()s
mx t . Then, if the local winner computed by the proces-

sor jP is the global winner, then this processor broadcasts the node mq to all other

processors.
c) Node coordinate correction. Each processor jP adjusts locations of the mesh

nodes by applying the rule (3) to all ()()s j
i Nx t G∈ .

It has to be point out that interprocessor communications occur only for winner se-

lection. Due to the low amount of communications, this parallel algorithm of mesh
deformation is highly efficient.

Parallelization of the Algorithm 2 is reduced to parallel calculation of the function
(,)v t x . Even though the whole image is stored in all processors, each of the proces-

sors processes its own part of the image while calculation of (,)v t x and then broad-

casts it to all other processors.
Let () ()jG t be a part of the bitmapped image which is to be processed by the proc-

essor jP . Let us denote by () () ()() () { () : ()}j j jG t G t B x x G tγ γ= ∪ ∈ the extension of

the part () ()jG t which is surrounded by the neighborhood of radius γ . The extension
() ()jG tγ is quite easy to calculate. For example, if () ()jG t is a horizontal stripe region

of the image and ()B xγ is square-shaped, then () ()jG tγ is a stripe with the height that

is greater by 2γ than those of () ()jG t .

Parallel Algorithm 2. Parallel moving mesh algorithm.
0. Each processor jP , 0,..., 1j k= − , sets up arbitrary initial locations of mesh

nodes 0 ()(0) j
i Nx G∈

1. Each processor jP performs the procedure (0,1,2)ParDeform M using the func-

tion (0,) 1v x = , x G∀ ∈ with the set of nodes ()j
NG .

2. For each time step 0t > repeat following operations:
a) Density function modification. The processor jP calculates the functions

(,)p t x for all x G∈ using the mesh density function (,)w t x . Calculate

(,) | (,) (1,) |w t x w t x w t xΔ = − − for all () ()jx G tγ∈ .

596 O. Nechaeva and M. Bessmeltsev

b) Calculation of (,)v t x . The processor jP calculates the function (,)v t x for all
() ()jx G t∈ in the same way as it is done at the step 2.b) of Algorithm 2, and then

performs the procedure MPI_Allgather to distribute the obtained part of (,)v t x

over all other processors.
 c) Mesh deformation. Each processor jP performs the procedure

(, / 2,)ParDeform t M M using (,)v t x obtained at 2.b).

The proposed parallel algorithms have been implemented using MPI library. Fig.2

shows computation time and efficiency dependence on the number of processors.
Time has been measured for 1 time step of the parallel algorithm 2 in which the pro-
cedure ParDeform has been performed with M = 80000, i.e. during 40000 iterations.
The mesh GN size has been 300 by 600 of nodes. All measurements have been made
in Siberian Supercomputer Center using MVS-1000/128 system that consists of 128
processors Alpha, 667MHz, connected to each other by Myrinet. The efficiency of
parallelization obtained is greater then 90%.

(a) (b)

 p0%

20%

40%

60%

80%

100%

1 5 9 13 17 21 25

1
p

p

T
E

pT
=

 Ep

 p0

4000

8000

12000

16000

1 5 9 13 17 21 25

Tp

Fig. 2. Computation time (a) and efficiency (b) measured for 1 time step with M = 80000 and
mesh size 300×600 nodes

In Fig. 3, an example of the moving mesh obtained by the proposed method is
shown. In this example, an area with high mesh density given by the black color
moves within the physical domain. Let us notice that the mesh density function is not
smooth, and the mesh adapts to it successfully as shown in Fig. 3(d). Since the mesh
density function changes in a local area, the mesh nodes also move only around this
area as we can see it in Fig. 3(b) and Fig. 3(c) where the mesh nodes trajectories are
shown. In the top of Fig. 3(c), the nodes tend to form high mesh density as their tra-
jectories are directed towards the black area at the second time step. On the contrary,
the bottom part of Fig. 3(c) shows the nodes moving out of previous location of this
black area. Locations of nodes lying far from the black area don’t change at all, and
trajectories are points.

 Parallel Construction of Moving Adaptive Meshes Based on Self-organization 597

(a) (b) (c)

(d)

Fig. 3. The moving mesh obtained by the proposed neural network method; (a) physical domain
with varying density function at three different time steps; (b) trajectories of mesh nodes moved
from their locations at the first time step to those at the second time step; (c) detailed view of
the trajectories in top and bottom parts of (b); (d) the resulting moving mesh at three time steps

4 Conclusion

In this paper, the new moving mesh method based on self organization is proposed.
Due to the inherent parallelism of the algorithms, the method is simple to parallelize
efficiently in accordance with the requirements only on the parallel implementation of
the solution algorithm. Also, the method doesn’t require solving complicated systems
of nonlinear PDEs and is able to work with arbitrary mesh density function even with
large deformations in time. It is expected that in the 3D case the algorithm of moving
mesh construction will remain the same as in the 2D cases.

In the future, the proposed moving mesh method will be extended for 3D moving
surface and volume meshes with preservation of all the above properties.

References

1. Lebedev, A.S., Liseikin, V.D., Khakimzyanov, G.S.: Development of methods for generat-
ing adaptive grids. Vychislitelnye tehnologii 7(3), 29 (2002)

2. Khakimzyanov, G.S., Shokin, Y.I., Barakhnin, V.B., Shokina, N.Y.: Numerical Modelling
of Fluid Flows with Surface Waves. SB RAS, Novosibirsk (2001)

598 O. Nechaeva and M. Bessmeltsev

3. Cao, W., Huang, W., Russell, R.D: Approaches for generating moving adaptive
meshes: location versus velocity. Applied Numerical Mathematics 47, 121–138 (2003)

4. Tsai, H.M., Wong, A.S.F., Cal, J., Zhu, Y., Liu, F.: Unsteady flow calculations with a par-
allel multiblock moving mesh algorithm. AIAA J. 39, 1021–1029 (2001)

5. Bochev, P., Liao, G., Pena, G.: Analysis and computation of adaptive moving grids by de-
formation, Numer. Meth. PDEs qw, pp. 489–506 (1996)

6. Liao, G.J., Anderson, D.: A new approach to grid generation. Appl. Anal. 44, 285–298
(1992)

7. Thompson, J.F., Warsi, Z.U.A., Mastin, C.W.: Numerical grid generation, foundations and
applications. North-Holland, Amsterdam (1985)

8. Knupp, P.M., Robidoux, N.: A framework for variational grid generation: conditioning the
Jacobian matrix with matrix norms. SIAM J. Sci. Comput. 21, 2029–2047 (2000)

9. Cao, W., Huang, W., Russell, R.D.: A moving mesh method based on the geometric con-
servation law. SIAM J. Sci. Comput. 24, 118–142 (2002)

10. Nechaeva, O.I.: Neural network approach for adaptive mesh construction. In: Proc. of VIII
National scientific conference "NeuroInformatics-2006," Part 2. MEPhI, Moscow, pp.
172–179 (2006)

11. Kohonen, T.: Self-organizing Maps. Springer Series in Information Sciences, vol. 30, p.
501. Springer, Heidelberg (2001)

12. Nechaeva, O.: Neural Network Approach for Parallel Construction of Adaptive Meshes.
In: Malyshkin, V. (ed.) PaCT 2005. LNCS, vol. 3606, pp. 446–4513. Springer, Heidelberg
(2005)

13. Nechaeva, O.: Composite Algorithm for Adaptive Mesh Construction Based on Self-
Organizing Maps. In: Kollias, S., Stafylopatis, A., Duch, W., Oja, E. (eds.) ICANN 2006.
LNCS, vol. 4131, pp. 445–454. Springer, Heidelberg (2006)

V. Malyshkin (Ed.): PaCT 2007, LNCS 4671, pp. 599–607, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Data Transfer in Advance on Cluster

Nilton Cézar de Paula1, Gisele da Silva Craveiro2, and Liria Matsumoto Sato1

1 Polytechnic School
2 School of Arts, Science and Humanities,

University of São Paulo, Brazil
nilton.paula@poli.usp.br, giselesc@usp.br,

liria.sato@poli.usp.br

Abstract. Scientific applications are increasingly challenging computational
platforms and software tools. In this scenario of improving performance
demand, computer cluster users require for mechanisms that could reduce data
transfer delay. To contribute to this question, we proposed a data transfer in
advance mechanism that improved overall system performance by diminishing
data-intensive job wait. We also designed and implemented the Integrated
Scheduling System (ISS) to analyze and evaluate our proposal. This system
automates the preparation, submission and tracking of job executions in a
cluster. The mechanism is also combined with an I/O file operation and
computation overlapping idea that results in significant improvement of
performance rates, confirmed by some experiments.

Keywords: data staging, job scheduling, data scheduling.

1 Introduction

Current scientific applications have been handling a huge volume of data and this
tends to increase year by year. An efficient execution of this kind of application also
requires great computational power to accomplish complex task processing. With this
goal, scientists all over the world have been using clusters so as to ensure processing
power and storage capacity. In order to perform the processing of those applications,
data and execution must be divided through cluster nodes, which can be done
manually or automatically [1].

In case of manual distribution, the user should choose the execution node, make
available all data required, start application execution and finally collect the results
when it is completed.

The manual distribution becomes undesirable when the number of applications or
machine pool size increases. In this sense, automatic distribution through a scheduler
can free users from the difficult decision imposed by manual distribution. The
scheduler will handle information about resource status in order to ideally allocate the
most compatible ones to the application execution. There is a number of schedulers
for clusters and the most well known ones among cluster computing users are:
PBS/OpenPBS [2], LSF [3], LoadLeveler [4] and Condor [5]. For readers interested
in this subject, we suggest [6].

600 N.C. de Paula, G. da Silva Craveiro, and L.M. Sato

Many applications that access data via some shared file system can suffer from
significant overhead caused by inefficient utilization of the computing resources [7].
This is due to the concurrent access bottleneck to the I/O node. One alternative to this
situation is the data set transference to and from local disks. However, the transfer
operation of large files takes a significant amount of time and consequently this cause
CPUs idleness, as shown in [8].

Another transfer mechanisms limitation is that a transfer cannot be started before
node allocation. During the time elapsed from node allocation until all file(s) transfer
completion, there is no job execution in that node and consequently a low CPU use.
This idle time could be minimized by some coordination between the data
transference scheduler and the job scheduler in order to stage data as soon as the job
scheduler chooses a specific cluster node to run a data-intensive job.

An overlapping strategy between file operations and computation [9, 10] could
achieve resource usage optimization resulting in an increasing CPU utilization while a
transfer operation occurs.

This work presents a mechanism called data transfer in advance where the
coordination between job scheduler and data scheduler is achieved transparently. We
also designed and implemented a system to analyze and evaluate our proposal. It
automates the preparation, submission and the execution tracking of independent jobs.
Two tools were used in our system: Condor [11, 12] that manages the scheduling and
execution of distributed computation and Stork [13] that manages the data placement
in heterogeneous environments.

The rest of this paper is organized as follows. Section 2 discusses some related
work. In Section 3 we describe the data transfer in advance mechanism and some
detail our system are presented in Section 4. Tests have their results presented and
analyzed in Section 5. Finally, we conclude our work and indicate further questions in
Section 6.

2 Related Work

This work is indebted to a large body of research on file system from principles of
overlapping I/O and computing instructions [9], going through a variety of data-
movement systems embedded in job schedulers for computer clusters (PBS/OpenPBS
[2], LSF [3], LoadLeveler [4], Condor [5] to cite some). In these systems, the data
transfer occurs after node allocation, causing resource idleness until all input files are
moved to the execution node.

Some alternatives to overcome the problem of low resource utilization have been
proposed. In [14] a system called Kangaroo is presented and their approach is based
in some overlapping of I/O and CPU instructions, hiding network storage devices
behind memory and disk buffers. However, in this work, there is an option to start
managing outputs instead of inputs. It is stated that input anticipation is harder, as it
claims explicit information or accurate speculation.

Machida et al. propose in [8] strategies to solve the low utilization of resources in
data grid through tightly coupling of replica staging and computation scheduling and
that computation and communication overlapping. A compute bound job may start or
resume its execution while there is a data movement to that node. If the transfer

 Data Transfer in Advance on Cluster 601

finishes earlier than the computation, then the compute bound job is suspended or
migrated.

We understand that update replica cost in a cluster can make unfeasible efficient
resource utilization for some applications that access large amount of data spread in
many copies in the platform. It is also worth to mention that reasonable complex
mechanism of replica consistency is needed.

One important difference is that the concept of overlapping communication and
computation in their approach is mainly applied to minimize CPU idleness, while in
our proposal it is adopted aiming to reduce data-intensive job execution time in a
cluster. In our system, job execution order is preserved according to its arrival time.

3 Mechanism of Data Transfer in Advance

The main goal of the data transfer in advance mechanism is to minimize the data
staging phase and, as a consequence, the job execution could be stated as sooner as
than possible because all necessary input files would be already transferred to the
execution node. In the next subsections we detail the data transfer in advance
mechanism regarding node selection decision and the job execution order assurance.

3.1 Selecting the Destination Node to the Data Transfer

At the moment that the user submits a job, he must classify it as data-intensive or
compute-intensive. Based on this classification, our system will be able to detect the
transfer demand of input data and can divide the cluster in three pools: idle machines,
machines that are running compute-intensive jobs and those that are executing data-
intensive jobs. This mapping will be used in the process of node selection division in
order to achieve a favorable overlapping between file operation and computation.

The node that will receive the data is selected according to some job requirements
such as memory size, disk space, processors amount, operating system, and other
criteria. An idle node that provides all job requirements will be the preferred choice.
If there are some suitable nodes but they are all busy, it will be selected the one that is
executing a compute-intensive job. It is important to mention that the selected node
that will receive all data via data transfer in advance mechanism will be also the
execution node.

3.2 Ensuring the Data-Intensive Job Execution

The job execution must be started after the input data transfer is finished. In the best
case, the input data transfer finishes before a node to job execution is located by the
job scheduler. However, if the transfer is not complete, strategies must be applied to
guarantee the job execution only after the transfer.

We present a strategy to solve this problem so that the job scheduler activities are
not modified. This strategy consists in representing the data-intensive job (J) through
a special job (J´). When the user submits a job, it sends a job specification file to the
submission node. This file contains information about the job requirements, input data
and executable files. The job specification file of J´ is generated including all

602 N.C. de Paula, G. da Silva Craveiro, and L.M. Sato

information about J and it is submitted to the job scheduler. J´ executes the following
actions which must guarantee the J execution: (i) if data transfer is complete then
execute J; (ii) otherwise, waits it to be finished and execute J. Overlapping between
data transfer and computation as suggested in [8, 9] could be applied aiming to
improve the use of the execution node.

4 Integrated Scheduling System - “ISS”

Our system, called Integrated Scheduling System (ISS), provides functionalities that
allow main activities of job execution on cluster to be automated through of an
adequate coordination between a job scheduler and a data scheduler to provide better
resource utilization. Other benefits that may be mentioned: more users will be able to
use a job scheduler, environment learning time is reduced, fewer errors in simple
activities, better potential extraction from job scheduler services.

In addition to the advantages presented, our system also provides simultaneous use
of idle resource and output data transfer, because a transfer can be perfectly
accomplished while another job is in execution.

4.1 Architecture of ISS

ISS architecture as presented in Figure 1 is composed of two parts: Management
Node and Execution Node. Management Node is responsible for job execution
request reception and preparation to its later execution by Execution Node. In the
Management Node we identify two modules of system that are needed to prepare the
job for execution: the Job Management Integrator (JMI) and the Data Management
Integrator (DMI). In the following we present its components in detail.

The Job Receiver component accepts jobs submitted from the user. Each job
consists in an executable file, an input files set and, optionally, an output file set and
some job execution restrictions. Job Receiver prepares a disk area to receive the job in
data structure. This data structure behaves as an index and will ensure requests
processing order, from its arrival to submission to job scheduler (JS). It is also a
communication interface among different system components and this indirect
interaction was designed to best provide fault recovery mechanisms according to
safety levels desired to each component.

The Job Specification Maker component builds a job specification file for JS from
an execution request. In such request the user must inform: input/output files,
executable and its arguments, execution requirements, job classification and other
information.

The Resource Discover is responsible to find an appropriate resource to a data-
intensive job (J) and to build its correspondent special job (J´). Information collected
by JS will be used in this matching process. As soon as the resource is chosen,
additional information are written in the job specification file of J´ in order to guide
Job Submitter in its submission process and Data Movement Manager in its data
transfer in advance process. For J, there will be no alteration in the specification file.

 Data Transfer in Advance on Cluster 603

resultjob

JMI

DS

DMI

JS

Local Disk
Manager

JS
DTC

Management Node Execution Node

DTS

Job Specification
Maker

Resource
Discover

Execution
Monitor

Job
Submitter

Data
Deliver

Data Movement
Manager

Job
Receiver

Fig. 1. ISS architecture. Components of the proposed system are in the dotted line area.

The job submission to JS is performed by Job Submitter. This component analyzes
all job specification files information, submits the job and keeps track in a log file.

Another module identified in the proposed system is the Data Management
Integrator (DMI), which has only one component: the Data Movement Manager. It is
responsible for executable transfer and anticipated data movement. To accomplish
this, a data movement specification file is created, then it is delivered to Data
Scheduler (DS) and finally all data transfer tracking is done.

Data are placed in a previously prepared area in the execution node and the
component responsible for such task is the Local Disk Manager, which resides in the
Execution Node. LDM´s activities comprise: to allocate/free disk space and to
create/remove a temporary area. The part of the system that runs the transfers is
represented in our architecture by the DTS (Data Transfer Server) and DTC (Data
Transfer Client) modules.

The Execution Monitor will collect and analyze information about jobs submitted
to JS. As soon as it detects that a job execution is finished, it will make results
accessible to the user. The results are sent to users through the Data Deliver.

In our system implementation Condor represents JS and Stork was chosen for DS.
Condor provides resource monitoring capacity and jobs queueing mechanism. In
order to make scheduling decisions, Condor works on some specifications written in
resource description language [15]. The specifications describe nodes characteristics
and jobs restrictions that Condor will consider during resource selection phase, when
the matchmaking technique [16] is applied to find the resource. Stork [13] is
specialized in data storage on heterogeneous environments and to transfer data
performs the following activities: data preparation, control access verification and

604 N.C. de Paula, G. da Silva Craveiro, and L.M. Sato

data transmission. Stork can queue, schedule, monitor, manage data transfers and
ensure that they will be completed.

5 Evaluation

Experiment results were obtained executing some jobs on the system in a cluster
running GNU/Linux 2.4. Each cluster node is an AMD Athlon 1.5 GHz, with 256Mb
RAM interconnected via a Fast Ethernet network. Condor package used was 6.8.2
version that also brings Stork package. The cluster was used in the following scheme.
One node runs the JMI and DMI modules, Central Manager, Condor’s job submission
functionality and Stork data transfer server. All jobs are submitted from this machine.
In remaining nodes were installed the Local Disk Manager component, Condor job
execution functionalities. In addition, safety module and GridFTP data transfer
protocol [17] were configured in all cluster nodes. It is important to mention that this
protocol was used by Stork.

First of all, two jobs were implemented in C programming language. In order to
make a clear characterization, one is computing intensive and the other mainly
executes file operations. The computing intensive one, briefly named here A,
multiplies two 2000x2000 matrices. The data-intensive job, called B, handles a data
file with size varying from 32Mb to 2048Mb. After some calculation on each input
file entry, a resulting output file is produced with the same size. Job execution time
was calculated since job waits in execution queue with “running” state. In this
situation, no job is scheduled before that state changes from “running” to
“completed”.

Figure 2(a) presents Job B execution times, obtained from only one execution node
in the cluster. We have also considered the inexistence of job in execution queue in
two modalities: with (with DTA) and without data transfer in advance mechanism
(without DTA). When with DTA execution modality is applied, execution performance
improves to files with size over 128Mb in contrast to without DTA. Thus, the time
spent waiting for scheduling will be used to partial data transfer in advance. In
addition to this, the time for output file transfer does not increment job execution
time, as it only passes to “completed” state before data transfer starts.

As file size increases, the execution performance becomes better, because GridFTP
protocol is designed to transfer bigger data blocks [17]. Therefore, special job (J´)
execution time can be decreased, as it waits for input data transfer to execution node.
The same does not occur in transfers of files inferior to 128Mb, when the performance
gets worse to jobs with DTA, because input data transfer time is almost the same in
both the execution modalities.

Data transfer in advance mechanism gains are much more interesting when input
data are ready at the time the scheduler attends the job. An improvement can be
exhibited in the line graph of Figure 2(b), which shows execution times of Job A and
B, combined with execution modalities without DTA and with DTA.

Jobs were executed similarly to the previous test, running in only one cluster node,
so showing the same execution behavior pattern. In this test, input data transfer occurs
during Job A processing. Results showed that there is significant performance

 Data Transfer in Advance on Cluster 605

improvement with increasing file size because there is no wait for input data transfers.
On the other hand, we have no improvement with files smaller than 128Mb, explained
by the same reasons previously discussed.

0

150

300

450

600

750

900

1050

1200

1350

32 64 128 256 512 1024 2048

file size (Mb)

ex
ec

ut
io

n
tim

e
(s

)

B without DTA B with DTA

0

200

400

600

800

1000

1200

1400

32 64 128 256 512 1024 2048
file size (Mb)

ex
ec

ut
io

n
tim

e
(s

)

A without DTA A with DTA
A and B without DTA A and B with DTA

'

 Fig. 2. (a) Execution times of Job B. (b) Execution times of Job A and B.

An interesting fact should be observed in the bar graph of Figure 2(b) is that input
data transfers have slightly affected Job A execution time. This happens due to an I/O
operations overlapping with computation associated to GridFTP protocol that
consumed few resources during data transfer. We used top Linux command in order
to keep track of resources usage during job execution.

Figure 3 presents next test results, with the execution of ten Jobs B that have run in
four cluster nodes, in execution modalities with DTA and without DTA.

0

3000

6000

9000

12000

15000

18000

21000

32 64 128 256 512 1024 2048

file size (Mb)

E
xe

cu
tio

n
tim

e
(s

)

B without DTA B with DTA

Fig. 3. Execution times of ten Jobs B

As observed, with DTA modality demonstrates a very interesting contribution to
job execution time reduction again. The difference becomes more expressive as file
size increases because, on average, 7 jobs have started their execution with all
necessary data already downloaded in execution node. Besides, the bigger the output
files to be transferred, the longer is the time available for the scheduler to make
decisions about another jobs. This way, our mechanism contributes to an increase in
jobs execution throughput.

606 N.C. de Paula, G. da Silva Craveiro, and L.M. Sato

6 Conclusions and Future Works

We have presented in this work a mechanism that improves data-intensive job
execution time through data staging of all input files to an execution node. In addition
to this, an I/O operations and CPU bound jobs overlapping is applied. ISS (Integrated
Scheduling System) was designed and implemented to verify the concepts
application. The job preparation, submission and execution tracking in a cluster were
supported by the system.

Experimental results obtained from two job types (namely A and B) have revealed
that the proposed mechanism influenced in the increased performance of jobs that
access data files greater than 128Mb. Gains are much more remarkable when all
necessary data have been already received by the execution workstation before job is
sent to it.

It is also very important to point out that the system architecture contributed to an
increased execution throughput as the execution node becomes available before
output data transfer to submission node. As results proved, additional cost imposed by
shared resource used was considered acceptable.

In extension to this work, we intend to implement more sophisticated scheduling
policies in order to better determine the node that will receive data transfer in
advance. We are also motivated to propose further extensions that would comprise the
case of dependent and parallel jobs.

Finally, new scalability tests with more simultaneous jobs running in a greater
number of nodes will bring additional information which may lead us to identify new
behavior patterns.

Acknowledgments. We would like to thank Pró-reitoria de Pesquisa e Pós-graduação
(PROPP) from Universidade Estadual de Mato Grosso do Sul (UEMS) and also to
Fundação de Apoio ao Desenvolvimento do Ensino, Ciência e Tecnologia do Estado
de Mato Grosso do Sul (FUNDECT) for allowing advanced studies.

References

1. Basney, J.: Network and CPU Co-Allocation in High Throughput Computing
Environments. Ph.D. dissertation, University of Wisconsin-Madison (2001)

2. Henderson, R.L., Tweten, D.: Portable Batch System-PBS: Requirements Specification.
NASA Ames Research Center (1998)

3. Zhou, S.: LSF: Load Sharing in Large-Scale Heterogeneous Distributed Systems. In:
Proceedings of the Workshop on Cluster Computing, Florida (1992)

4. IBM.: Using and Administering LoadLeveler: Release 3.0, 4th edn. IBM Corporation
(1996)

5. Litzkow, M.J., Livny, M., Mutka, M.W.: Condor: A Hunter of Idle Workstations. In: 8th
International Conference on Distributed Computing Systems, Washington (1988)

6. Baker, M., Fox, G., Yau, H.: Cluster Computing Review. Northeast Parallel Architectures
Center, Syracuse University, Technical Report SCCS-748 (1995)

7. Livny, M., Basney, J., Raman, R., Tannenbaum, T.: Mechanisms for High Throughput
Computing. SPEEDUP Journal 11. 1 (1997)

 Data Transfer in Advance on Cluster 607

8. Machida, Y., Takizawa, S., Nakada, H., Matsuoka, S.: Multi-Replication with Intelligent
Staging in Data-Intensive Grid Application. In: The 7th IEEE/ACM International
Conference on Grid Computing (2006)

9. Hellerman, H., Smith, H.J.: Throughput Analysis of Some Idealized Input, Output, and
Compute Overlap Configurations. ACM Computing Surveys (1970)

10. Reid, K.L., Stumm, M.: Overlapping Data Transfer with Application Execution on
Clusters. In: Proceedings of the Second Workshop on Cluster-Based Computing, New
Mexico (2000)

11. Basney, J., Livny, M., Tannenbaum, T.: High Throughput Computing with Condor, HPCU
news 1(2) (1997)

12. Thain, D., Tannenbaum, T., Livny, M.: Distributed Computing in Practice: The Condor
Experience. Concurrency and Computation: Practice and Experience 17 (2004)

13. Kosar, T., Livny, M.: Stork: Making Data Placement a First Class Citizen in the Grid. In:
Proceedings of 24th IEEE Int. Conference on Distributed Computing Systems (ICDCS),
Tokyo (2004)

14. Thain, D., Basney, J., Son, S., Livny, M.: The Kangaroo Approach to Data Movement on
the Grid. In: Proceedings of the 10th IEEE Symposium on High Performance Distributed
Computing (HPDC10), San Francisco (2001)

15. Raman, R., Livny, M., Solomon, M.: Matchmaking: Distributed Resource Management for
High Throughput Computing. In: Proceedings of the 7th IEEE Int. Symposium on High
Performance Distributed Computing, Chicago (1998)

16. Raman, R., Livny, M., Solomon, M.: Resource Management through Multilateral
Matchmaking. In: Proceedings of the 9th IEEE Symposium on High Performance
Distributed Computing, Pittsburgh (2000)

17. Allcock, B., Bester, J., Bresnahan, J., Chervenak, A.L., Foster, I., Kesselman, C., Meder,
S., Nefedova, V., Quesnal, D., Tuecke, S.: Data Management and Transfer in High
Performance Computational Grid Environments. Parallel Computing Journal 28(5) (2002)

V. Malyshkin (Ed.): PaCT 2007, LNCS 4671, pp. 608–614, 2007.
© Springer-Verlag Berlin Heidelberg 2007

A Trust-Oriented Heuristic Scheduling Algorithm for
Grid Computing

Mingjun Sun, Guosun Zeng, Lulai Yuan, and Wei Wang

Department of Computer Science and Technology, Tongji University,
Shanghai 201804, China

Tongji Branch, National Engineering & Technology Center of
High Performance Computer, Shanghai 201804, China

Jacob.m.sun@gmail.com

Abstract. Security and reliability are major concerns in Grid computing
systems. Trust mechanism has been focus of much research in recent years
providing a safety and reliable Grid computing environment. Based on
EigenTrust model, in this paper, we extend the traditional job scheduling
strategies and present a new algorithm named Trust-Oriented Sufferage
algorithm. Simulations are performed to evaluate the performance of the new
algorithm.

Keywords: Grid computing; trust model; job scheduling; Sufferage algorithm.

1 Introduction

Grid is a unified computing platform which tries to connect and share all resources in
the Internet, including computation resource, storage resource, information resource,
knowledge resource and equipments for scientific research, and then solves the
problems of large-scale scientific engineering computing [1]. And how to obtain
trustworthy resource is an important issue. As resource in Grid environment is
inevitably unreliable and unsafe, a kind of algorithm is needed to schedule the jobs
over the trusty nodes to execute, reduce the jobs execution time, lower the ratio of
failure execution, and improve the security of execution environment of important
data [2].

Large-scale controlled sharing and interoperation among distributive resources are
enabled in Grid computing system [3]. Trust is a major concern of the resource
consumers and providers on a Grid. Resource providers may not want their resources
used by consumers they do not trust, and similar concerns apply from the consumer
side as well. Based on this scenario, we can see that if the resource management
systems are aware of the security requirement of both resource providers and
consumers it could minimize the cost of job scheduling. The aim of our study is to
incorporate a certain trust mechanism in scheduling algorithm and provide Grid
resource consumers and providers a more secure environment. Based on EigenTrust
[9] model, we present a new algorithm named Trust-Oriented Sufferage algorithm.
Simulations are performed to evaluate the performance of the new algorithm.

 A Trust-Oriented Heuristic Scheduling Algorithm for Grid Computing 609

There has been several research efforts related to our work. Azzedin and
Maheswaran [3] presented a trust-aware model between the resource producers and
consumers. Abdul-Rahman and Hailes [4] developed a model for supporting trust
based on experience and reputation; this model allows entities to decide which other
entities are trustworthy. S.Song and K.Hwang [5] enhanced the Min-min and
Sufferage heuristics and proposed a novel Space-Time Genetic Algorithm for trusted
job scheduling. Abawajy [6] presented Distributed Fault-Tolerant Scheduling (DFTS)
to provide fault-tolerance to task execution in Grid systems.

This paper is organized as follows. Section 2, defines the concept of trust. Section 3,
introduces EigenTrust algorithm. Trust-Oriented Sufferage algorithm is presented in
Section 4. The simulation and its analysis are showed in Section 5. Conclusions is
discussed in Section 6.

2 Definition of Trust

Trust is a complex notion so that its study is often limited. Until now, a consensus of
the trust’s definition could not be found in the literatures [7], [8]. We found the
definition in [4] is instructive as follows:

Trust is the firm belief in the competence of an entity to act as expected such that this
firm belief is not a fixed value associated with the entity but rather it is subject to the
entity’s behavior and applies only within specific context at a given time.

Ranging from very trustworthy to very untrustworthy, the trust level is built on the
past experiences of Grid nodes in a specified context. Since one could beyond each
individual’s resources to evaluate all aspects of a given situation when making a
trust decision, Grid nodes could rely on information from others. The definition of
reputation [4] we use in this paper is as follows:

A reputation is an expectation about an agent’s behaviors based on information or
about observations of its past behavior.

3 EigenTrust Algorithm

EigenTrust Algorithm provides eigenvector computation for the trust mechanism in
P2P networks, enabling peers could distinguish trustable peers from malicious peers.
Here we introduce it to job scheduling in Grid.

In the Grid environment, nodes often rate each other after transactions. For
instance, every time when node i executes a task from node j, it may rate the
transaction as successful (tr(i,j) = 1) or unsuccessful (tr(i,j) = -1). So the local trust
value of node i to j could be defined as:

ij ijltr tr=∑ (1)

610 M. Sun et al.

In order to aggregate local trust value, it is necessary to normalize them. In this
way, malicious nodes could not get high local trust value from one another by
frequent transactions. A normalized local trust value, Cij, is defined as follows:

max(,0)
, max(,0) 0

max(,0)

,

ij
ijj

ijjij

j

ltr
if ltr

ltrc

p otherwise

⎧
≠⎪

= ⎨
⎪
⎩

∑∑
(2)

pi is defined as

1
,

| |

0,
i

i P
Pp

i P

⎧ ∈⎪= ⎨
⎪ ∉⎩

 (3)

In formula (3), the P is defined as a set containing the pre-trusted nodes. The system
should choose a very few number of pre-trusted nodes, such as the designers of the
network or the first few nodes to join the network.

Then, we could aggregate the normalized local trust values. In the Grid
environment, node i could get recommendations from its acquaintances about other
nodes:

ij ik kjk
t c c=∑ (4)

If we write formula (4) in matrix notation, then we could get the trust vector

T
i it C c

→ →
= , where C is defined to denote the matrix [cij], ci =[ci1,ci2,…cin]

T contains cij ,

and ti =[ti1,ti2,…tin]
Tcontains tij.

Each node could gain a wider view by asking his friends’ friends, then
2()T

i it C c
→ →

= .If he continues in this manner (()T n
i it C c

→ →
=), he could get a

complete view of the global Grid environment.
In the Grid system, there is potential for malicious collectives to form. A malicious

collective is a group of malicious nodes who know each other, who give each other
high local trust values and give all other nodes low local trust values in an attempt to
subvert the system order. This issue could be solved by taking:

(1) ()

(1)
k k

Tt C t pα α
+→ → →

= − + (5)

where α is a constant between 0 and 1. In this way, we could break collective by
having each node place at least some trust in the accessible nodes in Grid that are not
parts of a collective.

Each node in Grid system is supposed to compute and store its own global trust
value ti :

(1) () ()
1 1(1)(...)k k k

i i ni n it c t c t pα α+ = − + + + (6)

 A Trust-Oriented Heuristic Scheduling Algorithm for Grid Computing 611

The detail algorithm is shown as Figure 1:

(0)

i i

(k+1) (k) (k)

i 1i 1 ni n i

(k+1)

ij i

EigenTrust(){

Each Node i do{

 Query all nodes j i,t =p

 repeat

 compute t =(1-α)(c t +...+c t)+αp ;

 send c t to all nodes;

 compu

≠

(k+1) (k)

i i

(k+1)

ji i

te δ=|t -t |;

 wait for all nodes return c t ;

 until δ<ε

 }

}

Fig. 1. EigenTrust Algorithm

4 Trust-Oriented Scheduling Algorithm

Trust-oriented job scheduling is NP-harder, so the heuristics are needed. Traditional
scheduling algorithms, which aim at finishing tasks in the minimum complete time,
includes OLB, Greedy, Fast Greedy, Min-min, Max-min, Sufferage[12], A*,
simulated Annealing, Tabu Search, Genetic algorithms, etc. Experiments show that
Min-min, Genetic algorithm, A* and Sufferage have better performance. However,
Genetic algorithm and A* run slowly, and could not adapt to the large-scale Grid
computing. Min-min algorithm has some problems in balancing the load, while
Sufferage has a best comprehensive performance in Grid environment.

The basic idea of Trust-Oriented Sufferage is as follows: Every node should be
assigned one task which will suffer the most lost of trust value if the task is not
assigned to this node.

Trust scope is introduced to Trust-Oriented Sufferage here. The scope of 0 to 1 is
equally divided into n (n is a positive integer) parts, which named trust scope. n is an
important factor to the performance of the algorithm. Experiments show that
algorithm performance will be reduced by either too high value or too low value of n.
So we choose n = 6 for our algorithm simulation. Trust value of all nodes could be
mapped to trust scope, which denotes as TSN. Similarly, task trust requirement
denotes as TTR.

As a batch mode scheduling algorithm, Trust-Oriented Sufferage will not map
tasks onto nodes as they arrive. Tasks are collected in set which is examined for
mapping at prescheduled times. In algorithm, Task T is the current task set, while
Task T’ is the next one.

612 M. Sun et al.

Algorithm 1. Trust-Oriented Sufferage Algorithm

Input: Task trust requirement TTR and initial trust values of nodes
Output: Task-node map scheme

Trust-Oriented Sufferage (Task T, Task T’) {
1. EigenTrust ();
2. Map trust value of all nodes to trust scope TSN.

3. for all tasks ti in T
4. for all nodes nj

5. cij = eij + rj
6. endfor
7. endfor
8. do until(all tasks in T are scheduled)
9. for each task ti in T
10. calculate minimum complete time
11. if the minimum complete time of ti larger

than Di

//Di is user-defined deadline of task
completion

12. delete ti from T, and insert it into T’
//in this case, ti could not be scheduled
in this execution T.

13. endfor
14. sort tasks in T in ascending order by their

minimum complete time
15. mark all nodes available
16. for each task ti in T
17. find node nj that gives the minimum

complete time as well as TSNj > TTRi
18. sufferage value = (TSNj - TTRi)*(SCT - MCT)
 //SCT – second minimum complete time
19. if nj is unassigned
20. assign ti to node nj , delete ti in T
21. mark nj assigned
22. else if sufferage value of task tn already

assigned to nj is less than the sufferage
value of task ti

23. unassign task tn , add it back to T
24. assign task ti to node nj , delete ti in T
25. endfor
26. update vector r which contains tasks assigned

to nodes
27. update matrix C, the expected completion time

matrix
28. enddo

}
In the above algorithm, ein is the expected executing time for task ti on node nj

when nj has no other loads; rj is the complete time of current tasks on node nj; Cij is
the expected complete time for task ti on node nj.

 A Trust-Oriented Heuristic Scheduling Algorithm for Grid Computing 613

Trust-Oriented Sufferage sorts the tasks in Task T in ascending order by their
minimum complete time. It is similar with Min-min by some way. And sufferage
value is determined by both TSN and TTR. Thus, Trust-Oriented Sufferage could
integrate trust into traditional job scheduling, and get better performance.

5 Experiments and Results Analysis

Simulations were performed to evaluate the performance of our algorithm. The
GridSim[10] toolkit provides a general infrastructure for simulation of different
classes of Grid resources, Grid nodes, and job schedulers. 8 Grid nodes and 200 tasks
were simulated in the experiments. And we found [11] instructive for our
experiments.

In GridSim environment, the initial trust degrees of the nodes are generated
randomly. Several nodes with the highest trust values were chosen as the pre-trusted
nodes. In formula (5), we can see α is an important factor to solve malicious
collectives. Our Experiments show that the algorithm performance will be reduced by
either too high or too low value of α . So we set 0.2 as its value in the following
experiments.

Figue 2 shows the makespan of the algorithms. Min-min and Sufferage algorithms
without trust mechanism will be more probable to reschedule the tasks than the Trust-
Oriented Sufferage (TOS), for the unsuccessfully executed tasks will not assigned
until the next schedule event.

Task Number

40 60 80 100 120 140 160 180 200 220

M
ak

es
pa

n
(s

ec
)

1000

2000

3000

4000

5000

6000

7000

Min-min
Sufferage
TOS

Fig. 2. Makespan of Algorithms

Site utilization rate is the percentage of calculating power allocated to tasks on a
Grid node. Table 1 shows the site utilization rate of 8 nodes. Site 2 and site 5 were
pre-trusted, so they take more tasks than average.

Table 1. Site Utilization

 0 1 2 3 4 5 6 7
Min-min 90 17 70 44 96 22 97 34
Sufferage 79 30 50 57 88 46 37 90
TOS 50 20 90 54 95 96 32 18

614 M. Sun et al.

6 Conclusions

It’s a crucial issue to integrate the trust mechanism into job scheduling in Grid
computing. Based on EigenTrust, the famous Sufferage algorithm was modified to
Trust-Oriented Sufferage. And simulation shows that our algorithm does perform well
to match the risky and unstable Grid computing environment. Further enhancement of
the trust-oriented job scheduling algorithms will be studied in our future work.

Acknowledgements

This research was partially supported by the National Natural Science Foundation of
China under grant of 60673157, the Ministry of Education key project under grant of
105071 and SEC E-Institute: Shanghai High Institutions Grid under grant of 200301.

The first author would like to thank Wenyu Hu for the frequent discussions, her
advice and insights that shaped this paper.

References

1. Foster, I., Kesselman, C., Tuecke, S.: The Anatomy of the Grid: Enabling Scalable Virtual
Organizations. International Journal of Supercomputer Application (2001)

2. Wang, W., Zeng, G.S.: Trusted Dynamic Level Scheduling Based on Bayes Trust Model.
Science in China: Series F Information Sciences 37(2), 285–296 (2007)

3. Azzedin, F., Matheswaran, M.: Integrating trust into grid resource management systems.
In: 2002 International Conference on Parallel Processing (ICPP 2002), pp. 47–54. IEEE
Press, Canada (2002)

4. Abdul-Rahman, A., Hailes, S.: Supporting trust in virtual communities. In: Hawaii Int’l
Conference on System Sciences (January 2000)

5. Song, S., Kwok, Y.-K., Hwang, K.: Security-Driven Heuristics and A Fast Genetic
Algorithm for Trusted Grid Job Scheduling. In: Proceedings of the 19th IEEE International
Parallel and Distributed Processing Symposium (IPDPS’05) (2005)

6. Abawajy, J.H.: Fault-Tolerant Scheduling Policy for Grid Computing Systems. In: Proc.
IPDPS (2004)

7. Misztal, B.: Trust in Modern Societies [M]. Polity Press, Cambridge (1996)
8. Grandison, T., Sloman, M.: A survey of trust in Internet applications. IEEE

Communications Surveys & Tutorials 4(4), 2–16 (2000)
9. Kamvar, S.D., Schlosser, M.T., Garcia-Molna, H.: The eigentrust algorithm for reputation

management in p2p networks. In: Proceedings of the 12th International World Wide Web
Conference (WWW ’03), Budapest, Hungary (2003)

10. Buyya, R., Murshed, M.: A Deadline Budget Constrained Cost-Time Optimisation
Algorithm for Scheduling Task Farming Applications on Global Grids, CoRR
cs.DC/0203020 (2002)

11. Li, K., He, Y., Liu, X., Wang, Y.: Security-Driven Scheduling Algorithms Based on
EigenTrust in Grid. In: pdcat, Sixth International Conference on Parallel and Distributed
Computing Applications and Technologies (PDCAT’05), pp. 1068–1072 (2005)

12. Maheswaran, M., Ali, S., Siegel, H.J., Hensgen, D., Freund, R.F.: Dynamic Matching and
Scheduling of a Class of Independent Tasks onto Heterogeneous Computing Systems. In:
Proceedings of the Eighth Heterogeneous Computing Workshop (HCW ’99), San Juan,
Puerto Rico, pp. 30–44 (April 1999)

V. Malyshkin (Ed.): PaCT 2007, LNCS 4671, pp. 615–622, 2007.
© Springer-Verlag Berlin Heidelberg 2007

3-Points Relationship Based Parallel Algorithm for
Minimum Ultrametric Tree Construction

Kun-Ming Yu1, Jiayi Zhou2,*, Chun-Yuan Lin3, and Chuan Yi Tang4

1 Department of Computer Science and Information Engineering, Chung Hua University
2 Institute of Engineering Science, Chung Hua University

3 Institute of Molecular and Cellular Biology, National Tsing Hua University
4 Department of Computer Science, National Tsing Hua University
yu@chu.edu.tw, jyzhou@pdlab.csie.chu.edu.tw,
cyulin@mx.nthu.edu.tw, cytang@cs.nthu.edu.tw

Abstract. To construct an evolutionary tree is an important topic in
computational biology. An evolutionary tree can symbolize the relationship and
histories for a set of species. There are many models had been proposed to
resolve these problems. However, most of them are NP-hard problem.
Ultrametric tree is one of the most popular models, it is used by a well-accepted
tree construction method--Unweighted Pair Group Method with Arithmetic
Mean, which is widely used by biologists to observe the relationship among
species. However, it is a heuristic algorithm. In this paper, we proposed a 3-
Points relationship (3PR) based parallel algorithm to solve this problem. 3PR is
a relationship between distance matrix and constructed evolutionary trees. The
main concept is for any triplet species, two species closer to each other in
distance matrix should be closer to each other in evolutionary tree. Then we
combined this property and branch-and-bound strategy to reduce the
computation time to obtain the optimal solution. Moreover, we put the lower
ranked path which is determined by 3PR to delay bound pool (DBP) to
accelerate the algorithm execution. DBP is a mechanism which can store the
lower ranked path and can be helping algorithm to find a better bounding values
speedily. The experimental results show that our proposed algorithm can reduce
the computation time compared with algorithm without 3PR. Moreover, it also
shows 3PR can reduce the computation time when number of computing nodes
increasing.

1 Introduction

An evolutionary tree can represent the histories for a set of species, it is a useful tool
for biologist to observe existent species or evaluate the relationship of them.
However, the real evolutionary histories are unknown in practice. Therefore, there are
many methods had been proposed to construct a meaningful evolutionary tree, which
is closing to the real one. The majority of these methods are all based on two inputs:
the sequences and the distance matrix [9]. In the input of sequences, an evolutionary

* The corresponding author.

616 K.-M. Yu et al.

tree is usually constructed according to the multiple sequence alignment (MSA).
However, it has been shown to be nondeterministic polynomial (NP)-hard to obtain an
optimal result for MSA problem [10].

In the input of distance matrix, the distance matrix is composed of a set of user-
defined values for any two species (e.g., edit distance). Many models [10,10] and
methods had been proposed to represent the evolutionary tree. However, to construct
an optimal evolutionary tree had been shown to be NP-hard [3,7] for many proposed
methods. One of the most commonly used models is ultrametric tree (UT), it is a
rooted and leaf label and edge weighted binary tree. The internal node represents the
hypothesis ancestors which evolved from one common ancestor, and the leaf stand for
present-day species. Moreover, it assumes the rate of evolution is constant. Due to it
is a NP-hard problem, biologists usually use heuristic algorithm to find an UTs. The
Unweighted Pair Group Method with Arithmetic mean (UPGMA, [10,11]) is one of
the popular heuristic algorithms to construct UTs.

In this paper, we would like to find an ultrametric tree which the sum of edge
weight is minimal, we call it as minimum ultrametric tree (MUT) problem. Although
it had been show to be a NP-hard problem [3,12], to construct middle size of tree is
useful for biologists to observe the evolutionary relationship. Therefore, it seems
possible to find MUT by exhaustive search, however, the trees grown very rapidly.
For example, A(10) > 107, A(20) > 1021, A(30) > 1037. Thus it can be seen when the
number of species grown, it seems impossible to exhaustively search.

Wu [12] proposed a branch-and-bound algorithm for construct MUT to avoid
exhaustive search, and it is useful to solve NP-hard problem. The experimental result
shows that [12] can find a MUT for 25 species in reasonable time. However, the
computation time grows rapidly when the number of species increasing. Therefore, in
previous work, we proposed an efficient parallel branch-and-bound algorithm for this
problem [12]. The experimental result shows that the proposed parallel algorithm can
solve 35 species in reasonable time with 16 computing nodes PC cluster. The number
of candidate UTs for 35 species is 9*108 times than the number of candidate UTs for
25 species. The results show that the proposed parallel branch-and-bound algorithms
can efficient bounding UTs and reducing the computation time.

Moreover, we observe the relationship between distance matrix and evolutionary
tree. We assume for any three species, two species closer to each other in distance
matrix should be closer to each other in evolutionary tree, then we named this
relationship as 3-Points Relationship (3PR). In [14], we apply this property when
branching third species. The experimental results show that it can reduce at most 25%
of computation time when we apply this property. However, we do not use this
property thoroughly when we select branching path in the proposed algorithm, we
only apply in branching third species (depth 0). Since [1] shows there may have the
contradictory relationship among them for any four species.

In this paper, we proposed a 3PR based parallel algorithm for MUT problem. In
order to prevent the four points contradiction situation, we use sliding window
strategy when applying 3PR to select branching path. Moreover, we proposed a delay
bound pool (DBP) mechanism to guarantee the optimal solution can be found. In the
branch-and-bound strategy, how to find a better bounding value as soon as possible is
an important issue. Therefore, the DBP mechanism can store the lower ranked path
and help the algorithm to find a better bounding value quickly. The experimental

 3-Points Relationship Based Parallel Algorithm 617

results show that our parallel algorithm with 3PR can reduce the computation time for
Human Mitochondrial DNAs data set and random generated data set.

This paper is organized as follows. In section 2, some preliminaries for sequential
branch-and-bound algorithm and 3PR are given. 3PR based parallel algorithm is
described in section 3 and section 4 shows our experimental results. Finally,
conclusions and future work are given in section 5.

2 Preliminaries

An ultrametric tree is a rooted, leaf labeled binary tree, and each edge associates with
a weight, the length from root to any leaf is equal. To simplify the presentation,
notations and terminologies used in this paper are prior defined as follows. We denote
a weighted graph as G=(V, E, w) with vertex set V and edge set E with an edge
weighted function w.

Definition 1: A distance matrix of n species is a symmetric nn × matrix M such that
0],[≥jiM for all 0],[=iiM , and for all nji ≤≤ ,0 .

Definition 2: Let),,(wEVT = be an edge weighted tree and Vvu ∈, . The path

length from u to v is denoted by),(vudT . The weight of T is defined by

∑
∈

=
Ee

ewTw)()(.

Definition 3: For any M, MUT for M is T with minimum)(Tw such that

},...,1{)(nTL = and],[),(jiMjidT ≥ for all nji ≤≤ ,1 . The problem of finding

MUT for M is called MUT problem.
Definition 4: Let P be a topology, and)(, PLba ∈ .),(baLCA denotes the lowest

common ancestor of a and b. If x and y are two nodes of P, we write yx → if and

only if x is an ancestor of y.
Definition 5: The distance between distance matrix and rooted topology of

evolutionary trees is consistent if]),[],,[min(],[kjMkiMjiM < if and only if

),(),(),(kjLCAkiLCAjiLCA =< for any nkji ≤≤ ,,1 . Otherwise is

contradictory.

2.1 Sequential Branch-and-Bound Algorithm for MUT

In [3], a sequential branch-and-bound algorithm was presented by Hendy and Penny
to construct a minimum evolutionary tree of 11 species. Wu [12] proposed an
efficient sequential branch-and-bound algorithm which was presented to construct
MUTs from a metric distance matrix. An optimal solution of 25 species can be found
in a reasonable time (in 24 hours). The results showed that the branch-and-bound
algorithm is useful for MUT problem. In the proposed branch-and-bound algorithm,
it repeatedly searches the branch-and-bound tree (BBT) to find a better solution until
optimal one is found. The BBT can represent the UT. Assume the root of BBT is depth
0, therefore each node with depth I in BBT represent a topology with a leaf set
{1,…,i+2}. The algorithm of [12] is shown in following.

618 K.-M. Yu et al.

Sequential Branch-and-Bound Algorithm

Input: A n*n distance matrix M
Output: The minimum ultrametric trees

1: Load distance matrix and re-labels the species by maxmin permutation as leaf set

{1,2,…n}.
2: Creates the root v of the BBT which v represent the topology with leaves 1 and 2.
3: Run UPGMA and use the result as the initial upper bound (UB).
4: while Count(BBTs) !=0
 if LB(v) >= UB
 Delete v and all its children.
 Select a node s in BBTs according to selection rule, whose children of s has not been
generated.
 Generate the children of s by using branching rule.
 If a better solution is found, then update UB as a new upper bound.
5: Report the minimum ultrametric trees for M.

2.2 3-Point Relationship (3PR)

Fan [1] proposed 3PR for evaluate the quality of the evolutionary tree. 3PR is a
logical method to check the LCA relation for any triplet of species (a, b, c) in distance
matrix and constructed evolutionary tree. The definition is shown in Definition 5. For
example, Table 1 is the distance matrix and Figure 1 show two candidate of BBT. We
can observe that M[a,c] =20 > M[b,c]=15, therefore b, c should be closer to each
other in the evolutionary tree. Thus, we denote the Figure 1 (a) is a cntradictory tree.
Moreover, there are many methods had been proposed to construct evolutionary tree,
we can evaluate each constructed tree with 3PR and count number of contradictory
set. Less contradiction set means the tree construction method is more ble for given
data.

Table 1. Distance matrix

 a b c
a 0 25 20
b 25 0 15
c 20 15 0

aa cc bb aa cc bb
(a) (b)

Fig. 1. Candidate BBTs

3 The Proposed Parallel Branch-and-Bound Algorithm

The branch-and-bound algorithm is a general technique to solve combinatorial search
problems. Many theoretical properties for sequential and parallel branch-and-bound
algorithm had been discussed. For a branch-and-bound algorithm, it consists of four
parts: branching rule, selection rule, bounding rule, and termination rules. The
branching, bounding, and termination rules are problem dependent, and the selection
rule is algorithm dependent. The selection rule will be an important factor for the

 3-Points Relationship Based Parallel Algorithm 619

performance of a designed algorithm. Four well-know search methods, breadth-first
[3], depth-first, best-first, and random [9], have been presented for the selection rule.

There are many aspects to choose the selection rules. In our algorithm, breadth-first
search will use up the memory, and random search strategy may be useful for our
application to find a better bounding value in global view. Moreover, best-first search
should have a mechanism to balance the memory usage, when memory will be using
up, it should use depth-first search instead of best-first search to reduce the memory
usage. Among them, the depth-first search and the best-first search are two efficient
and commonly used methods.

In this paper, we proposed a branch-and-bound algorithm with a 3PR selection
strategy in parallel computing environment. Moreover, we proposed a delay bound
pool (DBP) mechanism to speed-up the better bounding value finding process and
guarantee the optimal solution can be found. Since for any four species, there may be
existence a contradictory relationship. [1] illustrates for any four species a, b, c, d, if
there exist a relationship sets ((a,b),c), ((a,b),d), ((a,c),d), ((b,d),c) or ((a,b),c),
((a,b),d), ((a,c),d), ((c,d),b) then there existed a contradictory relationship. Therefore,
we only use 3PR when we insert third species instead of using it in all branching steps
in previous work. In this paper, we use sliding window technique to apply 3PR in our
proposed parallel algorithm. First, we re-label the species by maxmin permutation and
get the species array. Second, set the sliding window size to three, each time we
compare three species and choose the suitable BBT then we put other candidate BBTs
to DBP.

For example, Figure 2 is the species after maxmin permutation and we want to
insert fourth species (species 4) into BBT. Figure 3 represents two candidate BBTs,
then we compare M[3,4] and M[2,4]. Assumed M[3,4] is less then M[2,4] then we
select Figure 3 (b) and put the Figure 3 (a) to the DBP.

1 3 2 4 6 5

Fig. 2. Sliding Window Fig. 3. Candidate BBTs

Since we should guarantee the optimal solution can be found, therefore we can’t
drop the lower ranked candidate BBTs. Moreover, according to 3PR, we know the
better bounding value can be found in the tree which conformed to a least count of
contradictory sets. The candidate BBTs puts to DBP can help the running queue
shorter and find the better bounding value quickly. After a new bounding value to be
found, it can bound the BBT in Global Pool, Local Pool, and DBP. The detail of 3PR
based parallel algorithm is shown in following.

1 4 2 3 1 2 4 3
(a) (b)

620 K.-M. Yu et al.

3PR based Parallel Algorithm for MUT Problem

Input: A n*n distance matrix M, Level of 3PR, Time constraint.
Output: The ultrametric trees with minimum cost.

Master Processor (MP):

1: Load distance matrix and re-labels the species by maxmin permutation.
2: Creates the root of the BBT.
3: Run UPGMA and use the result as the initial upper bound (UB).
4: Branches the BBT according to 3PR with limit of level of 3PR, and move the

contradictory BBTs to delay bound pool (DBP).
5: Until BBTs reaches 3 times of total number of computing nodes, it broadcasts the global

UB and sends the BBT to computing nodes cyclically.
6: while Count(BBTs in LP) > 0 or Count(BBTs in GP) > 0 or Count(BBTs in DBP) >0
 if Count(BBT in LP) ==0 and Count(BBT in GP) !=0
 receive BBTs from GP
 v = get the BBT for branch according to 3PR
 Put others BBTs to DBP
 if LowerBound(v) > UB
 continue
 Generate the children of v according to 3PR
 if v branched completed
 if Cost(v) < UB
 Update the Global Upper Bound (GUB) to every computing nodes
 Add the v to the results set
 if Count(BBTs in GP) == 0
 Send last two UT in sorted LP to GP
 if Count(BBTs in LP) == 0 and Count(BBTs in GP)
 LP = DBP
7: Gather all solutions from each computing node and then output it.

Each of Slave Processors (SP):

1: while Count(BBT in LP) > 0 and execution time < TC
 if LowerBound(v) > UB
 continue
 v = get the BBT for branch according to 3PR
 Put others BBTs to DBP
 Generate the children of v according to 3PR
 if v branched completed
 if Cost(v) < UB
 Update the Global Upper Bound (GUB) to every computing nodes
 Add the v to the results set
 If there is a request from MP and the number of computing nodes in LP >2, then send
 2 nodes to MP.
2: if Count(BBTs in LP) == 0
 Send a request to MP
 If receive 2 nodes from GP in MP, then go to step 1.
3: Send all nodes in LP to MP.

 3-Points Relationship Based Parallel Algorithm 621

4 Experimental Results

To evaluate the performance of the proposed algorithm, we have implemented our
algorithm in C++ and Message Passing Library 2. The program executes in a PC
cluster with 16 computing nodes, the hardware specification is an AMD Athlon PC
with a clock rate 2.0 GHz and 1 GB memory. The PCs are interconnected by 100 Mb
fast ehternet switch. The system architecture is master/slave architecture, we choose
one PC as master and the master will dispatch jobs, handle global pool and collect
results from slave PCs. Two data sets are used to verify the performance of our
proposed algorithm. One is randomly generated data set, which the range of distance
between 1 and 100. Another is a practical data set of 136 Human Mitochondrial
DNAs (HMDNA), which is obtained from [11]. We run five different instances of
each number of species to eliminate the data dependence situation.

Figure 4 is the computation time of HMDNA data set with 16 computing nodes, we
can observe that 3PR could reduce the execution time when the number of species
grows. Figure 5 is the computation time of Random data set with 16 computing
nodes, the experimental results show that our algorithm also perform well on the
random generated data set. According to our observation, it can reduce about 20% and
10% of computation time for HMDNA data set and random data set, respectively.

0
20
40
60
80

100
120
140
160
180

14 15 16 17 18 19 20 21 22

T
im

e
(s

ec
.)

Number of species

Computation time of HMDNA data set, 16 nodes

w/o 3PR

w/ 3PR

Fig. 4. Computation time of HMDNA

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

14 16 18 20 22 24

T
im

e
(s

ec
.)

Number of species

Computation time of Random data set, 16 nodes

w/o 3PR

w/ 3PR

Fig. 5. Computation time of Random Data

5 Conclusions

In this paper, we proposed a 3PR based branch-and-bound parallel algorithm for MUT
problem. 3PR is a property between distance matrix and evolutionary tree. We apply
this property with sliding window technique to accelerate the process of selecting
branching path in the parallel branch-and-bound algorithm. Moreover, we propose a
delay bound pool (DBP) mechanism to store the lower ranked path to reduce the
influence of selecting new path in branch-and-bound strategy; it can help the branch-
and-bound algorithm to find a better bounding value quickly. The experimental
results show that our algorithm can reduce the computation time compared with the
algorithm without applying 3PR. In the future, we would like to observe how the
sliding windows size affects the computation time.

622 K.-M. Yu et al.

References

1. David, M.H., James, J.B., Mary, E.W., Marty, R.B., Ian, J.M.: Experimental
Phylogenetics: Generation of a Known Phlogeny. Science 255(5044), 589–592 (1992)

2. Fan, C.T.: The evaluation of evolutionary tree. Master Thesis, National Tsing Hua
University (2000)

3. Farach, M., Kannan, S., Warnow, T.: A robust model for finding optimal evolutionary
trees. Algorithmica 13, 155–179 (1995)

4. Gusfield, D.: Algorithms on Strings, Trees, and Sequences, computer science and
computational biology. Cambridge University Press, Cambridge (1997)

5. Hendy, M.D., Penny, D.: Branch and bound algorithm to determine minimal evolutionary
trees. Mathematical Biosciences 59, 277–290 (1982)

6. Janakiram, V.K., Agrawal, D.P., Mehrotra, R.: A randomized parallel branch-and-bound
algorithm. In: Proc. Int. Conf. Prallel Process, pp. 69–75 (1988)

7. Krivanek, M.: The complexity of ultrametric partitions on graphs. Information Processing
Letter 27(5), 265–270 (1988)

8. Lawler, E.L., Wood, D.W.: Branch-and-bound methods: A survey. Oper. Res. 14, 699–719
(1966)

9. Li, W.H.: Molecular Evolution. Sinauer Associates, Inc (1997)
10. Li, W.H., Graur, D.: Fundamentals of Molecular Evolution. Sinauer Associates (1991)
11. Linda, V., Mark, S., Henry, H., Kristen, H., Allan, C.W.: African Populations and the

Evolution of Human Mitochondrial DNA. Science 253(5027), 1503–1507 (1991)
12. Wu, B.Y., Chao, K.M., Tang, C.Y.: Approximation and Exact Algorithm for Constructing

Minimum Ultrametric Trees from Distance Matrices. J. of Combinatorial Optimization 3,
199–211 (1999)

13. Yu, K.-M., Zhou, J.-Y., Lin, C.-Y., Tang, C.Y.: Parallel Branch-and-Bound Algorithm
for Constructing Evolutionary Trees from Distance Matrices. In: IEEE Proceedings of
the 8th International Conference on High Performance Computing in Asia Pacific Region,
pp. 66–72 (2005)

14. Yu, K.-M., Zhou, J., Lin, C.-Y., Tang, C.Y.: An Efficient Parallel Algorithm for
Ultrametric Tree Construction Based on 3PR. In: Min, G., Di Martino, B., Yang, L.T.,
Guo, M., Ruenger, G. (eds.) Frontiers of High Performance Computing and Networking –
ISPA 2006 Workshops. LNCS, vol. 4331, pp. 215–220. Springer, Heidelberg (2006)

V. Malyshkin (Ed.): PaCT 2007, LNCS 4671, pp. 623–631, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Load Balancing Approach Parallel Algorithm for
Frequent Pattern Mining

Kun-Ming Yu1, Jiayi Zhou2,*, and Wei Chen Hsiao3

1 Department of Computer Science and Information Engineering, Chung Hua University
2 Institute of Engineering Science, Chung Hua University

3 Department of Information Management, Chung Hua University
1yu@chu.edu.tw, 2,3{jyzhou, swch}@pdlab.csie.chu.edu.tw

Abstract. Association rules mining from transaction-oriented databases is an
important issue in data mining. Frequent pattern is crucial for association rules
generation, time series analysis, classification, etc. There are two categories of
algorithms that had been proposed, candidate set generate-and-test approach
(Apriori-like) and Pattern growth approach. Many methods had been proposed
to solve the association rules mining problem based on FP-tree instead of
Apriori-like, since apriori-like algorithm scans the database many times.
However, the computation time is costly when the database size is large with
FP-tree data structure. Parallel and distributed computing is a good strategy to
solve this circumstance. Some parallel algorithms had been proposed, however,
most of them did not consider the load balancing issue. In this paper, we
proposed a parallel and distributed mining algorithm based on FP-tree structure,
Load Balancing FP-Tree (LFP-tree). The algorithm divides the item set for
mining by evaluating the tree’s width and depth. Moreover, a simple and trusty
calculate formulation for loading degree is proposed. The experimental results
show that LFP-tree can reduce the computation time and has less idle time
compared with Parallel FP-Tree (PFP-tree). In addition, it has better speed-up
ratio than PFP-tree when number of processors grow. The communication time
can be reduced by preserving the heavy loading items in their local computing
node.

Keywords: FP-tree, data mining, association rules, parallel and distributed
computing, load-balancing.

1 Introduction

The basic concept of frequent pattern is given a database which consists of many
transactions, and each transaction is a list of items. After that, to find a pattern that
occurs frequently in a data set named frequent pattern. It is useful in basket data
analysis, sale campaign analysis, and DNA sequent analysis. To extract the frequent
pattern from transaction databases is also an important problem in data mining research
for mining association rules [1,11], time series analysis, classification [2], etc. Most of

* The corresponding author.

624 K.-M. Yu, J. Zhou, and W.C. Hsiao

previous researches can be classified to candidate set generate-and-test approach
(Apriori-like) and Pattern growth approach (FP-growth) [5,2].

For Apriori-like approach, many methods [1] had been proposed, which are based
on Apiori algorithm [1,11]: if any length k pattern is not frequent in database, then the
length (k+1) super-pattern never can be frequent. However, Apriori will generate huge
number of candidate datasets and tests whether is frequent or not by repetitively
scanning the database. For example, to mine the frequent pattern with size 50 items
should generate more than 250 (about 1015) candidate sets and verify whether it is
frequent or not by pattern matching from database.

Han et al. [5] had proposed a new approach for mining frequent pattern and
introduced a data structure, Frequent Pattern (FP) Tree, which only store compressed,
essential information about frequent patterns. Moreover, a mining algorithm for FP-
tree was also developed, FP-growth. Opposite to Apriori-like algorithm, FP-growth
only scan database twice and mining information can be obtained from FP-tree.

However, to discover frequent pattern will increase the computation time
significantly when the database size is large. Javed et al. [8] had proposed a parallel
frequent pattern tree mining algorithm (PFP-tree) to solve this problem, and parallel
and distributed computing is a good strategy to solve this problem. There are many
parallel and distributed methods had been proposed [6,8,9,10,12,6]. However, it does
not consider the load balancing issue, some computing nodes will have heavy loading
and some do not.

In this paper, we proposed a load balancing approach parallel algorithm for the
frequent pattern mining problem, Load balancing FP-tree (LFP-tree). Moreover, a
loading degree function is also developed. The goal of LFP-tree is to calculate each
item’s loading degree by calculating the weight and the depth of the FP-tree then
dispatch different number of items to computing nodes to achieve the load balancing.

The experiment results show that LFP-tree has better balancing than PFP-tree. It
can reduce the idle time and has the better speed-up ratio then PFP-tree. Moreover,
the data exchanging time needed in LFT-tree is also less than in PFP-tree.

This paper is organized as follows. In section 2, FP-tree, FP-growth, and PFP-tree
will be described. LFP-tree algorithm will be introduced in section 3 and section 4
shows our experimental results. Finally, conclusions and future work are given in
section 5.

2 Related Work

First, we will define the frequent pattern mining problem. Let I={a1, a2, …, an} be a
set of items, and a transaction database DB=<T1, T2, …, Tn> be a set of transaction Ti
(]..1[ni ∈). The number of transaction in DB contains pattern A named support. A is
frequent pattern if A’s support is no less than a predefined minimum support threshold
ξ. Give a transaction database DB and a minimum support threshold ξ, the problem of
finding the complete set of frequent patterns is called the frequent pattern mining
problem.

 Load Balancing Approach Parallel Algorithm for Frequent Pattern Mining 625

2.1 Frequent Pattern Growth (FP-Growth)

FP (Frequent Pattern)-growth [5] algorithm was proposed by Han et al. in 2000 A.D.,
FP-growth algorithm only scan the database twice. Firstly, it scans database to create
header table, the frequent 1-item descend sorting in header table. Secondly, it scans
database again to create FP-tree. Afterward, the algorithm uses FP-growth to get all
frequent patterns via scanning FP-tree. FP-tree only stores frequent 1-itemset, it
compresses the space requirement with huge database, and thus it can use the space
more efficiently. FP-tree includes the node-link that node-link links the item which
has the same name. Moreover, each link started from header table, thus for any item ai
can be efficiently obtained from the FP-tree’s header table by following ai’s node-
links.

FP-growth is a mining algorithm based on FP-tree. It begins by building header
table, after selecting an item as mining target, it finds out all relative routes of this
item data by node-link. Then it constructs the subtree item by the same concept of FP-
tree construction, named conditional frequent tree. Afterward, the algorithm will
select an item from subtree as a mining goal and construct a new subtree. To traverse
the FP-tree recursively, finding all frequent item set.

2.2 Parallel FP-Tree Algorithm (PFP-Tree)

In order to shorten the mining time, Javed et al. proposed PFP-tree algorithm [8],
which is developed for SIMD computing environment. PFP-tree is based on FP-tree
data structure and divided into different partitions that equal the number of computing
nodes. After that, each processor constructs local header table (LHT) with their own
database. Then creates the global header table (GHT) by sending data from each slave
computing node (SN) to master computing node (MN). Afterward, each SN has the
GHT information and using the FP-tree construction algorithm to create local FP-tree.
MN assigns each SN to mine the same number of items by block distribution. Then
each SN should exchange portion of FP-tree and using FP-growth mining algorithm to
find all frequent patterns.

The main characteristic of PFP-tree algorithm is to use special data exchanging
method. The method groups the SN to reduce the repetition data exchange. Every SN
needs to communicate to each other at most log p rounds. (p is the number of SNs) In
order to exchange data for FP-growth, SNs will be divided into two groups, then
exchange necessary information, and divide each group into two sub groups, and
repeatedly until all SNs have been exchanged. After receiving necessary information
from other SNs, each SN begins to mine frequent pattern by applying FP-growth
method.

3 Load Balancing Frequent Pattern Tree (LFP-Tree)

After studying the previous FP-tree related algorithms. We find that the depth and
width of the tree will influence the computation time tremendously in recursively
mining process. Moreover, in parallel and distributed computing environment,
unsuitable data distributions will increase the makespan and the idle time of each
participate computing node.

626 K.-M. Yu, J. Zhou, and W.C. Hsiao

Therefore, to evaluate load degree of processors and evaluate how much time will
be used when mining each item is a crucial issue. A suitable evaluating function can
evaluate the computation time accurately and balanced the load of each computing
node. The procedure of the proposed LFP-tree will be described in detail as follows:

3.1 Global Header Table Construction Step

The Global Header Table construction step is based on FP-tree. The data will be
distributed equally to each slave computing node (SN) from Master computing node
(MN). After that, SNs receives the data (as local database, LDB) and scans the LDB
for the first time. Then we will get all items and its support and create the local header
table. Afterward, each SN transfers local header table to MN and then receives a
combined global header table (GHT). (Fig. 1)

Fig. 1. An example of Global Header Table

3.2 FP-Tree Construction Step

According to tree construction rule in FP-tree, each SN constructs the local FP-tree by
scanning the LDB. First of all, each SN creates a FP-tree that contains only a root
node named null. Secondly, it selects and sorts the frequent item in transaction
according to the order of GHT for each transaction in LDB. Then inserts the
transaction into FP-tree. Each node of FP-tree stores item-name, count, and node-link,
where item-name is the item of the node represents, count represent the number of
transactions occurred by the portion of path, and node-link links to the next node
which has the same item-name in FP-tree. For example, in fig. 2 each SN constructs
their local FP-tree according to the order of GHT, then link each item from GHT by
node-link.

3.3 The Load Degree Evaluation and Item Distribution Step

Since the computation time of mining process in each SN depends on how many items
needed to mine. However, each item in FP-tree has different width and depth; the
mining time also varies. Therefore, it is important to assign the mining items to SN. A
suitable distribution of mining items can reduce the makespan and tge idle time. To
evaluate each item processed on each SN, and then MN collects the results from SNs
and assigns items to SN to mine the frequent patterns. Fig. 3 is an example of load
degree evaluation procedure. For example, item A appears twice in FP-tree on

 Load Balancing Approach Parallel Algorithm for Frequent Pattern Mining 627

Fig. 2. An example of FP-tree

Fig. 3. The depth and width of FP-tree

Processor 3. The first one of item A has depth equal to 3, and second one has depth 2.
So the average of depth of item A is 2.5 ((2+3)/2).

The proposed loading evaluation formula is presented in equation (1), where P is
the number of processors, S is all item set, Ct is the number of leaf nodes, and Dpi is
the depth of pattern in processor i. Each SN uses this loading evaluation function to
determine the load degree of each item. Afterward send the evaluated value to MN,
and then the MN assign items to mine to SN according to this value. In order to avoid
exchange in large data between computing nodes, LFP-tree preserves the item which
the loading is large in the local computing node. Then dispatch items according to the
loading of each item.

628 K.-M. Yu, J. Zhou, and W.C. Hsiao

 (1)

3.4 Data Exchanging and Result Collection Step

After decided the load degree, the algorithm assigns mining items to each SN. SN
should exchange FP-tree with other SNs to receive the required data for mining. In
this step, we will apply group exchanging method in PFP-tree algorithm. The method
could refer to 2.2, and Fig. 4 shows the exchanged and integrated FP-tree.

Fig. 4. An example of exchange and integrate FP-tree

After that, each SN execute FP-growth algorithm to mining all frequent item set
from local FP-tree, and the MN collects all mined data and store it back to database.
Afterward, MN reports the mined results to user.

4 Experimental Results

In order to evaluate the performance of our proposed algorithm, we implement LPF-
tree along with PFP-tree algorithms and executed in a 16-node Linux based PC-
cluster. These two algorithms are implemented by message passing interface 2 (MPI-
2) and C programming language. We use a practical blood biochemical testing data
which contains 157,222 transactions and there are at most seven items of each
transaction. Moreover, we also compare the degree of load balancing of PFP-tree and
LFP-tree algorithms. Table 1 is the hardware and software specification.

Fig. 5 and Fig. 6 are the computation time with different number of processors of
PFP-tree and LFP-tree respectively. The results show when the number of processors
increased, the variation of computation time of each processor in PFP-tree is

 Load Balancing Approach Parallel Algorithm for Frequent Pattern Mining 629

Table 1. Hardware and Software Specification

Hardware Environment
CPU AMD Athlon Processor 2200+
Memory 1GB DDR Ram
Network 100 Mbps interconnection network
Disk 80GB IDE H.D.

Software Environment
O.S. ReadHat Linux 7.3
Library MPICH2 1.0.3

0

5

10

15

20

25

30

35

2 4 8 16

T
im

e
(s

ec
.)

Number of Processors

Computation Time (PFP-tree)

Fig. 5. Computation time of PFP-tree

0

5

10

15

20

25

30

35

40

2 4 8 16

T
im

e
(s

ec
.)

Number of Processors

Computation Time (LFP-tree)

Fig. 6. Computation time of LFP-tree

increased. On the contrary, our proposed LFP-tree can balance the workload of each
participated processor and reduce their idle time. In Fig 7, LFP-tree algorithm can
save about 16% of computation time when the number of processors great than eight
compared with PFP-tree. Fig. 8 shows the speed-up ratio of PFP-tree and LFP-tree,
we can observe that LFP-tree algorithm has better ratio when the number of
processors increases. We also observed that the data exchanging time rises when the
number of processors grows. Moreover, Fig. 9 shows LFP-tree could preserve items

630 K.-M. Yu, J. Zhou, and W.C. Hsiao

0

5

10

15

20

25

30

35

40

2 4 8 16

T
im

e
(s

ec
.)

Number of processors

Computation time (PFP-tree vs. LFP-tree)

PFP-tree

LFP-tree

Fig. 7. Speed-up ratio of PFP-tree and LFP-tree

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

2 4 8 16

S
pe

ed
-u

p
ra

tio

Number of processors

Speed-up

PFP-tree

LFP-tree

Fig. 8. Speed-up ratio of PFP-tree and LFP-tree

0

0.5

1

1.5

2

2.5

3

3.5

4

PFP (8) PFP (16) LFP (8) LFP (16)

T
im

e
(s

ec
.)

Data exchanging time

Fig. 9. Data exchange time

which loading is large in the local computing to save communication time. The
experimental results shows FP-tree has better balancing capability and it can save
about 16% of computation time. Moreover, the speed-up ratio is better than PFP-tree
when the processors augmented.

 Load Balancing Approach Parallel Algorithm for Frequent Pattern Mining 631

5 Conclusions

To mine the frequent pattern from transaction-oriented database is an important issue
in data mining research. There are lots of methods that had been proposed to solve
this problem, and some of them are developed for parallel and distributed
computingsystem. However, distributed mining item without considering the size of
FP-tree will cause some computing node to idle and increasing the makespan. In this
paper, we proposed an efficient parallel algorithm for frequent pattern mining
problem and proposed an evaluation function to estimate the loading of each item.
The experimental results show that our algorithm has better load balancing capability
and can reduce the computation time. Moreover, the proposed algorithm can save the
communication time by preserving the heavy loading items in their local computing
node. In the future, we can extend this concept to grid computing system. In grid
computing, the computing abilities are heterogeneous, we can dispatch mining item to
computing node according to the computation power of nodes and reduce the overall
computation time.

References

1. Agrawal, R., Srikant, R.: Fast algorithms for Mining Association Rules in Large Database.
In: Proceedings of the 20th International conference on Very Large Data Base, pp. 487–
499 (1994)

2. Almaden, I.: Quest synthetic data generation code. http://www.almaden.ibm.com/cs/
quest/syndata.html

3. Coenen, F., Leng, P., Ahmed, S.: Data structure for association rule mining: T-trees and P-
trees. IEEE Transactions on Knowledge and Data Engineering 16(6), 774–778 (2004)

4. Gorodetsky, V., Karasaeyv, O., Samoilov, V.: Multi-agent Technology for Distributed
Data Mining and Classification. In: Proceedings of the IEEE/WIC International
Conference on Intelligent Agent Technology, pp. 438–441 (2003)

5. Han, J., Pei, J., Yin, Y., Mao, R.: Mining Frequent Patterns without Candidate Generation:
A Frequent-Pattern Tree Approach. J. of Data Mining and Knowledge Discovery 8(1), 53–
87 (2004)

6. Holt, J.D., Chung, S.M.: Parallel mining of association rules from text databases on a
cluster of workstations. In: Proceedings of 18th International Symposium on Parallel and
Distributed Processing, p. 86 (2004)

7. Iko, P., Kitsuregawa, M.: Shared Nothing Parallel Execution of FP-growth. DBSJ
Letters 2(1), 43–46 (2003)

8. Javed, A., Khokhar, A.: Frequent Pattern Mining on Message Passing Multiprocessor
Systems. Distributed and Parallel database 16(3), 321–334 (2004)

9. Li, T., Zhu, S., Ogihara, M.: A New Distributed Data Mining Model Based on Similarity.
Symposium on Applied Computing, pp. 432–436 (2003)

10. Lin, C.-R., Lee, C.-H., Chen, M.-S., Yu, P.S.: Distributed Data Mining in a Chain Store
Database of Short Transactions. In: Conference on Knowledge Discovery in Data, pp.
576–581 (2002)

11. Park, J.S., Chen, M.-S., Yu, P.S.: An Effective Hash-Based Algorithm for Mining
Association Rules. ACM SIGMOD Record 24(2), 175–186 (1995)

12. Tang, P., Turkia, M.P.: Parallelizing Frequent Itemset Mining with FP-Trees. Computers
and Their Applications, pp. 30–35 (2006)

Author Index

Abramov, Sergei 293, 579
Accary, Gilbert 96
Afanasiev, Alexander 103
Afonnikov, Dmitry 184
Avetisyan, Arutyun I. 487, 537

Babkova, Varvara V. 487
Baldoni, Roberto 1
Bańczyk, Karol 188
Bandini, Stefania 360
Bandman, Olga 370
Belalem, Ghalem 496
Bertier, Marin 1
Bessmeltsev, Mikhail 589
Bessonov, Oleg 96
Boiński, Tomasz 188
Bouhraoua, Farouk 496
Bratosin, Carmen 15
Brodo, Linda 22
Butrylo, Boguslaw 119

Chen, Shih-Chang 507
Chuang, Chung-Hao 569
Chung, Yeh-Ching 525
Craveiro, Gisele da Silva 599

d’Auriol, Brian J. 111
de Mello, Rodrigo Fernandes 516
de Paula, Nilton Cézar 599
Degano, Pierpaolo 22
Désérable, Dominique 385
Dillon, Tharam S. 328
Dupont, Pascal 385
Dutta, Ruma 140

Elokhin, Vladimir 401

Federici, Mizar Luca 360
Fey, Dietmar 432
Fougère, Dominique 96
Fukaya, Takeshi 340

Gaissaryan, Sergey S. 487, 537
González, P. 153

Gorlatch, Sergei 80
Gorodetskii, Vladimir 401
Grelck, Clemens 410
Gribovskaya, Natalya 35
Gubar, Alexander Yu. 487
Guerraoui, Rachid 47
Gunbin, Konstantin 184

Ha, Ok-Kyoon 230
Halbach, Mathias 418
Hellou, Mustapha 385
Hoffmann, Rolf 418
Honkanen, Risto 200
Hsiao, Wei Chen 623
Hsu, Ching-Hsien 507
Hsu, Jer-Yu 525
Hwang, Soon Wook 194

Ilin, Valery P. 206
Ivannikov, Victor 537
Ivanovsky, Rostislav I. 553
Iwasaki, Masashi 340

Jin, Hai 215
Jun, Yong-Kee 230

Kalgin, K.V. 544
Kamali-Bernard, Siham 385
Kaminski, Wieslaw A. 468
Kang, Mun-Hye 230
Karpov, Yuri G. 553
Kasyanov, Victor N. 62
Kim, John 111
Kim, Young-Joo 230
Kimura, Kinji 340
Kireev, Sergei 128
Klug, Tobias 318
Knysh, Dasha V. 206
Komann, Marcus 432
Korkhov, Vladimir V. 245
Krasnotcshekov, Veniamin 240
Krawczyk, Henryk 188
Krzhizhanovskaya, Valeria V. 245
Kuksheva, Elvira 128
Kundu, Anirban 140
Kuznetsov, Anton 579

634 Author Index

Laine, Jean M. 559
Lastovetsky, Alexey 261
Latkin, Evgenii 401
Lee, Sungyoung 111
Lee, Young-Koo 111
Lefeuve-Mesgouez, Gaelle 174
Leppänen, Ville 200
Li, Kuan-Ching 516
Lim, Sang Boem 194
Lin, Chun-Yuan 615
Lin, Wilfred W.K. 328
Lin, Xuan-Yi 525
Liu, Pangfeng 569

Mainka, Andreas 432
Malyshkin, V.E. 544
Manzoni, Sara 360
Marchenko, Mikhail 276
Mart́ın, M.J. 153
Matejanka, Piotr 468
Matveev, Andrey 401
McCollum, Barry 283
McMullan, Paul 283
Meradji, Sofiane 96
Merino, Oscar Sierra 453
Mesgouez, Arnaud 174
Midorikawa, Edson T. 559
Mingarelli, Angelo B. 477
Moritz, Csaba Andras 453
Morvan, Dominique 96
Moskovsky, Alexander 293, 579
Mostefaoui, Achour 74
Mukhopadhyay, Debajyoti 140
Müller, Jens 80

Nakamura, Yoshimasa 340
Nechaev, S.P. 544
Nechaeva, Olga 589
Nepomniaschaya, Anna 442
Nhan, Nguyen Dang 194

Ott, Michael 318

Padaryan, Vartan 537
Penczek, Frank 410
Penttonen, Martti 200
Popov, Konstantin 453
Posypkin, Mikhail 103
Priami, Corrado 22

Raynal, Michel 1, 47
Reddy, Ravi 261
Renault, Éric 303
Rodŕıguez, G. 153
Roganov, Vladimir 293, 579

Sato, Liria Matsumoto 599
Senger, Luciano José 516
Sidorova, Natalia 15
Snytnikov, Aleksey 128, 184
Snytnikov, Nikolay 128, 162
Snytnikov, Valery 162
Sotnikov, Kirill A. 553
Stasenko, Alexander P. 62
Sukhoroslov, Oleg 103
Sun, Mingjun 608

Takata, Masami 340
Tang, Chuan Yi 615
Terekhov, Andrey 174
Toporkov, Victor 313
Touriño, J. 153
Trinitis, Carsten 318
Trojahner, Kai 410
Tschukin, G.A. 544
Tucci-Piergiovanni, Sara 1

Uneyama, Takashi 340

Vakhitov, Alexander 240
van Hee, Kees 15
Virbitskaite, Irina 35
Vizzari, Giuseppe 360
Vlassov, Vladimir 453
Vshivkov, Vitaly 128, 162
Vyatkin, Yuri 184

Wang, Wei 608
Weidendorfer, Josef 318
Wojcik, Grzegorz M. 468
Wong, Allan K.Y. 328
Wong, Jackei H.K. 328
Wu, Jan-Jan 569
Wu, Qian 346
Wu, Yan-Zu 525

Xu, Jie 215
Xu, Mingwei 346

Yacoubi, Samira El 477
Yamamoto, Yusaku 340

Author Index 635

Yang, Laurence Tianruo 516
Yu, Kun-Ming 615, 623
Yuan, Lulai 608

Zeng, Guosun 608
Zhou, Jiayi 615, 623
Zhu, Yuanbo 346

	Title Page
	Preface
	Organization
	Table of Contents
	Looking for a Definition of Dynamic Distributed Systems
	Introduction
	Elements for Defining a Dynamic Distributed System
	Modeling the Dynamic Size of the System in Terms of Number of Entities
	Modeling the Dynamic Size of the System in Terms of Geography
	Dynamic Models Definition

	An illustrating Example: One-Time Query
	The One-Time Query Problem
	The WILDFIRE Algorithm
	The One-Time Query Problem for Dynamic Models
	The DEPTHSEARCH Algorithm

	Conclusion

	Adaptive Workflow Nets for Grid Computing
	Introduction
	Preliminaries
	Adaptive Grid Workflow Nets
	Conclusion

	A Stochastic Semantics for BioAmbients
	Introduction
	Background
	The Gillespie’s Algorithm
	Stochastic Process Calculi

	Stochastic BioAmbients
	AnExample
	Conclusions

	A Categorical Observation of Timed Testing Equivalence
	Introduction
	Timed Transition Systems
	A Category of Timed Transition Systems
	\mathcal{P}$_\sigma$-Open Morphisms
	Conclusion
	Appendix: Introduction to Open Maps

	From Unreliable Objects to Reliable Objects: The Case of Atomic Registers and Consensus
	Introduction
	Computation Model
	Processes, Registers and Consensus Objects
	Responsive and Nonresponsive Crash Failures
	Notion of t-Resilience

	Registers and Consensus Objects with Responsive Failures
	Reliable Register When Failures Are Responsive: An Unbounded Construction
	Reliable Register When Failures Are Responsive: A Bounded Construction
	Consensus When Failures Are Responsive: A Bounded Construction

	Registers and Consensus Objects with Nonresponsive Failures
	Reliable Register When Failures Are Not Responsive: An Unbounded Construction
	Consensus When Failures Are Not Responsive: An Impossibility

	A Functional Programming System SFP: Sisal 3.1 Language Structures Decomposition
	The Introduction
	The Sisal 3.1 Language
	The IR1 Internal Representation
	Decomposition of Case, Where and Vector Expressions
	Decomposition of the Multidimensional Loops
	Decomposition of the Array Element Selection
	Decomposition of the Array Element Replacement
	Conclusion

	Towards a Computing Model for Open Distributed Systems
	Introduction
	Computing Model
	The Distributed MergeQueue
	About Termination
	Open Systems
	Concluding Remarks
	References

	Enhancing Online Computer Games for Grids
	Introduction
	Parallelisation Approaches to Scaling Online Games
	Scalability Dimensions
	Game World Zoning
	Game World Replication

	Grid Computing for Online Games
	Dynamic Scaling of Game Environments
	Case Study: Rokkatan
	Rokkatan: The Game
	Processing of User Actions
	Rokkatan Implementation and Scalability Experiments

	Conclusion and Related Work
	References

	Optimized Parallel Approach for 3D Modelling of Forest Fire Behaviour
	Introduction
	Mathematical Model and Numerical Method
	OpenMP Parallelization on NuMA Computers
	Parallelization Approach and Results
	Conclusion
	References

	A High-Level Toolkit for Development of Distributed Scientific Applications*
	Introduction
	IARnet Toolkit
	Integration of Software Resources
	Information Service
	Workflow Management Service

	BNB-Grid: Using IARnet for Solving Large Scale Discrete Optimization Problems
	Conclusions
	References

	Orthogonal Organized Finite State Machine Application to Sensor Acquired Information
	Introduction
	Review[3]
	Approach and Methodology
	Applications to Sensor Acquired Data
	Gradient
	Contouring
	Temperature System

	Cellular Automata Discussion
	Technological Aspects
	Conclusion
	References

	Parallel Broadband Finite Element Time Domain Algorithm Implemented to Dispersive Electromagnetic Problem
	Introduction
	Problem Formulation
	Distributed Formulation of the Problem
	Numerical Performance
	Conclusions
	References

	Strategies for Development of a Parallel Program for Protoplanetary Disc Simulation
	Introduction
	Protoplanetary Disc Model
	Basic Equations
	Numerical Implementation of the Model

	Parallel Implementation of the Protoplanetary Disc Model
	Necessity of Parallelization
	Goals of Parallelization
	Strategies of Parallelization

	Parallel Program for Quasi-3D Disc Model
	Parallel Program Based on the Fundamental Solution of Poisson Equation
	3D Parallel Program in Cylindrical Coordinate System
	3D Parallel Program Based on Decomposition of the Computation Domain
	Summary
	References

	Generation of SMACA and Its Application in Web Services
	Introduction
	Cellular Automata (CA) Preliminaries
	Definitions

	Generation of SMACA and Its Application in Indexing
	Synthesis of SMACA

	Experimental Results
	Conclusion
	References

	Enhancing Fault-Tolerance of Large-Scale MPI Scientific Applications
	Introduction
	Checkpointing and Recovery of Parallel Applications: The CPPC Tool
	Global Consistency
	Portability
	Memory Requirements
	Transparency

	The Applications
	Experimental Results
	Conclusions
	References

	Study of 3D Dynamics of Gravitating Systems Using Supercomputers: Methods and Applications
	Introduction
	Mathematical Model of 3D Dynamics of Gravitating Systems
	NumericalMethods
	Vlasov Equation
	Poisson Equation

	Parallelization Techniques
	Poisson Equation
	Vlasov Equation

	Applications
	Influence of Central Body on the Vertical Motions of Thin Disk
	Approach to the Investigation of the Equilibrium States of Gravitating System

	Conclusion
	References

	Transient Mechanical Wave Propagation in Semi-infinite Porous Media Using a Finite Element Approach with Domain Decomposition Technology
	Introduction
	Mechanical and Numerical Works
	Spatial Scales and Macroscopic Approach
	Finite Element Formulation and Numerical Resolution
	Structure of the Code and Parallelization
	Algebraic Decomposition (Grid Partitioning)
	Domain Decomposition

	Results
	Test 1
	Test 2

	Conclusion
	References

	The Location of the Gene Regions Under Selective Pressure: Plato Algorithm Parallelization
	Introduction
	Methods and Algorithms
	Results
	References

	Object Serialization and Remote Exception Pattern for Distributed C++/MPI Application
	Introduction
	Design Goals
	Architecture of Application Pattern
	Implementation
	Basic Classes
	Serialization
	Remote Exceptions

	Application Examples
	Assertions
	Exceptions Thrown in a Slave Node

	Test Results
	Serialization’s Overhead
	Comparison to Java

	Conclusions
	References

	Improving Job Scheduling Performance with Dynamic Replication Strategy in Data Grids
	Introduction
	Motivation
	Related Works

	Scheduling Strategy
	Dynamic Replication
	Replica Decision
	Replica Placement

	Performance Studies
	Replica Placement Strategy Evaluation
	Dynamic Replication Strategy Evaluation

	Conclusion
	References

	Address-Free All-to-All Routing in Sparse Torus
	Introduction
	Sparse Torus $ST(n,d)$
	Scheduled Routing of h-Relations
	Conclusions
	References

	On the Parallel Technologies of Conjugate and Semi-conjugate Gradient Methods for Solving Very Large Sparse SLAEs
	Introduction
	Conjugate and Semi-conjugate Iterative Methods
	The Parallel Technologies of Algorithms Implementation
	Results of Numerical Experiments
	References

	TRES-CORE: Content-Based Retrieval Based on the Balanced Tree in Peer to Peer Systems
	Introduction
	Related Work
	TRES-CORE Scheme
	Model
	Definitions and Properties of Doc-Tree
	Construction of a Hierarchical Tree
	Query Processing

	Extension to the TRES-CORE Scheme
	Load Balancing
	Fault Tolerance
	Improvement of the Efficiency

	Simulation
	Experiment Setup
	Experiment Results

	Conclusion and Future Work
	References

	Efficient Race Verification for Debugging Programs with OpenMP Directives
	Introduction
	Background
	The Data Race in OpenMP Program
	The Previous Tool

	Efficient Race Verification
	The Verification Schemes
	The Efficient Tool

	Experimentation
	Synthetic Programs
	Race Verification and Its Efficiency

	Conclusions
	References

	Adaptive Scheduling and Resource Assessment in GRID
	Introduction
	Scheduling of Computations
	Cost Function Definition
	Cost Function Motivation

	Resources Assessment Problem
	Problem Description
	Problem Statement
	SPSA Algorithm

	Conclusion
	References

	Dynamic Load Balancing of $Black-Box$ Applications with a Resource Selection Mechanism on Heterogeneous Resources of the Grid
	Introduction and Motivation
	Background: Automated Load Balancing on the Grid
	Generalized Automated Load Balancing with Resource Selection
	The Basic Algorithm of the Automated Load Balancing
	Adaptive Load Balancing on Heterogeneous Resources: Theoretical Approach

	Performance Results
	Synthetic Application and Experimental Setup
	Load Balancing Speedup for Different Applications
	Load Balancing for Master-Worker Model: Heuristic Versus Analytically Derived Load Distribution
	Influence of the Resource Heterogeneity on the Load Balancing Efficiency

	Conclusions and Future Work
	References

	A Novel Algorithm of Optimal Matrix Partitioning for Parallel Dense Factorization on Heterogeneous Processors
	Introduction
	LU Factorization on Homogeneous Multiprocessors
	LU Factorization on Heterogeneous Platforms with a Constant Performance Model of Processors
	Experimental Results
	Conclusions and Future Work
	References

	Parallel Pseudorandom Number Generator for Large-Scale Monte Carlo Simulations
	Introduction
	Generating Pseudorandom Numbers on Single Computer
	Generating Pseudorandom Numbers in Parallel
	Choice of Parameters for the Parallel Generator
	Statistical Test of Parallel Generator
	ReviewofSystemMONC
	References

	Dynamic Job Scheduling on the Grid Environment Using the Great Deluge Algorithm
	Introduction
	The Scheduling Problem
	Scheduling Algorithms
	Great Deluge Algorithm
	Extended Great Deluge with Reheat

	Experimentation and Results
	Conclusions and Future Work
	References

	Parallelism Granules Aggregation with the T-System
	Introduction
	Related Work
	OpenTS: T-System Implementation
	Granule Aggregation in Recursive Programs
	Granules Aggregation in “Map” Parallel Programming Template
	Future Work
	Conclusion
	References

	Toward a Distributed Implementation of OpenMP Using CAPE
	Introduction
	CAPE
	Proof of Concept
	Distributed Implementation of OpenMP Using CAPE
	Performances
	Related Works
	Conclusion
	References

	Multicriteria Scheduling Strategies in Scalable Computing Systems
	Introduction
	Assumptions and Statement of the Problem
	Strategy Synthesis by the Totality of Criteria and Models
	Conclusions
	References

	Latencies of Conflicting Writes on Contemporary Multicore Architectures
	Introduction
	False Sharing
	Related Work
	Benchmark
	Results
	Conclusions and Outlook
	References

	A Novel Self-Similar (S^2) Traffic Filter to Enhance E-Business Success by Improving Internet Communication Channel Fault Tolerance
	Introduction
	Related Work
	The Self-Similarity ($ S^ 2$) Filter
	Experimental Results
	Results with the FLC Dynamic Buffer Tuner

	Conclusion
	References

	Accelerating the Singular Value Decomposition of Rectangular Matrices with the CSX600 and the Integrable SVD
	Introduction
	The Rectangular SVD Algorithm and Its Optimization for the CSX600
	QR Decomposition and Back-Transformation by Q
	SVD of the Intermediate Bidiagonal Matrix

	PerformanceResults
	Conclusion
	References

	Parallel Dynamic SPT Update Algorithm in OSPF
	Introduction
	Background
	Parallel SPT Algorithms in Static Method
	Dynamic SPT Update Algorithms

	Parallel Analysis
	Parallel SPT Update Algorithm Framework
	Complexity
	Computation Time
	Communication Time
	Idle Time
	Complexity Analysis

	Task Distribution Algorithm
	Simulation
	Conclusion
	References

	Pedestrian and Crowd Dynamics Simulation: Testing SCA on Paradigmatic Cases of Emerging Coordination in Negative Interaction Conditions
	Introduction
	SCA Model and Crowd Simulation
	Situated Cellular Agent Model
	SCA–Based Model of Pedestrian Crowds: Overview

	Experimenting SCA on Phenomena Emerging from Negative Interaction for Space Sharing
	Freezing by Heating
	Lane Formation

	Concluding Remarks and Future Works
	References

	Coarse-Grained Parallelization of Cellular-Automata Simulation Algorithms
	Introduction
	Correctness Conditions for CA Domain Decomposition
	Formal Definitions
	Correctness Conditions of CA Algorithms
	Correctness Conditions of CA Decomposition

	Parallelization of CA Algorithms
	Synchronous CA Parallelization
	Asynchronous CA Parallelization
	Parallelization of Composed CA

	Conclusion
	References

	Cellular Automata Models for Complex Matter
	Introduction
	Sandpile Models
	Self-organized Criticality in the Sandpile
	Stratification and Segregation in a Binary Sandpile
	Self-organization and Stratigraphy in Aerolian Sand Ripples

	Lattice-Gas Models
	Pure Lattice-Gas Models
	Lattice-Boltzmann Models
	Extended Lattice-Boltzmann Models

	Lattice-Grain Models
	Cellular Automata for Granular Flow
	Lattice-Gas Related Models
	Force Chains in Granular Packing
	Traffic-Flow Related Models

	HybridModels
	Cellular-Neural Models of Reaction-Diffusion
	Cellular Automata for Hydration of Cement-Based Materials
	Movable Cellular Automata

	Discussion
	From Fine-Grain to Coarse-Grain CACM
	Synchronous or Asynchronous Time Evolution
	Topology and Scalability of the Network
	Consistency of the Models

	References

	Hysteresis in Oscillatory Behaviour in CO Oxidation Reaction over Pd(110) Revealed by Asynchronous Cellular Automata Simulation
	Introduction
	Formulation of the Reaction Mechanism
	Algorithm of Simulation
	Results and Discussions
	Conclusion
	References

	CAOS: A Domain-Specific Language for the Parallel Simulation of Cellular Automata
	Introduction
	Cells
	Agents
	Observers
	Implementation and Evaluation
	Related Work
	Conclusion
	References

	Parallel Hardware Architecture to Simulate Movable Creatures in the CA Model
	Introduction
	Formal Description of the Problem
	Alternative Architectures
	Conclusion
	References

	Comparison of Evolving Uniform, Non-uniform Cellular Automaton, and Genetic Programming for Centroid Detection with Hardware Agents
	Introduction
	Evolving Uniform Rules
	Encoding the Rule Table
	Details of the Evolutionary Algorithm and the Applied Fitness Function
	Results for the Uniform Case

	Extension to Non-uniformity
	Short Introduction of Non-uniformism and Related Work
	Investigating Non-uniform CAs in Detail

	A Third Approach: Genetic Programming
	Conclusions
	References

	Associative Version of Italiano’s Decremental Algorithm for the Transitive Closure Problem
	Introduction
	A Model of Associative Parallel Machine
	Preliminaries
	Italiano’s Decremental Algorithm for the Transitive Closure
	An Associative Version of Italiano’s Decremental Algorithm
	Implementation of the Associative Version of Italiano’s Decremental Algorithm on the STAR-Machine
	Conclusions
	References

	Support for Fine-Grained Synchronization in Shared-Memory Multiprocessors
	Introduction
	Related Work
	Synchronizing Memory Operations
	Memory Architecture
	Cache Coherence with Support for Fine-Grain Synchronization
	Fine-Grain Synchronization with a Snoopy Cache Coherency Protocol
	Conclusions
	References

	Self-organised Criticality in a Model of the Rat Somatosensory Cortex
	Introduction
	Model and Method of Parallelisation
	Simulations and Results
	Conclusions
	References

	Control of Fuzzy Cellular Automata: The Case of Rule 90
	Introduction
	Basic Definitions
	Cellular Automata Approach
	Fuzzy Cellular Automata

	Control of Fuzzy Rule 90
	The Case of a Single Controlled Cell in Zero Backgrounds
	Case of a Controlled Cell with a Single Seed in a Zero Background

	Concluding Remarks
	References

	Intensive Atmospheric Vortices Modeling Using High Performance Cluster Systems
	Inroduction
	ParJava
	Mathematical Model and Computational Implementation
	Parallel Algorithm
	Results of Numerical Modeling of 3D Tornado
	Conclusion
	References

	Dynamic Strategy of Placement of the Replicas in Data Grid
	Introduction
	Related Works
	Cost Model and Replicas Placement
	Grid Topology
	A Cost Model
	Placement Algorithm

	Simulation
	Simulated Grid Model
	Experimentations and Results

	Conclusion and Future Works
	References

	ISO: Comprehensive Techniques Toward Efficient GEN_BLOCK Redistribution with Multidimensional Arrays
	Introduction
	Related Work
	Communication Sets Identification
	Single Dimensional Array
	Multi-dimensional Array

	Communication Scheduling
	Local Message Reduction Optimization
	Performance Evaluation
	Conclusions
	References

	A New Memory Slowdown Model for the Characterization of Computing Systems
	Introduction
	The Model
	Validation
	Conclusions and Future Work
	References

	SCRF – A Hybrid Register File Architecture
	Introduction
	Related Work
	The Architecture Models
	The Clustered RF Architecture
	The $SCRF$ Architecture

	The $SCRF$ Register Allocation Algorithm
	Phase 1
	Phase 2
	Phase 3
	Phase 4
	An Example to Illustrate the SCRF Register Allocation
	Macro Register Allocation

	Performance Comparisons
	Conclusions
	References

	Model Based Performance Evaluation for MPI Programs
	Introduction
	Model of a Parallel Java Program
	Interpretation of the Model
	Conclusions
	References

	Runtime System for Parallel Execution of Fragmented Subroutines
	Introduction
	Related Work
	Parallel Libraries
	Complex Projects

	Fragments Creation and Execution
	Implementation of a Fragment
	Creation of Fragments

	The Outline of the Runtime System Architecture
	The Runtime System Functions
	Execution of Ready Fragments
	Data Exchanges and Implementation of Information Dependencies
	Fragment Lookup Service
	Fragment Migration Support

	Experiments
	Hardware
	Measurement Program
	Overhead Costs
	Speedup and Efficiency
	Load Balancing Possibility Tests

	Conclusions and Future Work
	References

	Application of Simulation Approaches to Creation of Decision Support System for IT Service Management
	Problem Statement
	Proposed Approach
	Application Example
	Further Development and Application Area
	Conclusion
	References

	Using Analytical Models to Load Balancing in a Heterogeneous Network of Computers
	Introduction
	Workload Distribution
	Developed Strategy
	Case Studies
	Computational Environment
	Workload Balancing
	Comparing the PEMPIs VRP with SS Strategy

	Some Related Works
	Conclusions
	References

	Block-Based Allocation Algorithms for FLASH Memory in Embedded Systems
	Introduction
	Flash Memory Allocation Model
	Page Access Sequence
	Flash Memory Allocation

	Algorithms
	The Online Problem
	The Offline Problem

	Experimental Results
	Implementation Issues
	Experimental Settings
	Effect of the Length of Page Access Sequence
	The Effects of Cell Number

	Conclusion
	References

	Variable Reassignment in the T++ Parallel Programming Language
	Introduction
	OpenTS Programming Model
	T++ Language
	Implementation of Variable Reassignment
	Distributed Shared Memory in OpenTS
	POV Ray Parallelization with OpenTS
	Related Work
	Conclusion
	References

	Parallel Construction of Moving Adaptive Meshes Based on Self-organization
	Introduction
	Moving Mesh Construction Based on Self-organization
	Parallel Adaptive Mesh Construction
	Conclusion
	References

	Data Transfer in Advance on Cluster
	Introduction
	Related Work
	Mechanism of Data Transfer in Advance
	Selecting the Destination Node to the Data Transfer
	Ensuring the Data-Intensive Job Execution

	Integrated Scheduling System - “ISS”
	Architecture of ISS

	Evaluation
	Conclusions and Future Works
	References

	A Trust-Oriented Heuristic Scheduling Algorithm for Grid Computing
	Introduction
	Definition of Trust
	EigenTrust Algorithm
	Trust-Oriented Scheduling Algorithm
	Experiments and Results Analysis
	Conclusions
	References

	3-Points Relationship Based Parallel Algorithm for Minimum Ultrametric Tree Construction
	Introduction
	Preliminaries
	Sequential Branch-and-Bound Algorithm for MUT
	3-Point Relationship ($3PR$)

	The Proposed Parallel Branch-and-Bound Algorithm
	Experimental Results
	Conclusions
	References

	Load Balancing Approach Parallel Algorithm for Frequent Pattern Mining
	Introduction
	Related Work
	Frequent Pattern Growth (FP-Growth)
	Parallel FP-Tree Algorithm (PFP-Tree)

	Load Balancing Frequent Pattern Tree (LFP-Tree)
	Global Header Table Construction Step
	FP-Tree Construction Step
	The Load Degree Evaluation and Item Distribution Step
	Data Exchanging and Result Collection Step

	Experimental Results
	Conclusions
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

